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We study the problem of constructing a general hybrid quantum-classical bracket from a partial classical
limit of a full quantum bracket. Introducing a hybrid composition product, we show that such a bracket is the
commutator of that product. From this we see that the hybrid bracket will obey the Jacobi identity and the
Leibniz rule provided the composition product is associative. This suggests that the set of hybrid variables
belonging to an associative subalgebra with the composition product will have consistent quantum-classical
dynamics. This restricts the class of allowed quantum-classical interaction Hamiltonians. Furthermore, we show
that pure quantum or classical variables can interact in a consistent framework, unaffected by no-go theorems in
the literature or the restrictions for hybrid variables. In the proposed scheme, quantum backreaction appears as
quantum-dependent terms in the classical equations of motion.
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I. INTRODUCTION

A consistent framework for the dynamics of interacting
quantum and classical systems is desired for applications
ranging from chemical physics to inflationary cosmology (see
[1,2] and references therein for a list of applications). Another
motivation for investigating quantum-classical hybrid dynam-
ics is that it might shed light on the problem of quantum
measurement.

Schemes for combining quantum and classical mechanics
have been proposed in the literature. For a review of the vari-
ous approaches and their shortcomings, see [3]. In this paper
we are concerned with the approach that attempts to construct
a dynamical bracket in the canonical formulation. Taking this
route allows us a transparent, albeit abstract, analysis of the
proposed dynamics and a concrete comparison with the core
properties of quantum and classical dynamics.

Previous attempts of this sort have been proposed in [1,4–
8]. They have been criticized in a series of no-go theorems
presented in [9–13]. The suggestions fail to satisfy two crucial
properties of dynamical brackets: (i) the Jacobi identity and
(ii) the Leibniz rule.

Impediments to a consistent mechanics for a hybrid
quantum-classical system have been known for quite some
time now. These no-go results are surprising, especially since
part-classical part-quantum systems appear to be common.

An exploration of more general frameworks is warranted.
Here we consider one such possibility, by introducing a
nontrivial composition product for hybrid quantum-classical
observables. Deriving the hybrid bracket as a partial classi-
cal limit of a full quantum bracket, it takes the form of a
commutator of a certain product which we call the hybrid
composition product. The consistency of the bracket then
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requires that the hybrid composition product is associative.
The associativity of the product ensures the Jacobi identity
and the Leibniz rule for the bracket. It is important to note
that the Leibniz rule is satisfied only with respect to the hybrid
composition product.

This clear condition then allows us to investigate the
problem on concrete grounds. The hybrid bracket and its
underlying composition product are derived through a partial
classical limit of quantum mechanics in phase space. The
outcome of this limit depends on the quantization scheme
used prior to taking the limit. We find that the composition
product resulting from familiar quantizations is not generally
associative for all possible hybrid variables and thus the re-
sulting hybrid bracket is not consistent. This can be viewed as
a no-go theorem. However, using the associativity condition,
we can explore possible ways forward.

Using the consistency condition in its alternative form, we
see that hybrid variables that form an associative subalgebra
with the hybrid composition product will automatically have
consistent dynamics. The associativity condition helps us find
exactly which variables are admissible into the theory. Since
interaction Hamiltonians are necessarily hybrid, the condition
then dictates the kind of interactions allowed between quan-
tum and classical systems.

Furthermore, we show that pure quantum and pure clas-
sical variables can interact consistently without restriction.
The restriction on hybrid variables is relevant only if one is
interested in the dynamics of hybrid variables. For pure vari-
ables, interacting through a hybrid Hamiltonian, the dynamics
is consistent. On the quantum side, this is nothing new; it
is the familiar quantum evolution on a classical background.
On the classical side, however, this gives rise to quantum
backreaction on classical variables.

In obtaining these results, no extra assumptions are made.
The hybrid setup, along with its allowed set of hybrid vari-
ables, comes naturally out of the partial classical limit. While
hybrid dynamics is not generally consistent for all hybrid
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variables, quantum mechanics and its partial classical limit
already contain a large class of hybrid variables that have
consistent dynamics. This class of variables can be found
using the methods described in this paper.

We derive the hybrid bracket from a partial application
of the classical limit. The phase-space formulation of quan-
tum mechanics is used. It provides a general lucid transition
from quantum to classical, avoiding the possible confusions of
defining such transitions in operator quantum mechanics [14].
Of course, the phase-space formulation is algebraically equiv-
alent to the operator formulation, so it is straightforward to
translate the bracket obtained into the more familiar language
of operators.

This paper is arranged as follows. In Sec. II we outline the
main ideas of the paper and the form of a general quantum-
classical bracket. The derivation of the bracket is shown in
Sec. III after a brief review of quantum mechanics in phase
space. We discuss the consistency of the dynamics of inter-
acting quantum and classical variables and backreaction in
Sec. IV. In Sec. V we detail the condition for the hybrid
bracket to obey the Jacobi identity and the Leibniz rule. The
allowed classes of hybrid variables are discussed in Sec. VI
along with some examples of such classes. Finally, the dy-
namics of hybrid variables in the Heisenberg and Schrödinger
pictures is presented in Sec. VII.

II. THE HYBRID BRACKET

A consistent dynamical framework in the canonical for-
mulation requires the existence of a dynamical bracket: an
antisymmetric bilinear bracket of dynamical variables that
obeys the Jacobi identity and the Leibniz rule.1 In classical
mechanics the Poisson bracket is used. In quantum mechanics
the dynamical bracket is the commutator. It is well known
that the loss of any of these four properties (antisymme-
try, bilinearity, Jacobi, and Leibniz) leads to the breakdown
of the dynamical framework (see [10] for a discussion of
the necessity of these properties). We expect the canoni-
cal quantum-classical (hybrid) dynamics to possess the same
properties.

