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Continuous-time quantum walks have proven to be an extremely useful framework for the design of several
quantum algorithms. Often, the running time of quantum algorithms in this framework is characterized by the
quantum hitting time: the time required by the quantum walk to find a vertex of interest with a high probability.
In this article, we provide improved upper bounds for the quantum hitting time that can be applied to several
continuous-time quantum walk (CTQW) based quantum algorithms. In particular, we apply our techniques to the
glued-trees problem, improving their hitting time upper bound by a polynomial factor: from O(n5) to O(n2 log n).
Furthermore, our methods also help to exponentially improve the dependence on precision of the CTQW based
algorithm to find a marked node on any ergodic, reversible Markov chain by Chakraborty et al. [Phys. Rev. A
102, 022227 (2020)].
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I. INTRODUCTION

Quantum walks [1–6] are quantum analogs of random
walks on graphs and have widespread applications in several
areas of quantum information processing [7]. In particular,
they are a universal model for quantum computation and are
crucial to the design of quantum algorithms for a plethora of
problems such as element distinctness [8,9], searching for a
marked state in graphs [10–16], matrix product verification
[17], triangle finding [18], group commutativity [19], and
many others [20–24]. In fact, for some oracular problems,
quantum walks exhibit an exponential speedup over their clas-
sical counterparts [21,22].

For several of these algorithms, the runtime strongly de-
pends on the time required for the quantum walk on a graph to
localize at a vertex inside a marked set of vertices of interest.
In the context of classical random walks, the hitting time is de-
fined as the expected time required to hit a marked vertex. As
such, the quantum hitting time characterizes the running time
of the underlying quantum algorithm [14,15,20,21,25,26].

For continuous-time quantum walk (CTQW), the Hamilto-
nian governing the dynamics of the walk encodes the (vertex
or edge) connectivity of the underlying graph. The dynamics
involves evolving some initial state according to this Hamil-
tonian for time T , followed by a measurement in the basis
spanned by the vertices of the graph, thus finding a target
state with a high probability. However, Hamiltonian evolu-
tions are unitary, and therefore, unlike classical random walks,
quantum walks never converge to a fixed state with time.
One method to address this is to evolve the system by H
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for a random duration t that is typically uniformly distributed
between 0 and T , followed by a measurement [3,15,25,27,28].

In this work, we use the natural definition for quantum
hitting time as the ratio between the maximal time of evolution
T and time-averaged probability of the walker to localize in
the marked vertex. Our main observation is that CTQW is a
dephasing process, or an energy measurement when the result
is forgotten. With this observation we provide improved upper
bounds for the hitting time of a continuous-time quantum walk
on a graph, and analyze the hitting time dependence on (i) the
probability distribution according to which t is distributed and
(ii) the value of the maximal time of evolution T .

Dephasing and dissipation have been shown to be advan-
tageous for certain quantum processes in scenarios different
from ours [29–31]. In such cases, the underlying system inter-
acts with an environment (often a thermal bath) that relaxes
it fast enough to an eigenstate having a high overlap with the
state of interest.

In this article, our insights yield two improved CTQW
based algorithms. We prove that changing the distribution of
t provides a polynomial improvement to the upper bound on
the quantum hitting time of the glued-trees problem [21]. Ad-
ditionally, we apply our techniques to the problem of finding
a marked vertex on a graph, known as spatial search. We
use our methods to improve exponentially the dependence
on precision of the recently developed CTQW based spatial
search algorithm [15].

The input to the glued-trees problem is (i) a graph com-
posed of two binary trees of depth n each, that are glued
together, and (ii) the root vertex of one of the trees, labeled
Entrance. The task is to find the root of the other binary
tree labeled Exit, where the access to the graph is by an
oracle which returns the labels of the neighbors of a given
vertex (see Fig. 1). This problem is one of the few cases
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FIG. 1. An instance of the graph G′
4.

where a quantum algorithm gives an exponential speedup over
any classical algorithm relative to an oracle [21]. The authors
proved that the running time of this algorithm (which is the
hitting time of the CTQW on the underlying graph) is in
O(n5), exponentially better than any classical algorithm. In
this work, we are able to improve the running time of the
glued-trees algorithm to O(n2 log n), providing a polynomial
improvement in the algorithmic performance.

Another important application of CTQW based algorithms
is to solve the spatial search problem, where the goal is to find
a marked vertex in a graph faster than classical random walks.
We show that our definition of hitting time encompasses the
running times of spatial search algorithms by CTQW. Childs
and Goldstone introduced the first spatial search algorithm
[11] in this framework which offered a quadratic speedup over
classical random walks for several graphs but fails to achieve
a generic quadratic speedup [32,33]. Recently, in Ref. [15] the
authors provided a spatial search algorithm by CTQW which
finds an element in a marked set of vertices on any ergodic,
reversible Markov chain in the square root of the so-called
extended hitting time of the corresponding classical random
walk. As the extended hitting time is equal to the hitting
time in the scenario where only a single vertex is marked,
the algorithm offers a quadratic improvement for this case. In
this article, we exponentially improve the dependence of this
algorithm on precision.

This article is organized as follows. In Sec. II, we lay out
formally the definition of the quantum hitting time and discuss
prior work. In Sec. III, we derive improved upper bounds on
the quantum hitting time, in Secs. IV and V, we apply our
bounds to improve the running time of the glued-trees algo-
rithm and the spatial search algorithm, respectively. Finally,
we conclude with a brief discussion and summary in Sec. VI.

II. BACKGROUND

Consider a graph G of n vertices labeled {1, 2, . . . , n} and
a Hamiltonian H which is a Hermitian matrix of dimension
n that encodes the connectivity of the underlying graph. We
require that H is local, i.e., its ( j, k)th entry is nonzero if
node j is adjacent to node k. Thus, H may be proportional
to the adjacency matrix of the graph or the graph Laplacian.
Alternatively, CTQWs can also be defined on the edges of G
[15,27], in which case the underlying Hamiltonian preserves
the local edge connectivity of G. A continuous-time quantum
walk on G corresponds to the time evolution of this time-

independent Hamiltonian H , starting from some initial state
|ψ0〉. Formally, note the following:

Definition 1 (CTQW). Let G be a graph of n vertices and H
be a Hamiltonian encoding the connectivity of G. A CTQW on
G is performed by initializing the system to some state |ψ0〉,
evolving it according to H for a time t , uniformly distributed
in [0, T ], and finally measuring in the vertex basis of G.

From this definition, depending on the choice of T and
|ψ0〉, the random evolution time causes the quantum walk
to converge to a fixed state in a time-averaged sense. For a
classical random walk, the hitting time is the expected number
of steps required to find some vertex of interest, say y, for the
first time. However, for quantum walks, testing periodically
to find if y is reached is impossible because it will turn the
walk into a classical walk. To enable such a comparison, we
formally define the quantum hitting time as follows.