In [1,4,5], the bracket

1

ih̄
[Â, B̂] + 1

2
({Â, B̂} − {B̂, Â}) (2.1)

was proposed as a hybridization of the quantum and classical
brackets. Here Â and B̂ are hybrid variables. The bracket
(2.1) was derived by taking the classical limit of only a part
of the system. While antisymmetric and bilinear, it does not
generally satisfy the Jacobi identity or the Leibniz rule. This
negative result was discussed in the no-go theorems of [9–13],
forbidding a consistent framework for quantum-classical dy-
namics.

In this paper we apply the partial classical limit in a
more general context as opposed to the special case used in

1Bilinearity is guaranteed if the bracket is both linear and anti-
symmetric, as in the case for this work. However, we use the term
“bilinear” since not all hybrid brackets proposed in the literature are
antisymmetric, e.g., Anderson’s bracket [6].

the literature. In doing so, a single mathematical condition
emerges as responsible for the Jacobi and Leibniz properties.
This condition then puts the aforementioned no-go theorems
in a more general context and provides a language in which
they can be further analyzed. We explore the possibilities for
hybrid quantum-classical dynamics in light of this realization.

To arrive at the consistency condition, we first observe
some general properties of both quantum and classical me-
chanics. Dynamical variables can be combined to produce
new ones through a bilinear and associative binary operation.
We call this operation a composition product. The composi-
tion product of quantum mechanics is noncommutative, while
that of classical mechanics is commutative. Dynamical brack-
ets satisfy the conditions of antisymmetry, bilinearity, and the
Jacobi identity

[Â, [B̂, Ĉ]] = [[Â, B̂], Ĉ] + [B̂, [Â, Ĉ]] , (2.2)

{ f , {g, h}} = {{ f , g}, h} + {g, { f , h}} (2.3)

and they obey the Leibniz rule with respect to the composition
product

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] , (2.4)

{ f , gh} = { f , g}h + g{ f , h} . (2.5)

Here Â, B̂, and Ĉ are quantum operators on Hilbert space, and
f , g, and h are classical functions on phase space.

Realizing this abstract structure of composition products
and dynamical brackets provides insight into the problem of
constructing a consistent dynamical framework. In particular,
we need to specify the composition product with respect to
which a dynamical bracket obeys the Leibniz rule.

In quantum mechanics, the noncommutativity of the com-
position product allows the commutator of this product to be
a good candidate for a dynamical bracket. Indeed, the non-
commutativity and bilinearity of the quantum product lead to
the antisymmetry and bilinearity of the commutator. Its asso-
ciativity ensures that the commutator of the quantum product
obeys the Jacobi identity and the Leibniz rule with respect to
that same product. We see that the composition product itself
gives rise to a dynamical bracket.

On the other hand, the composition product of classical
mechanics is commutative. Constructing a dynamical bracket
for it follows a different path. We can write the Poisson
bracket as a commutator of a bidifferential operator. For ex-
ample,

{ f , g} = f
←−
∂ q

−→
∂ pg − g

←−
∂ q

−→
∂ p f . (2.6)

Here q and p are the canonical phase-space conjugates and
we use the standard notation f

←−
∂ := ∂ f and

−→
∂ f := ∂ f . The

noncommutativity and bilinearity of
←−
∂ q

−→
∂ p lead to the an-

tisymmetry and bilinearity of the Poisson bracket. However,←−
∂ q

−→
∂ p is not associative. Only by asserting that the familiar

pointwise multiplication is the classical composition prod-
uct can we find that the Poisson bracket satisfies the Jacobi
identity and the Leibniz rule with respect to that composition
product.
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We can then approach hybrid dynamics using the lens of
composition products and dynamical brackets. As we show
in the coming sections, the composition product of hybrid
variables, like that of pure quantum variables, is noncom-
mutative. We denote it by � and call it the asterisk product.
Thus, writing the hybrid bracket as a commutator of this new
composition product

{[Â, B̂]} = 1

ih̄
(Â � B̂ − B̂ � Â) , (2.7)

we see immediately that we must require � to be associative.
The associativity of the � product2 implies the Jacobi identity
for its commutator (2.7) and provides the Leibniz rule as

{[Â, B̂ � Ĉ]} = {[Â, B̂]} � Ĉ + B̂ � {[Â, Ĉ]} . (2.8)

Together with noncommutativity and bilinearity, the associa-
tivity of � is the condition that guarantees the Jacobi and
Leibniz properties for the hybrid bracket.

We derive the bracket (2.7) in the next section by taking a
partial classical limit of the system. Also used are the natural
reduction requirements [10]:

{[quantum, classical]} = 0 , (2.9a)

{[quantum, any]} = 1

ih̄
[quantum, any] , (2.9b)

{[classical, any]} = {classical, any} . (2.9c)

For now, we simply state that

� = 1 + ih̄

2
(P + σ ) , (2.10)

where P is the Poisson bracket

fPg := f (
←−
∂ q

−→
∂ p − ←−

∂ p
−→
∂ q)g = { f , g} (2.11)

and σ is symmetric (gσ f = f σg, or σ t = σ ). The σ product
involved in the hybrid composition product � and bracket
{[·, ·]} is connected to the partial classical limit in the next
section. In general, σ defines the � product and, consequently,
the hybrid bracket.

Using (2.10) in (2.7), the hybrid bracket becomes

1

ih̄
[Â, B̂] + 1

2
({Â, B̂} − {B̂, Â} + Â σ B̂ − B̂ σ Â) . (2.12)

The bracket (2.1) is a special case (σ = 0) of this general
result. Note that, regardless of the commutativity of P or σ as
binary operations, Â and B̂ are noncommutative in the general
case.

The bracket (2.12) is antisymmetric, bilinear, and obeys
the reduction requirements (2.9). For this bracket to obey the
Jacobi identity and the Leibniz rule, the � product (2.10) must
be associative, which then places a condition on σ . As will
be seen in Sec. V, straightforward constructions of σ cannot
satisfy that condition. This can be seen as a generalization of
the no-go theorem to certain hybrid brackets.

The analysis presented thus far connects the consistency
of the framework of hybrid dynamics to the associativity of

2In this paper, we use the term “product” to refer to the binary
operation itself: � is the product, not f � g.

the � product. This connection suggests the possibility of
circumventing previous no-go theorems. To that end, one path
to explore is the construction of a nontrivial � product that is
associative for general hybrid variables. Another possibility is
to restrict the allowable hybrid variables to those that form an
associative subalgebra with a given � product. The latter will
be discussed in Sec. V.

III. DERIVATION FROM THE PARTIAL
CLASSICAL LIMIT

In an attempt to construct hybrid mechanics, one can
start with the assumption that quantum mechanics underlies
classical systems. In this setup, the dynamical variables are
subdivided into Q and C sectors. We then proceed to take the
classical limit of the C sector only, obtaining a general form
of the hybrid dynamical bracket.

Defining the classical limit is not straightforward. Various
ways of obtaining such a limit in the standard operator formu-
lation have proven difficult [14], which prevents them from
providing a procedure general enough for our purposes. The
phase-space formulation of quantum mechanics, on the other
hand, provides a sufficiently general and unambiguous cor-
respondence between the algebras of classical and quantum
mechanics in the limit of h̄ → 0.

Here we present a brief overview of the concepts of
phase-space quantum mechanics (also known as deformation
quantization) that we use to study quantum-classical brackets.
The interested reader is referred to [15–23] for more exten-
sive treatments, as well as to the more pedagogical reviews
[14,24–26].

The phase-space formulation is generated from operator
quantum mechanics by mapping Hilbert space operators to
phase-space functions:

Â(q̂, p̂) → AR(q, p) . (3.1)

Here q and p stand for any number of degrees of freedom
and their conjugate momenta. The map, or realization, R is
sometimes called a dequantization and it is not unique. For
example, the quantization R−1 entails an operator ordering
prescription, and so the map R depends on which one is
chosen.

Phase-space quantum mechanics comes with a noncom-
mutative, bilinear, and associative � product (star product)
mimicking (homomorphic to) the noncommutative product of
operators

ÂB̂ → AR �R BR . (3.2)

The quantum bracket is the commutator of the � product
divided by ih̄

[[·, ·]] = 1

ih̄
(� − �t ) . (3.3)

Here h̄ is the reduced Planck constant and the superscript t
stands for transpose: A �t B = B � A.

A � product is a “deformation” of the commutative,
bilinear, and associative pointwise product (ordinary multi-
plication) of functions, with ih̄ as a deformation parameter.
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These deformations should obey the general classical corre-
spondence relations

� =
∞∑

n=0

(ih̄)nGn = 1 + O(h̄) , (3.4)

[[·, ·]] =
∞∑

n=1

(ih̄)n−1
(
Gn − Gt

n

) = P + O(h̄) , (3.5)

where Gn are noncommutative binary operations (products)
and P is the Poisson bracket. Following the nonuniqueness
of the operator-to-function map (3.1), the deformation is not
unique. Since all � products have their zeroth term as defined
above, the particular form of the (generally noncommuta-
tive) h̄-dependent terms will reflect the difference between
� products.

A class of representations can be obtained from differ-
ent quantization maps, specifying different operator-ordering
recipes. The most famous � product on phase space is the one
based on the Wigner transform, reflecting the Weyl operator
ordering,

�W = e(ih̄/2)P . (3.6)

Other examples include star products based on the standard,
antistandard, normal, antinormal, and Born-Jordan orderings.
It is possible to relate two realizations via a transition operator
[22,23].

This concludes our very brief summary. Let us now take the
partial classical limit and derive the general hybrid bracket.
We subdivide the degrees of freedom and their conjugate mo-
menta into two sectors, referred to as Q and C. Any dynamical
variable u can be put in the form u = ∑

uQuC . The sum is over
any number of variables and the subscripts refer to variables
belonging to the Q or C sectors. Since we will be dealing with
bilinear products, we will restrict our discussion to hybrid
variables of the form u = uQuC , omitting the sum; the results
are still general.

The � product of the full quantum system can be factored:

�full = �Q�C = �C �Q . (3.7)

Here the subscripts imply that each of the � products acts only
on its respective sector,

u �full v = uQuC �Q �CvQvC = (uQ �Q vQ)(uC �C vC ) . (3.8)

This ensures that variables belonging to two different sectors
commute. It should be understood that uQ and uC are pure Q
and pure C variables, respectively.

Note that, since the two sectors are independent, �Q need
not be realized in the same way as �C . In the following, only
the C sector realization is relevant; the freedom of choosing
any quantization scheme on the Q sector is maintained.

The partial classical limit then is the process of taking h̄ →
0 only in the C sector of the system. The result should apply
to systems whose C sector has a scale of action, constructed
from its physical parameters, that is large compared to h̄.

From the correspondence relations (3.4) and (3.5) with the
factorized � product (3.7), we have

�full = �Q
[
1 + ih̄CGC1 + O

(
h̄2

C

)]
, (3.9)

[[·, ·]]full = 1

ih̄

(
�full − �t

full

)

= [[·, ·]]Q + h̄C

h̄

(
�Q GC1 − �t

QGC
t
1

) + O

(
h̄2

C

h̄

)
,

(3.10)

where h̄C is Planck’s constant on the C sector. Taking the
partial classical limit h̄2

C/h̄ → 0 in (3.10) gives the hybrid
bracket

{[·, ·]} = [[·, ·]] + h̄C

h̄
(�G − �tGt ) . (3.11)

Here we suppress the subscripts for simplicity: � := �Q and
G := GC1. From now on, � should be understood as acting
only on Q sector variables and G on C sector variables.