Definition 2 (Quantum hitting time). Let G be a graph with
a set of V vertices such that y is some vertex of interest.
Furthermore, let H be the Hamiltonian corresponding to the
CTQW on G. Then starting from some initial state |ψ0〉, the
hitting time of a CTQW on G with respect to y is defined as
follows:

τG(y|ψ0) � min
T >0

T

p̄T (y|ψ0)
, (1)

wherein p̄T (y|ψ0) is the expected probability to find y when t
is distributed uniformly:

p̄T (y|ψ0) = 1

T

∫ T

0

∣∣〈y|e−iHt |ψ0〉
∣∣2

dt . (2)

Here p̄T (y|ψ0) is the mean probability that a quantum walk
starting from some initial state |ψ0〉 would end in y when
the evolution time t is uniformly distributed in [0, T ]. By
repeating the walk 1/p̄T (y|ψ0) times, the vertex y is found
with a constant probability. Note that the notion of quantum
hitting time can easily be generalized to the scenario where
there are multiple vertices of interest.

Consider that the eigenvalues of the quantum walk Hamil-
tonian H , in descending order, be En � En−1 � · · · � E1 and
the corresponding eigenstates be |En〉, |En−1〉, · · · , |E1〉 such
that H |Ej〉 = Ej |Ej〉. Then, asymptotically,

p∞(y|ψ0) � lim
T →∞

p̄T (y|ψ0) =
∑

k

|〈y|�Vk |ψ0〉|2, (3)

wherein �Vk = |Ek〉〈Ek|. That is, the time-averaged quantum
walk from Definition 1 approaches the aforementioned lim-
iting distribution, as T → ∞. Thus, the average probability
of the quantum walk being in the vertex y never exceeds
Eq. (3). It is natural to ask how fast a CTQW converges to
this distribution. This is in essence captured by the following
lemma, adapted from Ref. [21].

Lemma 1 (adapted from Lemma 1 in [21]). Consider a
CTQW on some graph G, defined by a Hamiltonian H ,
starting from some initial state |ψ0〉. The average probability
of finding a vertex y is lower bounded as follows:

p̄T (y|ψ0) �
∑

k

|〈y|�Vk |ψ0〉|2 − 2

T �Emin
, (4)
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wherein Vk are eigenspaces of H , their respective projections
are �Vk , and �Emin is the smallest gap between any pair of
eigenvalues of the Hamiltonian.

Note that the minimum time after which a CTQW ap-
proaches the limiting distribution p∞(y|ψ0) is known as the
quantum mixing time and is characterized by �Emin [28].
However, �Emin can be extremely small, leading to an ex-
tremely loose upper bound for the quantum hitting time. In
the following section, we provide improvements to the upper
bound on the quantum hitting time for problems where we are
interested in finding a specific vertex.

III. IMPROVED UPPER BOUNDS FOR HITTING TIMES

Continuous-time quantum walks, as per Definition 1, are
a dephasing process in the eigenbasis of the underlying
Hamiltonian. Equivalently, the randomized time-evolution
procedure can be thought of as an energy measurement where
the result of the measurement is forgotten. To see this, con-
sider the time-averaged density matrix of the walk, which we
denote by 〈ρ(T )〉, which can be written as

〈ρ(T )〉 = 1

T

∫ T

0
dt e−iHtρ0eiHt

= 1

T

∑
Ej �=Ek

〈Ej |ρ0|Ek〉|Ej〉〈Ek|1 − e−iT (Ej−Ek )

i(Ej − Ek )

+
∑

l

〈El |ρ0|El〉|El〉〈El |. (5)

When written in basis of the eigenstates of the Hamiltonian
H , the off-diagonal elements corresponding to different ener-
gies decay with T . As such as T → ∞, all the off-diagonal
terms disappear. From the perspective of the time-energy
uncertainty principle [34,35], for T ≈ 1/�Emin, a measure-
ment in the eigenbasis of the Hamiltonian H can identify
any eigenstate. Furthermore, once the measurement result is
forgotten, the system is approximately a mixture of all the
eigenstates. The contribution of each eigenstate to the prob-
ability of finding y accumulates because there are no phases
and no destructive interference.

However, if the state we are interested in, say y, has a
significant overlap with one or a few of the eigenstates of H ,
it suffices to choose T large enough so that the system is in a
mixed state between the relevant eigenstates and the rest. This
way, one can improve the quantum hitting time bound, as in
such cases, T is significantly lower than the choice in Lemma
1. This has been elucidated in Lemma 2 where we choose T
such that (at least) one eigenspace is dephased, instead of all
the eigenstates (see proof in Appendix A).

Lemma 2. Consider a CTQW on H for t ∈ [0, T ]. Let V∗
be an eigenspace of H with energy E∗ such that �V∗ is a
projection on V∗ and �E∗ is the smallest gap between E∗ and
the other eigenvalues of the Hamiltonian. Then,

p̄T (y|ψ0) � |〈y|�V∗ |ψ0〉|2
(

1 − 4

T �E∗

)
. (6)

Note that as T grows with respect to 1/�E∗, the eigen-
states spanning V∗ contribute to the mean probability to find y

after time T . Comparing Lemmas 1 and 2, we note that

p∞(y|ψ0) =
∑

k

|〈y|�Vk |ψ0〉|2 � |〈y|�V∗ |ψ0〉|2, (7)

hence, for T → ∞, the asymptotic time-averaged probability
to find y is higher. However, Lemma 2 depends on �E∗ and
not on �Emin, and if for T ≈ 1/�E∗, the support of y on V∗ is
large, an improved upper bound for the quantum hitting time
is obtained. Computationally, Lemma 1 requires knowing the
smallest gap between any two eigenvalues, while Lemma 2
only requires finding one eigenspace with non-negligible
overlap with the initial and final states, and calculating its
energy gap with respect to the rest of the spectrum.

It is possible to generalize Lemma 2 further. Consider a
set S of eigenstates of H , and let �S be the projector onto
the subspace spanned by S such that for the problem at hand,
‖�S|y〉‖2 is significant (say, some constant). Ideally, in this
case, it suffices to wait for a time long enough so as to dephase
all the eigenstates in S. Formally, we require T large enough
so that 〈ρ(T )〉 is a mixed state of the form

〈ρ(T )〉 = ρS + ρ⊥ + O(ε), (8)

where ρS has support only over the eigenstates in S, ρ⊥ has
support only in the orthogonal complement of S, and ε being
the precision. If the eigenvalues in S are separated from the
rest of the eigenspace by at least �ES , then this is the case for

T = O

(
1

ε

1

�ES

)
. (9)

Furthermore, in order to improve the dependence on pre-
cision ε, we can generalize the CTQW scheme of Definition
1 slightly. Instead of evolving for a time t ∈ U [0, T ], where
U [a, b] is the uniform distribution in the interval [a, b], we
evolve the CTQW for a time chosen according to the sum of
uniform random variables, known as the Irwin-Hall distribu-
tion, i.e., we choose t = ∑k

j=1 t j such that each t j ∈ U [0, T ].
Clearly for k = 1, we get back the time-averaged evolution
of Definition 1. Lemma 3 formalizes CTQW with such time
distribution (see Appendix B for the proof).