The uniqueness, or lack thereof, of Planck’s constant has
been discussed in [11,12]. Here we take Planck’s constant to
be unique and universal; numerically, h̄C = h̄. We keep the
subscript in h̄C simply as a bookkeeping device in the formal
expansion of the full quantum bracket [[·, ·]]full [Eq. (3.10)].
More concretely, the expansion should be of the bracket of
physical quantities. Explicitly, taking the limit h̄C → 0 means
that h̄ is small compared to some characteristic scale of action
S constructed from physical quantities in the C sector:

h̄

S(uC, vC )
� 1 . (3.12)

However, since we do not include physical quantities in the
formal expansion (3.10), we use the symbol h̄C as the subject
of the partial classical limit while keeping “the other” h̄ on the
Q sector untouched.

Now that the partial classical limit has been taken and the
hybrid bracket has been derived, we set h̄C = h̄ in (3.11) to
get

{[·, ·]} = [[·, ·]] + �G − �t Gt . (3.13)

The use of phase-space quantum mechanics allows a simple
derivation of a general quantum-classical hybrid bracket. The
expression for the hybrid bracket (3.13) will differ depending
on the choice of representation on the C sector. If one chooses
to use the Wigner representation with its associated �C prod-
uct on the C sector, then one gets G = P/2 and the bracket
becomes

[[·, ·]] + � + �t

2
P . (3.14)

This is the bracket proposed in [1,4,5], thus making it a special
case of the general bracket.

Directly from the associativity of �C = 1 + ih̄G + · · · and
the correspondence relations (3.4) and (3.5), we have two
important properties of G:

u(vGw) − (uv)Gw + uG(vw) − (uGv)w = 0 , (3.15)

G − Gt = P . (3.16)

Equation (3.15) gives us a relation between G and normal mul-
tiplication, while Eq. (3.16) shows that the Poisson bracket is
the commutator, or the antisymmetric part, of the G product.
We can then write G as a sum of antisymmetric and symmetric
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(commutative) parts

G = 1
2 (P + σ ) . (3.17)

The form of σ differs for different realizations, while P is
the antisymmetric part of G in all. For example, σ = 0 for the
Wigner or the Born-Jordan-based representations.

Using (3.17), the hybrid bracket (3.13) can be rewritten as

{[·, ·]} = [[·, ·]] + � + �t

2
P + � − �t

2
σ , (3.18)

giving it a somewhat symmetric form and allowing for com-
parison with different particular realizations of the bracket.
Using this form, we can test whether the bracket satisfies the
natural assumptions discussed in [10],

{[uQ, vC]} = 0,

{[uQ, v]} = vC[[uQ, vQ]],

{[uC, v]} = vQ{uC, vC},
(3.19)

where v = vQvC is an arbitrary hybrid variable. These con-
ditions ensure that separate sectors remain separate and that
hybrid dynamics reduces to pure dynamics for pure (quantum
or classical) variables.

For the bracket (3.18), the first and last of these relations
are identically satisfied, while the middle one is calculated to
be

{[uQ, v]} =
[
vC +

(
ih̄

2

)
(1σvC )

]
[[uQ, vQ]] . (3.20)

Requiring Eq. (3.20) to follow the exact equality in (3.19)
imposes the condition

1σu = uσ1 = 0 (3.21)

for any variable u. From (3.17) we get the same condition
for G. Now the hybrid bracket reduces to pure brackets, as
desired.

There is another form of the general hybrid bracket that
will prove very useful in recognizing its properties. Defining

� := 1 + ih̄G , (3.22)

the bracket becomes

{[·, ·]} = 1

ih̄
(� � − �t �t ) . (3.23)

The hybrid bracket is essentially a commutator of the ��
product with � acting only on Q variables and � on C vari-
ables.

The � product (3.22) can be seen as a truncation of the
� product at the first power of h̄. Stopping at the first-order
truncation is motivated by two reasons: (i) It gives the partial
classical limit of the full quantum dynamical bracket (3.10)
and (ii) it is the only truncation compatible with the reduction
requirements, particularly, the third of (3.19).

Another useful form of the hybrid bracket can be found
using Eqs. (3.13), (3.17), and (3.22). It has the character of a
Leibniz rule

{[u, v]} = [[u, vQ]] � vC + vQ � {u, vC} . (3.24)

This shows that pure factors of a hybrid variable v = vQvC

can be pulled out of the hybrid bracket at the cost of � and �

products. From this we see immediately that a conserved pure
quantum variable vQ and a pure classical variable vC can be
combined to give a conserved hybrid variable v = vQvC .

The quantum-classical bracket can be expressed in terms
of operators as follows. Consider hybrid dynamical entities of
the form Â(qC, pC ) = ÂQAC (qC, pC ), where ÂQ is an operator
on the Hilbert space of the Q sector and AC (qC, pC ) is a
function on the phase space of the C sector. The hybrid bracket
can be written as

{[Â, B̂]} = 1

ih̄
(Â � B̂ − B̂ � Â) , (3.25)

or equivalently

1

ih̄
[Â, B̂] + 1

2
({Â, B̂} − {B̂, Â} + Âσ B̂ − B̂σ Â) . (3.26)

This again offers a direct comparison with the bracket
proposed in [1,4,5]. Finally, the operator form of the quasi-
Leibniz relation (3.24) is

{[Â, B̂]} = [[Â, B̂Q]] � BC + B̂Q{Â, BC} . (3.27)

We will return to, and continue to use, the phase-space
formulation.

IV. DYNAMICS OF INTERACTING PURE VARIABLES

The general hybrid bracket, in all its incarnations men-
tioned in the preceding section, obeys some important
consistency requirements. It reduces to a pure bracket when
one of its arguments is pure [Eq. (3.19)] and it is antisymmet-
ric and bilinear for all variables. Before addressing the Jacobi
identity and Leibniz rule for hybrid variables, it is instructive
to see what can be done with the bracket as it is, using only
the properties it already satisfies.

The reduction equations (3.19) show a feature of the hybrid
bracket that can be exploited immediately: When the hybrid
bracket reduces to a pure one, it automatically satisfies all
consistency requirements, including the Jacobi identity and
Leibniz rule. Reduction is guaranteed when there is only one
independent hybrid variable considered. This is a plausible
setup for quantum and classical systems interacting through
a hybrid interaction term in the Hamiltonian.3 This has the
implication that only time translation can be generated by a
hybrid variable; no other hybrid transformations are allowed.
Despite the restriction on hybrid variables, the implications
for the familiar pure variables are significant. In fact, they
would cover a wide range of applications.

In this section we will consider the case where all dynami-
cal variables of interest are pure (quantum or classical) except
for one hybrid variable that defines the interaction Hamilto-
nian. Let η(qQ, pQ, qC, pC ) be a hybrid variable. Then, by
reduction, we have

{[uQ, f (η)]} = [[uQ, f (η)]] , (4.1)

{[uC, f (η)]} = {uC, f (η)} , (4.2)

3The Hamiltonian can also be a piecewise function that has differ-
ent forms in different regions of the phase space or time. The point
of the restriction is to not have two hybrid variables in one dynamical
bracket.
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and from antisymmetry

{[ f (η), g(η)]} = 0 (4.3)

for all functions of η.
Let the Hamiltonian of the full system be

H = HQ + HC + HI (η) , (4.4)

split into a pure quantum term HQ, a pure classical term HC ,
and an interaction term HI (η). For any function fQ of pure
quantum variables, the analog of the Heisenberg equation of
motion is then

dfQ

dt
= {[ fQ, H]} + ∂ fQ

∂t
= [[ fQ, HQ + HI ]] + ∂ fQ

∂t
, (4.5)

the expected quantum equation. The interaction term HI con-
tains classical variables that are no different from the familiar
external potentials in textbook quantum mechanics. From the
point of view of the Q sector, HI (η) can be regarded as a
time-dependent potential where the explicit time dependence
is that of the classical variables involved in η.

On the classical side, we get a similar equation:

dfC
dt

= {[ fC, H]} + ∂ fC
∂t

= { fC, HC + HI} + ∂ fC
∂t

. (4.6)

This time, the interaction term HI (η) encodes quantum back-
reaction on classical variables. This is due to the presence of
quantum variables in η, which evolve quantum mechanically.

The interaction term, as a whole, has a hybrid time
evolution

dHI

dt
= {[HI , H]} + ∂HI

∂t
= [[HI , HQ]] + {HI , HC} + ∂HI

∂t
.

(4.7)

In general, any function of η will evolve in time according to

df (η)

dt
= [[ f (η), HQ]] + { f (η), HC} + ∂ f (η)

∂t
. (4.8)

We see that, despite the restriction of allowing only one
hybrid variable (the interaction) into the theory, interesting re-
sults can still be found. In [27] we provide an explicit example
of the dynamics of pure variables interacting via a quantum-
classical harmonic oscillator. Backreaction is exhibited in
the evolution of a nonvanishing commutator for classical
variables. Importantly, it was shown that while canonical
quantum or classical relations in general are not preserved in
a quantum-classical interaction, the hybrid canonical relations
are.

V. JACOBI IDENTITY AND LEIBNIZ RULE FOR HYBRID
VARIABLES

Now we turn to the issue of satisfying the Jacobi identity
and the Leibniz rule for hybrid variables. Examining the form
(3.23) of the bracket, we can see that if the hybrid product ��
is associative, then it can be treated as a composition product
for hybrid variables that automatically renders the bracket
Leibniz and Jacobi compliant.

Since � is already associative, the condition becomes that
� must be associative, acting only on classical variables. This
is clear from an explicit expansion of the Jacobi terms of the

hybrid bracket

{[{[u, v]},w]} + {[{[v,w]}, u]} + {[{[w, u]}, v]}
= uQ � vQ � wQ{[(uC � vC ) � wC − uC � (vC � wC )]}

+ cyclic permutations of (u, v,w)

+ anticyclic permutations of (u, v,w) = 0 . (5.1)

Since all quantum variables are arbitrary, cyclic and anticyclic
permutations of uQ � vQ � wQ are in general independent and
nonvanishing. Then the condition for the bracket {[·, ·]} to obey
the Jacobi identity is for � to be associative:

(uC � vC ) � wC = uC � (vC � wC ) . (5.2)

The associativity of �C , leading to Eq. (3.15), implies directly
that, for � to be associative, G must be associative as well,

(uCGvC )GwC = uCG(vCGwC ) . (5.3)

On the other hand, the associativity of the �� product
makes it a candidate for a hybrid composition product. The
use of �� as a composition product for hybrid variables auto-
matically guarantees the Leibniz rule as

{[u, v � � w]} = {[u, v]} � � w + v � � {[u,w]} , (5.4)

or in operator form

{[Â, B̂ � Ĉ]} = {[Â, B̂]} � Ĉ + B̂ � {[Â, Ĉ]} , (5.5)

as opposed to the, at first glance, more intuitive

{[Â, B̂Ĉ]} = {[Â, B̂]}Ĉ + B̂{[Â, Ĉ]} . (5.6)

To be clear, in the phase-space representation, two hybrid
variables u = uQuC and v = vQvC are composed as

u � �v = (uQ � vQ)(uC � vC ) . (5.7)

Equivalently, in the operator representation, hybrid variables
Â = ÂQAC and B̂ = B̂QBC are composed as

Â � B̂ = (ÂQB̂Q)(AC � BC ) . (5.8)

The � product acts only on the classical part of hybrid
variables.