Lemma 3. Consider a graph G and H be the Hamiltonian
encoding the connectivity of G. Consider a CTQW on G,
starting from some state |ψ0〉 with respect to H where the
evolution time is distributed according to the Irwin-Hall dis-
tribution, i.e., t = ∑k

j=1 t j , where t1 . . . tk are i.i.d. random
variables, uniformly distributed in [0, T ]. Additionally, let S
be a subset of the eigenstates in H . Then,

p̄T (y|ψ0) �
∑
j∈S

|〈y|Ej〉〈Ej |ψ0〉|2 −
√

3

(
2

T �ES

)k

(10)

wherein �ES = min j∈S,k{|Ej − Ek|}, namely, the minimal gap
between an eigenstate in S to the rest of the spectrum. Note
that the maximal evolution time is kT .

In the CTQW based procedure of Definition 1, the time
of evolution is a random variable t ∼ U [0, T ]. As such,
Lemma 3 corresponds to k-independent repetitions of the
randomized time evolution, where we measure only at the
end of the k repetitions. Alternatively, taking t = ∑

j t j is
equivalent to measuring the energy k times with accuracy
≈1/T , thus decaying the tails of the measurement distribution
and inducing stronger decoherence.
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The resultant mixed state is of the form

〈ρ(T )〉 = ρS + ρ⊥ + O(δk ), (11)

after a time T ′ = O(kT ).
For example, if we choose the time T ∼ 4/�ES , so that

δ = 1
2 , then by repeating the procedure of Lemma 3, k =

�log2

√
3/ε� times, we obtain that

〈ρ(T )〉 = ρS + ρ⊥ + O(ε). (12)

The total time of evolution

T ′ = kT = O

(
1

�ES
log2

1

ε

)
. (13)

In the following sections we apply our bounds to improve
the quantum hitting time of several crucial CTQW based
quantum algorithms.

IV. IMPROVED HITTING TIME FOR THE GLUED-TREES
QUANTUM WALK ALGORITHM

In this section, apply the improved bounds on the quan-
tum hitting time in Sec. III to the glued-trees quantum walk
algorithm introduced in Ref. [21]. We begin by defining the
problem followed by using relevant results from [21].

Definition 3 (Glued-trees problem [21]). Consider two bi-
nary trees of depth n such that the roots of the first and second
trees are denoted Entrance and Exit, respectively. Follow-
ing the original notations, let G′

n be the graph composed of
the two trees, and of additional edges forming a random cycle,
which alternates between leaves of the two trees. The vertices
of G′

n are given unique unknown labels. The input to the
problem is the label of the Entrance vertex, and the solution
is the label of the Exit vertex. The access to the G′

n is by an
oracle, which receives a vertex’s label and returns the labels
of its neighbors.

Childs et al. [21] solved the problem using a quantum walk
on the graph G′

n in polynomial time and proved an exponential
speedup of their algorithm to any classical algorithm. For
convenience, they have analyzed G′

n−1 instead of G′
n. From

the symmetry of the trees and the initial state at the root, it is
clear that vertices in the same depth of each tree will share the
same (time-dependent) amplitude. Following this observation,
the authors defined the column states | col j〉 to be an even su-
perposition of all states with distance j − 1 from Entrance.
The walk is bounded to a 2n-dimensional subspace spanned
by these column states, and in it, the nonzero matrix elements
of H corresponding to G′

n−1 are

〈col( j)|H | col( j + 1)〉 = 〈col( j + 1)|H | col( j)〉

=
{

1, 1 � j � n − 1, n + 1 � j � 2n − 1√
2, j = n.

(14)

Note that the states with j = 1, 2n correspond to Entrance
and Exit, respectively. So the initial state |ψ0〉 = |col 1〉
while the target state is |y〉 = |col 2n〉.

The runtime of the algorithm was bounded using Lemma 1.
In order to compare the performances of Lemma 1 and our
Lemma 2, we repeat the essence of the spectral analysis of H ;
for full details see [21].

The eigenstates of H take one of two forms:1

|Ep〉 = αp

n∑
j=1

sin p j|col j〉

± αp

2n∑
j=n+1

sin[p(2n + 1 − j)]|col j〉,

αp = 1√
2

∑n
j=1 sin2(p j)

, (15)

with the respective eigenvalue Ep = 2 cos p. Here, p is the
solution to one of the following two equations:

sin[(n + 1)p]

sin np
= ±

√
2. (16)

A solution for Eq. (16) with the plus (minus) sign will corre-
spond to an eigenvector with a plus (minus) sign in Eq. (15).

For gap calculations, [21] proved that the solutions for
p corresponding to +√

2 and −√
2 interleave, and take the

form p = π�/n + δ and p = π�/n − δ, respectively. Here,
� = 1, 2, . . . , n − 1 and δ is a function of n, �.

A. Hitting-time bound using Lemma 1 [21]

In [21], the authors wrote an approximated solution to p
and proved that the minimal energy gap is around � = 1 and
equals �E = (n−3). Recall that f (n) = (g(n)) iff there
are constants N0, c > 0 such that for any n > N0, | f (n)| �
c|g(n)|. By using Eq. (15) and the Cauchy-Schwartz inequal-
ity, one can see that∑

k

|〈y|�Vk |ψ0〉|2 =
∑

p

|〈Ep|col 1〉|2|〈Ep|col 2n〉|2

=
∑

p

|〈Ep|col 1〉|4

�
(∑

p

1√
2n

|〈Ep|col 1〉|2
)2

= 1

2n
. (17)

Hence, by Lemma 1,

p̄T (col 2n | col 1) �
∑

p

|〈Ep|col 1〉|2|〈Ep|col n〉|2 − 2

T �E

� 1

2n
− O

(
n3

T

)
. (18)

By this bound, T should be of order n4 to find Exit with
probability ≈1/n. Hence, the hitting time according to [21]
is O(n5).