The realization that an associative �� product is the natural
composition product for hybrid variables puts previous no-go
theorems in a larger context. The problem now is finding a
suitable composition product. Indeed, it is the Leibniz rule
that is at the heart of the counterexample in [10] (proving
the inconsistency of bracket (3.14) as presented in [1,4,5]),
as well as the no-go theorem in [12]. The Leibniz rule should
take the form (5.4) or (5.5) instead of (5.6). Equipped with the
knowledge that hybrid variables need a suitable composition
product, we can view the consistency problem in a different
light.

The �� product introduces an extra, parallel way of com-
posing variables alongside the more familiar and physically
understood � product. It arises naturally from the construction
as shown in the previous discussion. It gives hybrid dynamics
the same algebraic structure used for quantum mechanics: a
noncommutative, bilinear, and (desirably) associative product
that acts as a composition product and whose commutator is
the dynamical bracket.
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Despite reducing to � for pure quantum variables (uQ �

�vQ = uQ � vQ), it deviates from the familiar multiplication
for pure classical variables

uC � �vC = uC � vC = uCvC + ih̄uCGvC . (5.9)

This deviation, however, is additive, small (proportional to h̄),
and, importantly, does not affect classical dynamics since it
does not change the Poisson bracket.

Classical mechanics too can mimic the algebraic structure
of quantum mechanics provided there exists a noncommu-
tative, bilinear, and associative � acting as a composition
product (with a small deviation) whose commutator builds the
dynamical bracket

{·, ·} = 1

ih̄
(� − �t ) . (5.10)

This similarity to quantum mechanics is not surprising. The �
product is a truncation of the series expansion of the � product
with the condition that it is itself associative. In that sense, the
� product can be regarded as a semiclassical approximation
of the full quantum � product.

So what is a suitable � product? From Eqs. (3.17) and
(3.22) we see that the symmetric product σ is the part that
differentiates one � product from another

� = 1 + ih̄

2
(P + σ ) . (5.11)

Along with the condition (3.21) that 1σu = 0, from
Eqs. (3.17) and (5.3) we derive another condition on σ :

(uPv)Pw − uP (vPw) + (uσv)σw − uσ (vσw)

+ (uPv)σw − uP (vσw) + (u σv)Pw − uσ (vPw)

= 0 . (5.12)

We see immediately that the Wigner � product (σ = 0) does
not satisfy this condition. Are there other σ ’s that do?

As discussed in Sec. III, σ is related to the phase-space
realization, or quantization scheme, on the C sector prior to
the partial classical limit. For the familiar schemes such as
the Weyl, Born-Jordan, standard, antistandard, normal, and
antinormal ordering or the Husimi realization, σ is first order
in the derivatives ∂qC and ∂pC . A general first-order symmetric
bidifferential operator is given by

σ = a
←−
∂ qC

−→
∂ qC + b

←−
∂ pC

−→
∂ pC + c(

←−
∂ qC

−→
∂ pC + ←−

∂ pC

−→
∂ qC ) .

(5.13)

The constants (a, b, c) correspond to different schemes. For
example, Weyl and Born-Jordan orderings are reflected by
(0,0,0), standard and antistandard by (0, 0,±1), and Husimi
by (1,1,0). Different values of (a, b, c) define different σ ’s and
thus different �’s.

We find that no choice of (a, b, c) can give rise to an
associative � product for general variables. This is a gen-
eralization of the previous no-go theorems: The class of �
products (5.11) defined by (5.13) is not associative for general
phase-space functions. This means that if we insist that all
possible phase-space functions should be admitted into hybrid
variables, then this class of composition products cannot lead
to consistent mechanics for hybrid variables.

It is not obvious, however, that the desired product cannot
be constructed through a more complex setup. The condition
(5.12) excludes a large class of products, which might suggest
that a nontrivial framework needs to be constructed. With
the condition for consistency clearly stated in mathematical
terms, we leave the investigation of this problem to future
work.

Nonetheless, the realization that the consistency of hybrid
dynamics hinges on the associativity of the � product sug-
gests another path to explore. That is the topic of the next
section.

VI. AN ASSOCIATIVE SUBALGEBRA

Casting the consistency condition in terms of the associa-
tivity of the composition product � gives us a useful guide:
The dynamics is consistent for hybrid variables that form an
associative subalgebra with �. In other words, if we restrict
our attention to a special class of hybrid variables, the hybrid
bracket will obey the Jacobi identity and the Leibniz rule. The
associativity condition is a clear filter that allows to find and
test hybrid variables that can be admitted into the theory. We
will see that the class of allowed hybrid variables covers a
wide range of interesting cases.

As mentioned in the previous sections, the � product acts
only on the classical part of hybrid variables. Thus the restric-
tion we impose produces hybrid variables of the form

f (qQ, pQ, qC, pC ) = g(qQ, pQ)[h(qC, pC )]restricted , (6.1)

or in operator form

Â = ÂQ[AC (qC, pC )]restricted . (6.2)

An important consequence of this restriction is that a class
of quantum-classical interactions is now ruled out. Since in-
teraction is represented by a hybrid term coupling quantum
and classical variables in the Hamiltonian, only interaction
terms that belong to the �-associative subalgebra are allowed.
Interestingly, since the � product is different for different
quantization schemes on the C sector, it follows that certain
interactions would be allowed under one � product while
prohibited under another.