1There are two additional eigenstates where sin is replaced by sinh
in Eq. (15). But sinh causes |〈col 1|�V |col 2n〉| to be exponentially
small for both eigenstates, thus making it useless for our Lemma 2.
See Sec. D in [21].
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B. Hitting-time bound using Lemma 2

Lemma 2 requires a single eigenstate with a large gap.
The following claim (see proof Appendix C) is useful for that
purpose:2

Claim 1. The energy gap for energy levels corresponding
to p = �π

n − δ, where � = �(n), is proportional to 1/n.
Let V∗ be a subspace spanned by the eigenstate corre-

sponding to p = �π
n − δ where � = n/2. By Claim 1, the

energy gap �E∗ is proportional to 1/n. . The other part of
Eq. (6) to bound is

|〈col1|�V∗ |col 2n〉| = α2
p sin2 p = α2

p sin2[π/2 + O(1/n)]

> α2
p/2,

αp = 1√
2

∑n
j=1 sin2(p j)

>
1√
2n

(19)

wherein αp is the normalization factor of |Ep〉. Hence, by
Lemma 2,

p̄T (col 2n | col 1) � 1

8n2
[1 − O(n/T )]. (20)

One can see that for T ≈ n, the inequality in Eq. (18) is trivial,
while by Eq. (20), the probability to find Exit is ≈1/n2.
Hence, this improves the hitting time to O(n3). Next, we prove
that this can be improved further by using Lemma 3.

C. Hitting-time bound using Lemma 3

Here we shall demonstrate that the procedure described in
Lemma 3 can be used to obtain the probability of finding the
Exit vertex from the Entrance vertex for the glued-trees al-
gorithm, offering improvements over prior results. Recall that
the +√

2 solutions and −√
2 solutions of Eq. (16) interleave

and are satisfied by

p = �π

n
± δ, (21)

where the positive sign corresponds to the +√
2 solutions

while the negative sign corresponds to the −√
2 solutions.

In order to use Lemma 3, consider that �n/4� � � �
�3n/4�. If γ = �π/n, then from Appendix C, we have that
for a −√

2 solution,

tan(nδ) = sin γ√
2 + cos γ

+ O(1/n). (22)

For any � in the aforementioned range, we have that sin γ �
1/

√
2 and cos γ � 1. Thus, for any corresponding p, we ob-

tain that

δ � π

12n
. (23)

This lower bound for δ also holds for +√
2 solutions for

p such that �n/4� � � � �3n/4�. In order to make use of
Lemma 3, we need to define a set S to obtain �ES . In what
follows, we prove the following claim.

2The energy gap approximation at [21] is incorrect for � = �(n).
The mistake is in the asymptotic analysis of Eq. (55).

Algorithm 1. Improved glued-trees algorithm.

Choose T = 12
√

2n/π and k = �log2(5
√

3n)�.
(i) Repeat the following 20n times.

a. Start from the Entrance vertex, i.e., |ψ0〉 = |col 1〉.
b. Evolve according to H for some t ∈ U [0, T ].
c. Repeat step b k times.
d. Measure in the vertex basis.

(ii) Output the result of the final measurement.

Claim 2. Let S be a subset of eigenvalues Ep of the Hamil-
tonian H of the glued-trees graph such that �n/4� � � �
�3n/4�. Then,

�ES � π

3
√

2n
. (24)

Proof. We shall show that the aforementioned lower bound
for �ES holds for p corresponding to the −√

2 solutions of
Eq. (16) for � in this range. Similar result also holds for
the +√

2 solutions. The absolute value of the eigenvalue gap
between Ep = 2 cos p and the nearest eigenvalue to its left is
given by

�Ep,left = 4 sin

(
�π

n
− π

2n

)
sin

( π

2n
− δ

)
(25)

� 4 sin
(π

4
− π

2n

)
sin

( π

2n
− δ

)
(26)

� 2 sin
( π

2n
− δ

)
[using sin (π/4 − 2n) � 1/2,

holds for any n � 6] (27)

� 2
( π

2n
− δ

)
� π

4n
, (28)

where in the last line we have used the fact that sin x � x and
δ � 3π

8n .
Similarly, the eigenvalue gap between Ep and the nearest

eigenvalue to its right is given by

�Ep,right = 4 sin

(
�π

n

)
sin δ (29)

= 4δ√
2
� π

3
√

2n
, (30)

where in the last line we have used the lower bound for δ in
Eq. (23). The claim follows by considering the minimum of
�Ep,left and �Ep,right. �

The improved CTQW based algorithm to find the
Exit vertex of the glued-trees graph is summarized via
Algorithm 1.

Corollary 1. The hitting time for the glued trees quantum
walk algorithm (Algorithm 1) is O(n2 log n), an improvement
over O(n5), the previous bound proved in [21].

Proof. We simply apply Lemma 3,

∑
p:Ep∈S

|〈col 2n|Ep〉〈Ep|col 1〉|2 =
∑

p:Ep∈S

|αp|4 � 1

4n
,
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and by choosing T = 12
√

2n/π and k = �log2(5
√

3n)�
√

3

(
2

T �ES

)k

� 1

5n
. (31)

So,

p̄T (col 2n | col 1) � 1

20n
. (32)

Hence, the probability of the time-averaged CTQW whose
time of evolution is chosen for some time T ′ = kT according
to the Irwin-Hall distribution to find the exit node is in (1/n),
and therefore the hitting time is in O(n2 log n). �

V. SPATIAL SEARCH BY CONTINUOUS-TIME
QUANTUM WALK

In this section, we focus on the problem of finding a
marked element on a Markov chain, known as the spatial
search problem. The first CTQW based algorithm by Childs
and Goldstone [11] could find a marked node on specific
graphs of n nodes such as the complete graph, hypercube,
and others in O(

√
n) time, offering a quadratic advantage over

classical random walks. However, it fails to achieve any quan-
tum speedup for other graphs such as lattices of dimension
less than four. Finding out the necessary and sufficient condi-
tions for this algorithm to be optimal for any graph had been
a long-standing open problem and considerable progress has
been made recently in this regard [32,33]. However, the Childs
and Goldstone algorithm cannot solve the spatial search prob-
lem for any ergodic, reversible Markov chain quadratically
faster than its classical counterpart [33]. In fact, recently, in
Ref. [15], a new CTQW based algorithm was developed which
could find a marked node v on any ergodic, reversible Markov
chain P in a time that is in O(

√
HT(P, v)/ε) with a success

probability of at least 1/4 − ε where HT(P, v) is the hitting
time of a classical random walk on P with respect to v.

In the scenario where multiple vertices are marked, the
algorithmic running time depends on a quantity known as
the extended hitting time. Given a set M of marked elements,
the algorithm runs in O(

√
HT+(P, M )/ε), where HT+(P, M )

is the extended hitting time of P with respect to M. For
instances where only a single element is marked, i.e., |M| = 1,
HT+(P, M ) = HT(P, M ). However, for multiple marked ver-
tices, HT+(P, M ) can be significantly greater than the hitting
time.

In the framework of discrete-time quantum walks, how-
ever, there exist quantum algorithms that solve the spatial
search problem on any ergodic reversible Markov chain in
O(

√
HT+(P, M ) log 1/ε) time [14,36]. In this section, we ap-

ply Lemma 4 to exponentially improve the dependence of the
running time of the CTQW based spatial search algorithm in
Ref. [15] on ε so that it has a matching running time with its
discrete-time counterpart.

We begin by first briefly discussing some properties of
Markov chains that we shall require for our analysis and then
define a Hamiltonian corresponding to a CTQW on the edges
of any Markov chain.

Some basics on Markov chains. A Markov chain on a
discrete state space X , such that |X | = n, can be described

by a n × n stochastic matrix P such that each entry pk,l of this
matrix P represents the probability of transitioning from state
k to state l . Any pair (k, l ) ∈ X × X , such that pk,l �= 0 is an
edge of P.

Throughout this section, we shall focus our attention on
ergodic, reversible Markov chains. This implies we focus our
attentions on Markov chains P whose eigenvalues lie between
−1 and 1, and has a unique stationary state π such that πP =
π . The stationary state π is a stochastic row vector and has
support on all the elements of X . Let us denote it as

π = (π1 π2 . . . πn), (33)

such that
∑n

j=1 π j = 1. Also, we shall map P �→ (I + P)/2
to ensure that all the eigenvalues of P lie between 0 and 1.
This will not affect our results other than by a factor of 2. An
important quantity throughout this work is the gap between
the two highest eigenvalues of P (the spectral gap), which we
denote by �.

Let C be an m × n positive matrix. Then we define

B =
√

C, (34)

as the m × n positive matrix such that its (i, j)th entry Bi j =√
Ci j . Following this definition, consider the discriminant ma-

trix of P which is defined as

D(P) =
√

P ◦ PT , (35)

where ◦ indicates the Hadamard product and the (x, y)th entry
of D(P) is Dxy(P) = √

pxy pyx. Thus, D(P) is a symmetric
matrix. For any ergodic, reversible Markov chain P, D(P) is
in fact similar to P, i.e., they have the same set of eigenvalues
[36]. So if the eigenvalues of P are ordered as λn = 1 >

λn−1 � · · · � λ1, the spectral decomposition of D(P) is

D(P) =
n∑

i=1

λi|vi〉〈vi|, (36)

where |vi〉 is an eigenvector of D(P) with eigenvalue λi. Im-
portantly, the eigenstate of D(P) with eigenvalue 1 is related
to the stationary distribution of P, i.e.,

|vn〉 =
√

πT =
∑
x∈X

√
πx|x〉. (37)

Interpolated Markov chains. Let M ⊂ X denote the set of
marked elements of the Markov chain P. Then given any P,
we define P′ as the absorbing Markov chain obtained from
P by replacing all the outgoing edges from M by self-loops.
Then, the interpolated Markov chain is defined as

P(s) = (1 − s)P + sP′, (38)

where s ∈ [0, 1]. Clearly, P(0) = P and P(1) = P′. Let us
denote the spectral gap of P(s) as �(s). Let us also define
pM = ∑

x∈M πx as the probability of obtaining a marked ele-
ment in the stationary state of P. It is fair to assume that pM �
1
4 as, otherwise, a marked element can be instantaneously
obtained by simply sampling from the stationary distribution
itself without requiring us to run the spatial search algorithm.

As before, the discriminant matrix of P(s) is defined as

D(P(s)) =
√

P(s) ◦ P(s)T , (39)
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where ◦ indicates the Hadamard product and the spectral
decomposition of D(P(s)) is

D(P(s)) =
n∑

i=1

λi(s)|vi(s)〉〈vi(s)|, (40)

where |vi(s)〉 is an eigenvector of D(P(s)) with eigenvalue
λi(s), such that λn(s) = 1 > λn−1(s) � · · · � λ1(s). Then the
1-eigenstate of D(P(s)) can be expressed as

|vn(s)〉 = |π (s)〉 =
∑
x∈X

√
πx(s)|x〉 (41)

=
√

(1 − s)(1 − pM )

1 − s(1 − pM )
|U 〉 +

√
pM

1 − s(1 − pM )
|M〉,

(42)

where |U 〉 and |M〉 are defined as

|U 〉 = 1√
1 − pM

∑
x/∈M

√
πx|x〉, (43)

|M〉 = 1√
pM

∑
x∈M

√
πx|x〉. (44)

Interpolated hitting time and Extended hitting time. For
any interpolated Markov chain P(s), one can define a quantity
known as the interpolated hitting time [15,36] as follows:

HT(s) =
n−1∑
j=1

|〈v j (s)|U 〉|2
1 − λ j (s)

. (45)

The spectral gap of P(s) is related to HT(s) by the inequality

HT(s) � 1

�(s)

n−1∑
j=1

|〈v j (s)|U 〉|2. (46)

For the spatial search algorithm, we shall find that the quantity
of interest is the extended hitting time.

The extended hitting time of P with respect to a set M of
marked elements is defined as

HT+(P, M ) = lim
s→1

HT(s). (47)

For |M| = 1, we have that HT+(P, M ) = HT(P, M ). Krovi
et al. proved an explicit relationship between HT(s) and
HT+(P, M ) [36]. They showed that

HT(s) = p2
M

[1 − s(1 − pM )]2 HT+(P, M ). (48)

Combining Eqs. (46) and (48), we have

HT+(P, M ) � 1

�(s)

[1 − s(1 − pM )]2

p2
M

n−1∑
j=1

|〈v j (s)|U 〉|2.

(49)
As we shall show subsequently, for our spatial search algo-
rithm, we would choose a particular value of s = s∗ = 1 −
pM/(1 − pM ) for which we have

1

�(s∗)
� HT+(P, M )/8. (50)

Search Hamiltonian H (s). Following Ref. [15], we define a
Hamiltonian H , corresponding to a CTQW on the edges of P.

Let us consider a Hilbert space H ⊗ H, where H = span{|x〉 :
x ∈ X }. Also, let pxy denote the (x, y)th entry of P and let E be
the set of edges of P. Define the unitary V acting on H ⊗ H
such that for all x ∈ X ,

V (s)|x, 0〉 =
∑
y∈X

√
pxy(s)|x, y〉, (51)

where the state |0〉 represents a fixed reference state in H. Let
us also define the swap operator

S|x, y〉 =
{|y, x〉, if (x, y) ∈ E
|x, y〉, otherwise. (52)

Then, the search Hamiltonian is defined as

H = i[V (s)†SV (s),�0], (53)

where �0 = I ⊗ |0〉〈0|. Crucially, the spectrum of H is related
to the spectrum of the discriminant matrix D(P(s)) and has
been extensively explored in [15]. Here we simply state the
results required for our subsequent analysis. Observe that

H |vn(s), 0〉 = 0, (54)

i.e., the 1-eigenstate of D(P(s)), |vn(s), 0〉 is an eigenstate of
H (s) with eigenvalue 0.