A. Examples of allowed hybrid variables

We now give a few examples of �-associative hybrid vari-
ables defined by the symmetric product σ of the form (5.13).
For any choice of (a, b, c), any linear combination of qC and
pC can consistently couple to quantum variables. That is, any
hybrid variable of the form

f (qQ, pQ, qC, pC ) = g(qQ, pQ)(αqC + βpC ) (6.3)

is � associative.
Another example is for any bracket with a = 0. The classi-

cal part of hybrid variables can be any function of qC only:

f (qQ, pQ, qC ) = g(qQ, pQ)h(qC ) . (6.4)

We see that this covers a wide class of interesting couplings.
Conversely, for (a, b = 0, c), any function of pC only, or

f (qQ, pQ, pC ) = g(qQ, pQ)h(pC ) , (6.5)

can couple to quantum variables.
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A less obvious example is found for the choice (a = 0, b =
0, c = ±1) (obtained from the standard and antistandard op-
erator orderings). For this choice, any hybrid variable of the
form

f (qQ, pQ, qC, pC ) = g(qQ, pQ)(αqC + βpC + γ qC pC )
(6.6)

will have consistent hybrid dynamics.

B. Minimal subalgebra

One simplifying direction is to consider a class of func-
tions that reduce the semiclassical � product [Eq. (5.11)] to
ordinary multiplication:

f1(qC, pC ) � f2(qC, pC ) = f1(qC, pC ) f2(qC, pC ) . (6.7)

Ordinary multiplication is of course associative.
The hybrid composition product � is necessary for con-

sistent hybrid dynamics, as shown in the preceding section;
however, the interpretation of composing classical variables
using that product is unclear. The condition (6.7) aims to
further narrow down the allowed hybrid variables to those for
which the composition product has the familiar meaning of
ordinary multiplication. In a sense, the resulting subalgebra is
minimal.

Let κ (qC, pC ) be a classical variable belonging to the min-
imal subalgebra. Then from (6.7) and the definition of �
[Eq. (5.11)] we have

κ � κ = κ2 + ih̄

2
κσκ = κ2 (6.8)

⇒ κσκ = 0 . (6.9)

If we consider the form (5.13) of σ as a symmetric first-order
bidifferential operator, then the condition (6.9) becomes

a

(
∂κ

∂qC

)2

+ b

(
∂κ

∂ pC

)2

+ 2c
∂κ

∂qC

∂κ

∂ pC
= 0 . (6.10)

Now that we found one member of the minimal subalgebra,
we can generate an infinite class of related members. It easy
to show that if κ obeys (6.10), then any function f (κ ) also
belongs to the minimal subalgebra:

f1(κ ) � f2(κ ) = f1(κ ) f2(κ ) . (6.11)

Any hybrid variable of the form

f (qQ, pQ, qC, pC ) = g(qQ, pQ)h(κ (qC, pC )) , (6.12)

where κ (qC, pC ) is a solution to (6.10), belongs to consistent
hybrid dynamics.

An example of κ is the simple solution

κ (qC, pC ) = qC ± ∓c + √
c2 − ab

b
pC (6.13)

for all choices of (a, b, c). A special case is obtained for (a =
1, b = 1, c = 0) (obtained from the Husimi realization),

κ (qC, pC ) = qC ± ipC , (6.14)

which bears a resemblance to the quantum ladder operators.

Finally, we stress that pure classical variables are totally
free to be any function of qC and pC . It is the classical factor
of hybrid variables that needs to be restricted.

Now that we have more hybrid variables admitted into the
theory, in the next section we study time evolution defined in
terms of the hybrid bracket.

VII. GENERAL DYNAMICS

A complete description of quantum systems includes the
state of the system in addition to the dynamics of observables.
Thus a discussion of the state of a hybrid system is necessary.
This is yet another motivation for carrying out the analysis of
quantum-classical systems in the language of the phase-space
formulation.

A. Heisenberg picture

In the Heisenberg picture, the equations of motion evolve
dynamical variables (e.g., observables) in time, while the state
encodes the initial conditions. In classical mechanics, the
state distribution can be a Dirac δ function, reflecting com-
plete knowledge of the positions and momenta. It can also
be a different distribution, reflecting partial or incomplete
knowledge of the system.

Classical expectation values are calculated as

〈 fC〉(t ) =
∫

dqCd pCρC (0) fC (t ) . (7.1)

Even though state distributions do not evolve in time in the
Heisenberg picture, we write ρC (0) instead of simply ρC

to emphasize that they contain information about the initial
conditions. The dynamical variable fC of course evolves ac-
cording to its equation of motion dfC/dt = { fC, H} + ∂ fC/∂t .

Quantum systems can be described by a normalized phase-
space state distribution (quasiprobability distribution) ρQ. It
is a representation of the state operator ρ̂Q. For example, in
the Wigner representation, the state distribution is the Wigner
function ρ

(W )
Q , the Wigner transform of the density matrix ρ̂Q,

ρ
(W )
Q = 1

(2π h̄)N

∫
dq′eipq′/h̄

〈
q − 1

2
q′

∣∣∣∣ρ̂Q

∣∣∣∣q + 1

2
q′

〉
. (7.2)

The Wigner distribution is of course one of many possible
quantum distributions. Another class can be obtained through
a convolution of a given state distribution to produce a new
state distribution. An example of this is the Husimi distribu-
tion, which is a special case of a Gaussian smoothing of the
Wigner distribution (see [28] and references therein; see also
[29]).