Furthermore, for 1 � k � n − 1 we have the following
eigenstates and eigenvalues of H (s):

|�±
k (s)〉 = |vk (s), 0〉 ± i|vk (s), 0〉⊥√

2
, E±

k = ±
√

1 − λk (s)2,

(55)

where |vk (s), 0〉⊥ is a quantum state such that �0|vk (s), 0〉⊥ =
0. This analysis gives us 2n − 1 out of the n2 eigenvalues of H .
It can be seen that the remaining (n − 1)2 eigenvalues are all
0 and are not relevant as the algorithmic dynamics is always
restricted to a subspace that is orthogonal to it.

Finally, it is important to remark that this construction of
H ensures that the spectral gap between the 0 eigenvalue of
H , which encodes the stationary state of P, and the rest of its
eigenvalues is given by√

1 − λn−1(s)2 = �(
√

�(s)), (56)

i.e., the gap between the 0 eigenstate of H (s) and the rest is the
square root of the spectral gap of D(P(s)). This amplification
of the spectral gap is crucial for our subsequent analysis.
Finally, it has also been shown that H (s) corresponds to a
continuous-quantum walk on the edges of P(s) and we shall
use this Hamiltonian in conjunction with Lemma 3 to improve
the running time of the CTQW based spatial search algorithm
on any ergodic, reversible Markov chain.

The spatial search algorithm and its running time. The
problem of finding an element in a marked set of vertices of
a Markov chain, known as the spatial search problem, can be
tackled using CTQWs. Here, we improve the running time
of the spatial search algorithm of Ref. [15] by exponentially
improving its dependence on precision. Suppose that we are
given any ergodic, reversible Markov chain P with state space
X and a set M ⊂ X of marked elements where the goal is to
find some marked vertex v ∈ M.

We shall use the CTQW scheme of Definition 1 along with
the Hamiltonian H (s) defined in Eq. (53). The algorithm of
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Ref. [15] is quite simple: The initial state of the algorithm is
the coherent encoding of the stationary distribution of P(0) =
P, i.e.,

|ψ0〉 = |π (0), 0〉 =
∑
j∈X

√
π j | j, 0〉. (57)

We choose s = s∗ = 1 − pM/(1 − pM ) and evolve |ψ0〉 for
some time t ∈ U [0, T ], where T is to be determined later.

Now we can apply Lemma 2 with V∗ =
|vn(s∗), 0〉〈vn(s∗), 0| except that now it suffices to output
any marked element in M. So it suffices to calculate the
success probability as

psucc =
∑
x∈M

p̄T (x|ψ0) �
∑
x∈M

|〈x|vn(s∗)〉〈vn(s∗)|π (0)〉|2.
(58)

Now,

�E∗ =
√

1 − λ2
n−1(s∗) �

√
2�(s∗).

Observe that for the chosen value of s = s∗, we have the
following:

(i) The eigenstate |vn(s∗)〉 = 1√
2

(|U 〉 + |M〉).

(ii) |〈vn(s∗)|π (0)〉|2 � 1/2.

(iii) For any x ∈ M, |〈x|vn(s∗)〉|2 = πx

2pM
.

So from Eq. (6), for any x ∈ M we have

p̄T (x|ψ0) � |〈x|vn(s∗)〉〈vn(s∗)|π (0)〉|2
(

1 − 4

T �E∗

)

� πx

4pM

(
1 − 4

T �E∗

)
. (59)

The success probability

psucc =
∑
x∈M

p̄T (x|ψ0) � 1

4

(
1 − 4

T �E∗

)
. (60)

So for any ε ∈ (0, 1) we ensure that the success probability
is

psucc �
1

4
(1 − ε) (61)

by choosing any

T � 1

ε

4

�E∗ (62)

� 1

ε

2
√

2√
�(s∗)

(63)

� 1

ε

√
HT+(P, M )

8
, (64)

where in the last line we have used the inequality in Eq. (50).
Thus, we recover the running time of the spatial search algo-
rithm of [15].

In order to improve the dependence on precision, consider
Algorithm 2. Formally, we prove the following.

Lemma 4. For any ergodic, reversible Markov chain P with
a set M of marked elements, Algorithm 2 has a success prob-
ability of

psucc � 1/4 − ε

Algorithm 2. Quantum spatial search by CTQW.

Consider the Hamiltonian H (s) = i[V (s)†SV (s),�0].
1. Prepare the state |π (0), 0〉.
2. For s∗ = 1 − pM/(1 − pM ), ε ∈ (0, 1/4), k = �log2

√
3/ε� and

T = O(
√

HT+(P, M )), evolve according to
H (s∗) for a time T ′ = ∑k

j=1 t j , where each t j is chosen uniformly
at random between [0, T ].
3. Measure in the basis spanned by the state space, in the first
register.

for

T = O

(√
HT+(P, M ) log

1

ε

)
,

where HT+(P, M ) is the extended hitting time of a random
walk on P with respect to M.

Proof. We apply Lemma 3, starting from |π (0), 0〉 and by
choosing S = |vn(s∗), 0〉〈vn(s∗), 0|. We obtain that for any x ∈
M,

psucc �
∑
x∈M

|〈x|vn(s∗)〉〈vn(s∗)|π (0)〉|2−
√

3

(
2

T
√

�(s∗)

)k

(65)

� 1

4
− ε, (66)

for any

T � 4√
�(s∗)

�
√

2HT+(P, M ), (67)

and by choosing k = �log2(
√

3
ε

)�, where ε ∈ (0, 1
4 ). Thus, the

overall running time

T ′ = kT = O

(√
HT+(P, M ) log

1

ε

)
, (68)

thereby improving the dependence on ε exponentially. �
As mentioned before, the extended hitting time is equal to

the hitting time when |M| = 1, thus giving a full quadratic
speedup for the spatial search problem over classical random
walks. However, when multiple vertices are marked, the ex-
tended hitting time can be larger than the hitting time. As a
result, unlike in the discrete-time quantum walk framework
[16], the problem of whether a full quadratic speedup is pos-
sible in the CTQW framework, even in the case of multiple
marked vertices had been open. Recently, Apers et al. have
managed to close this problem, the details of which shall
appear elsewhere [37].

VI. DISCUSSION

In this article, we provided a more general definition of the
hitting time of continuous-time quantum walks and have elu-
cidated strategies by which hitting times of continuous-time
quantum walk based algorithms can be improved. Further-
more, we have applied our results to improve the running
times of two important CTQW based algorithms, namely, the
glued-trees algorithm and the spatial search algorithm.

For the glued-trees algorithm, we have improved its run-
ning time from O(n5) in Ref. [21] to O(n2 log n). The source
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of the improvement is our bound’s dependence on the gap
between some eigenspace S of the Hamiltonian defining the
quantum walk and the rest. We have shown that S is comprised
of n/2 eigenstates, each of which add to the probability of
finding the Exit vertex. As a result, the quantum walk needs
near linear time T ≈ n log n to find the Exit with probability
≈1/n.

Of course, this also implies that by substituting classi-
cal repetitions with the amplitude amplification procedure
[38] (a quantum algorithm in the circuit model), the run-
ning time of the glued-trees algorithm can be improved to
O(n3/2 log n). However, since we are working in framework of
continuous-time quantum walks, an analog model of quantum
computation, we assumed that we only have access to the
continuous-time evolution under the quantum walk Hamil-
tonian, leading to a O(n2 log n) running time. In this regard,
one direction of future research would be to explore the
possibility of improving the complexity of the glued-trees al-
gorithm to linear in n either by exactly solving the underlying
Schrödinger equation or by attaching semi-infinite pathways
to the vertices of the glued-trees graph and scattering wave
packets off of it. The ballistic spread of wave packets would
underpin the possibility of an improved running time, using
techniques that are crucial to demonstrate that quantum walks
are universal for quantum computing [39].

For the spatial search algorithm, our methods help find
an element from a marked set M in any ergodic, re-
versible Markov chain P with success probability 1/4 − ε in
time T = O(

√
HT+(P, M ) log 1/ε) time, for some ε ∈ (0, 1

4 ),
whereas previously the algorithm of [15] required a time of
O(

√
HT+(P, M )/ε), thereby improving the dependence on

precision exponentially. The improvement in the running time
stems from evolving the search Hamiltonian for a time chosen
from the Irwin-Hall distribution (sum of uniform random vari-
ables), as opposed to [15], where the CTQW evolution time is
chosen uniformly at random from some interval.

Our work opens up several interesting questions. One nat-
ural question to ask is what dependence does the choice
of distribution of the random evolution time of the CTQW
have on the quantum hitting time? Furthermore, for a given
CTQW algorithm, what is the distribution that minimizes the
quantum hitting time? Our bounds on the quantum hitting
times are quite general and can be applied to other CTQW

based algorithms. For example, they can help improve the
algorithmic performance of the quantum algorithm to sample
from the stationary state of any ergodic, reversible Markov
chain of Ref. [27]. In particular, the algorithm therein has a
considerable overhead in terms of the number of ancilla qubits
which can, in principle, be overcome using the techniques we
presented here.

Some of the techniques presented in the article can have
broader applications that go beyond continuous-time quantum
walks. As mentioned before, randomized time evolution intro-
duces dephasing in the eigenbasis of the Hamiltonian, thereby
decoupling certain eigenstates from the rest. This results in a
mixed state spanned by the relevant eigenstates. As such, this
provides a continuous-time procedure that can be applied to
state-preparation problems, which are ubiquitous throughout
quantum computation. For example, numerical evidence sug-
gests that continuous-time quantum walks can be used to find
the ground states of spin glasses [40] with a superquadratic
scaling in the running time. It would be interesting to explore
whether our techniques can provide analytical insights into the
observations therein.
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APPENDIX A: PROOF OF LEMMA 2

Recall that
Lemma 2. Consider a CTQW in H with t ∈ [0, T ]. Let V∗

be an eigenspace of H with energy E∗. Then,

p̄T (y|ψ0) � |〈y|�V∗ |ψ0〉|2
(

1 − 4

T �E∗

)
(A1)

wherein �V∗ is a projection on V∗; and �E∗ is the smallest
gap between E∗ and the other eigenvalues of the Hamiltonian.

Proof. For the proof, we first isolate one eigenspace V∗
with energy E∗ from the rest of the eigenstates:

p̄T (y|ψ0) = 1

T

∫ T

0
dt

∣∣〈y|e−iHt |ψ0〉
∣∣2 = 1

T

∫ T

0
dt

∣∣∣∣∣e−iE∗t 〈y|�V∗ |ψ0〉 +
∑

k:Vk⊥V∗
e−iEkt 〈y|�Vk |ψ0〉

∣∣∣∣∣
2

= 1

T

∫ T

0
dt

∣∣∣∣∣〈y|�V∗ |ψ0〉 +
∑

k:Vk⊥V∗
e−i(Ek−E∗ )t 〈y|�Vk |ψ0〉

∣∣∣∣∣
2

. (A2)

The time-dependent sum coherently destroys 〈y|�V∗ |ψ0〉 at t = 0, but cannot sustain the destructive interference for long. Using
the inequality |a + b|2 � |a|2 + 2 Re(ab∗), we get

p̄T (y|ψ0) = · · · � 1

T

∫ T

0
dt |〈y|�V∗ |ψ0〉|2 + 2

T
Re

∫ T

0
dt

(
〈y|�V∗ |ψ0〉

∑
k:Vk⊥V∗

ei(Ek−E∗ )t 〈x|�Vk |y〉
)

= |〈y|�V∗ |ψ0〉|2 + 2

T
Re

∑
k:Vk⊥V∗

〈y|�V∗ |ψ0〉〈ψ0|�Vk |y〉
ei(Ek−E∗ )T − 1

i(Ek − E∗)
. (A3)
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We bound the second term

p̄T (y|ψ0) = · · · � |〈y|�V∗ |ψ0〉|2 − 2

T

∣∣∣∣∣
∑

k:Vk⊥V∗
〈y|�V∗ |ψ0〉〈x|�Vk |y〉

ei(Ek−E∗ )T − 1

i(Ek − E∗)

∣∣∣∣∣
� |〈y|�V∗ |ψ0〉|2 − 2

T

∣∣∣∣∣
∑

k:Vk⊥V∗
〈y|�V∗ |ψ0〉〈ψ0|�Vk |y〉

∣∣∣∣∣ 2

�E∗ . (A4)

From orthogonality,

〈y|ψ0〉 = 〈y|�V∗ |ψ0〉 +
∑

k:Vk⊥V∗
〈y|�Vk |ψ0〉 = 0.

Hence,

p̄T (y|ψ0) = · · · � |〈y|�V∗ |ψ0〉|2 − 4

T �E∗

∣∣∣∣∣
∑

k:Vk⊥V∗
〈y|�V∗ |ψ0〉〈ψ0|�Vk |y〉

∣∣∣∣∣ = |〈y|�V∗ |ψ0〉|2
(

1 − 4

T �E∗

)
. (A5)

�

APPENDIX B: PROOF OF LEMMA 3

The characteristic function provides a useful tool for our
analysis. Consider a random variable X ∈ R from some
continuous probability distribution such that its probability
density function is defined as fX . Then, the characteristic
function of X is defined as

�X (r) = E
[
eirX

] =
∫
R

eirX fX dx. (B1)

For example, if X ∈ U [0, T ], where U [0, T ] is the uniform
distribution defined in the interval [0, T ], then

�X (r) = eiTr − 1

iTr
. (B2)

Observe that the transformation induced by a single random-
ized time evolution is of the form

|Ek〉〈Ek| �→ |Ek〉〈Ek|, (B3)

|Ek〉〈Ej | �→ 1

T

∫ T

0
dt e−i(Ek−Ej )t |Ek〉〈Ej | dt

= �X (Ej − Ek )|Ek〉〈Ej |. (B4)