Expectation values of quantum variables fQ, similar to
classical ones, are calculated in terms of the quantum phase-
space state distribution

〈 fQ〉(t ) =
∫

dqQd pQρQ(0) fQ(t ) . (7.3)

Quantum dynamical variables evolve according to the phase-
space analog of the Heisenberg equation of motion dfQ/dt =
[[ fQ, H]] + ∂ fQ/∂t .
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Now consider interacting quantum-classical systems. As
shown in Sec. IV, the dynamics of pure quantum or classical
variables can be defined using the reduction properties (3.19)
of the hybrid bracket. The dynamics of hybrid variables,
however, require the full definition of the hybrid bracket.
Otherwise, the time derivative of a hybrid variable f = fQ fC
is ambiguous. We have seen from (4.6) that ḟC will in
general depend on Q variables. Thus, naively applying the
Leibniz rule for the time derivative d

dt ( fQ fC ) will be am-
biguous in the ordering of fQ and d

dt fC . On the other hand,
it has been illustrated in [27] that the pure canonical rela-
tions for pure variables is not preserved by quantum-classical
interaction.

A consistent hybrid bracket is thus required. Specifically,
the Leibniz rule is needed for an unambiguous time evolution,
and the Jacobi identity is needed to preserve the canoni-
cal relations. Having defined the consistency conditions in
terms of the hybrid composition product and its associa-
tive subalgebra in Sec. VI, we can write the equation of
motion as

df

dt
= {[ f , H]} + ∂ f

∂t
. (7.4)

This equation describes the time evolution of hybrid variables
f = fQ fC in the Heisenberg picture.

One can determine the state distributions ρQ(0) and ρC (0)
of the Q and C subsystems before interaction using the stan-
dard methods of quantum and classical mechanics. Since
initially the two subsystems were not interacting, we hy-
pothesize that the initial hybrid state distribution ρ(0) is
given by

ρ(0) = ρQ(0)ρC (0) . (7.5)

The expectation value of a hybrid dynamical variable f would
be given by

〈 f 〉(t ) =
∫

dqQd pQdqCd pCρ(0) f (t ) . (7.6)

B. Schrödinger picture

Things are not as simple for hybrid dynamics in the
Schrödinger picture where dynamical variables are fixed in
time and the state distribution evolves.4 In the Schrödinger
picture of classical mechanics, the state distribution evolves
in time according to the Liouville equation

dρC

dt
= {ρC, H} + ∂ρC

∂t
= 0 . (7.7)

Classical expectation values are given by

〈 fC〉(t ) =
∫

dqCd pCρC (t ) fC (0) . (7.8)

Notice the switch in time dependence between ρC and fC .

4For a nice discussion of the equations of motion in the Heisenberg
and Schrödinger picture, see [30].

The quantum state distribution evolves in time according
to the phase-space analog of the von Neumann equation

dρQ

dt
= [[ρQ, H]] + ∂ρQ

∂t
= 0 . (7.9)

Quantum expectation values are given by

〈 fQ〉(t ) =
∫

dqQd pQρQ(t ) fQ(0) . (7.10)

For hybrid variables, things should work the same way with
expectation values given by

〈 f 〉(t ) =
∫

dqQd pQdqCd pCρ(t ) f (0) , (7.11)

except that now defining the hybrid state distribution ρ is not
straightforward, since the two subsystems are interacting. The
hybrid equation of motion for the state distribution

dρ

dt
= {[ρ, H]} + ∂ρ

∂t
= 0 (7.12)

involves the hybrid bracket of two hybrid variables.
As discussed in Sec. VI, for the bracket to be consistent,

ρ and H must belong to the same �-associative subal-
gebra. While the equivalence between the Heisenberg and
Schrödinger pictures in classical and quantum mechanics is
established, it is unclear at this stage under what conditions
this equivalence is true in hybrid dynamics. We leave this
problem for future work.

VIII. CONCLUSION

Using the phase-space formulation of quantum mechanics,
a general hybrid quantum-classical bracket (2.12) [or (3.13),
(3.18), or (3.23)] was easily derived from a partial classical
limit. In the Wigner-Weyl-Moyal representation, it coincides
with the hybrid bracket (2.1) proposed in [1,4,5], but differs
in other realizations. The bracket takes the form of the com-
mutator of a hybrid composition product and thus obeys the
Jacobi identity and Leibniz rule if that product is associative.

Pure quantum and classical variables can consistently inter-
act with each other through a hybrid Hamiltonian. In general,
if only one entry of the hybrid bracket is hybrid, then consis-
tency (the Jacobi identity and the Leibniz rule, in particular) is
guaranteed. Thus, one can choose to work in the Heisenberg
picture where the state distribution does not evolve in time
and have the Hamiltonian as the only hybrid variable in the
system. In that case, interaction between quantum and classi-
cal variables, and quantum backreaction can be meaningfully
studied using the hybrid bracket.

When one is interested in studying the dynamics of hybrid
variables rather than interacting pure quantum and classical
ones, then restrictions apply. Composition products derived
from the partial classical limit are not generally associative,
yet they define associative subalgebras of hybrid variables.
The class of hybrid variables that belong to an associative
subalgebra then has consistent dynamics. Restricting hybrid
variables to those belonging to an associative subalgebra with
the hybrid composition product will necessarily restrict inter-
action Hamiltonians.

In the Schrödinger picture, the state distribution is a hy-
brid variable that evolves in time (through a bracket with

032216-9



M. AMIN AND M. A. WALTON PHYSICAL REVIEW A 104, 032216 (2021)

the hybrid Hamiltonian). The possibility of constructing suit-
able quantum-classical state distributions that belong to the
allowed set of hybrid variables is still under investigation.
We see that the consistency of quantum-classical dynamics
restricts possible quantum-classical interactions and states.
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