Suppose that now the Hamiltonian H is evolved (without a
measurement) first for time t ′ = t1 + t2 + · · · + tk , such that
each ti ∈ U [0, T ]. Then, the maximal total time of evolution
is T ′ = kT , and the overall evolution time is a random variable
from a sum of uniform random variables. It is well known that
T ′ follows the Irwin-Hall distribution [41] and the character-
istic function of T ′ is given by

�T ′ (r) =
(

eirT − 1

iTr

)k

. (B5)

As in Eqs. (B3) and (B4) we have

|Ek〉〈Ek| �→ |Ek〉〈Ek|, (B6)

|Ek〉〈El | �→ �T ′ (El − Ek )|Ek〉〈El |

=
(

ei(Ek−El )T − 1

i(Ek − El )T

)k

|Ek〉〈El |. (B7)

Let us denote the Frobenius norm of an operator A
as ||A||F . Then in order to prove Lemma 3, we first
show that starting from some ρ0 = |ψ0〉〈ψ0|, where |ψ0〉 =∑n

j=1 c j |Ej〉, the time-averaged density matrix 〈ρ(T ′)〉 be-
comes close (in Frobenius norm) to the following density
matrix:

ρ̄ ′ =
∑

k:Ek∈V∗
S

|ck|2|Ek〉〈Ek| + ρ ′⊥, (B8)

where

ρ ′⊥ =
∑

k : Ek /∈ S
l : El /∈ S

ckc∗
l �T ′ (El − Ek )|Ek〉〈El |.

This has been demonstrated in the following lemma.
Lemma 4. Let T ′ = t1 + · · · + tk where t1, . . . , tk are i.i.d.

distributed uniformly in [0, T ]. Let ρ̄ ′ be defined as in
Eq. (B8). Then, the CTQW with the distribution T ′ results
in a state 〈ρ(T ′)〉 such that

‖〈ρ(T ′)〉 − ρ̄ ′‖F �
√

3

(
2

T �ES

)k

.
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Proof. The time-evolved state according to this new distribution is

〈ρ(T ′)〉 = ρ̄ ′ +
∑

Ek , El ∈ S
Ek �= El

ckc∗
l

(
ei(Ek−El )T − 1

i(Ek − El )T

)k

|Ek〉〈El | +

⎛
⎜⎜⎜⎝

∑
Ep /∈ S
Eq ∈ S

cpc∗
q

(
ei(Ep−Eq )T − 1

i(Ep − Eq)T

)k

|Ep〉〈Eq| + H.c.

⎞
⎟⎟⎟⎠. (B9)

Then,

‖〈ρ(T ′)〉 − ρ̄ ′‖F =

∥∥∥∥∥∥∥∥∥
∑

Ek , El ∈ S
Ek �= El

ckc∗
l

(
ei(Ek−El )T − 1

i(Ek − El )T

)k

|Ek〉〈El | +

⎛
⎜⎜⎜⎝

∑
Ep /∈ S
Eq ∈ S

cpc∗
q

(
ei(Ep−Eq )T − 1

i(Ep − Eq)T

)k

|Ep〉〈Eq| + H.c.

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
F

(B10)

=
√√√√√√

∑
Ek , El ∈ S
Ek �= El

|ckcl |2
∣∣∣∣ei(Ek−El )T − 1

(Ek − El )T

∣∣∣∣
2k

+ 2
∑

Ep /∈ S
Eq ∈ S

|cpcq|2
∣∣∣∣ei(Ep−Eq )T − 1

(Ep − Eq)T

∣∣∣∣
2k

(B11)

�
√

3

(
2

T �ES

)k

. (B12)

�
Lemma 4 shows that the for large enough T , the density matrix becomes a mixture of eigenstates in S and some residue matrix

ρ ′⊥ with no support on these eigenstates. This gives an improved bound to the hitting time because now all the eigenstates in S
contribute to the probability to find y and, consequently, we directly obtain that

p̄T (y|ψ0) = tr(|y〉〈y|〈ρ(T ′)〉) � tr(|y〉〈y|ρ̄ ′) − tr(|y〉〈y|)
√

3

(
2

T �ES

)k

. (B13)

The proof of Lemma 3 concludes by taking only the population of ρ̄ ′ corresponding to S.

APPENDIX C: PROOF OF CLAIM 1

Claim 2. The energy gap for energy levels corresponding
to p = �π

n − δ, where � = �(n), is proportional to 1/n.
Proof. Recall that the eigenvalues take the form Ep =

2 cos p where

sin[(n + 1)p]

sin np
= ±

√
2. (C1)

Furthermore, the eigenvalues which correspond to the positive
right-hand side in Eq. (C1) interleave with those with the
negative right-hand side [21]. Following [21], we substitute
p with �π

n ± δ for the right-hand side being ±√
2, wherein

δ > 0. From the interleaving property, δ � π
n .

First we solve for −√
2, by finding the smallest δ > 0

satisfying

−
√

2 sin(nδ) = sin(nδ − �π/n + δ). (C2)

We define γ = �π/n ∈ (0, π ), which is a constant for � =
�(n):

−
√

2 sin(nδ) = sin(nδ) cos(δ − γ )

+ cos(nδ) sin(δ − γ ),

sin(nδ)[−
√

2 − cos(δ − γ )] = cos(nδ) sin(δ − γ ),

tan(nδ) = sin(γ − δ)√
2 + cos(δ − γ )

.

(C3)

The right-hand side of the the last line in Eq. (C3) is posi-
tive because δ = O(1/n) and γ ∈ (0, π ) is a constant. Hence,
nδ � π

2 . Bounding the right-hand side we get

tan(nδ) = sin(γ − δ)√
2 + cos(δ − γ )

� 1√
2 − 1

,

tan(nδ) = sin(γ − δ)√
2 + cos(δ − γ )

= sin(γ )√
2 + cos(γ )

+ O(1/n). (C4)

Hence, for � = �(n), nδ is a positive constant smaller than
3π/8.

Similarly for a positive
√

2 at Eq. (C2), and p = �π
n + δ we

get
√

2 sin(nδ) = sin(nδ + �π/n + δ),
√

2 sin(nδ) = sin(nδ) cos(γ + δ)

+ cos(nδ) sin(γ + δ),

sin(nδ)[
√

2 − cos(γ + δ)] = cos(nδ) sin(γ + δ),

tan(nδ) = sin(γ + δ)√
2 − cos(γ + δ)

,

(C5)

and the rest of the analysis is the same.
In conclusion, we get that for +√

2 solutions,

�(1/n) = p − �π/n � 3π/8n, (C6)
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and for −√
2 solutions,

�(1/n) = �π/n − p � 3π/8n. (C7)

Hence, for � = �(n), the gap between p solutions is �(1/n),
and

�E = 2 sin p�p = �(1/n). (C8)

�
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