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Quantum state smoothing as an optimal Bayesian estimation problem
with three different cost functions
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Quantum state smoothing is a technique to estimate an unknown true state of an open quantum system based
on partial measurement information both prior and posterior to the time of interest. In this paper, we show that
the smoothed quantum state is an optimal Bayesian state estimator, that is, it minimizes a Bayesian expected cost
function. Specifically, we show that the smoothed quantum state is optimal with respect to two cost functions:
the trace-square deviation from and the relative entropy to the unknown true state. However, when we consider
a related cost function, the linear infidelity, we find, contrary to what one might expect, that the smoothed state
is not optimal. For this case, we derive the optimal state estimator, which we call the lustrated smoothed state.
It is a pure state, the eigenstate of the smoothed quantum state with the largest eigenvalue. We illustrate these
estimates with a simple system, the driven, damped two-level atom.
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I. INTRODUCTION

Estimating the state of an open quantum system based on
measurement information is an important task in quantum
information science. Quantum trajectory theory, also referred
to as quantum state filtering [1–3], utilizes a continuous-in-
time past measurement record

←−
O to estimate the quantum

state of a single system at time τ . One might think that one
could obtain a more accurate estimate of the quantum state by
conditioning on the past-future measurement record

←→
O , that

is, the measurement record both prior and posterior to the time
of interest τ . However, due to the noncommutative nature of
quantum states and operators, conditioning the estimate on fu-
ture information is not straightforward in quantum mechanics,
unlike in classical mechanics where the technique of smooth-
ing is standard [4–10]. Consequently, utilizing past-future
measurement information in quantum systems has attracted
great interest and many smoothinglike formalisms have been
proposed [11–20]. Here we are concerned with an approach
that is guaranteed to yield a valid quantum state as its estimate,
the quantum state smoothing theory [17,21–23].

The quantum state smoothing formalism is as follows.
Consider an open quantum system coupled to two baths
(which could represent sets of baths). An observer, say Al-
ice, monitors one bath and constructs a measurement record
O, called the observed record. The other bath, which is
unobserved by Alice, is monitored by a second (perhaps hy-
pothetical) observer, Bob, who also constructs a measurement
record U , called the unobserved record. Now, if Alice were
able to condition her estimate of the quantum state on both the
past observed and unobserved measurement she would have
effectively performed a perfect measurement on the system
and Alice’s estimated state would be the true state of the
system ρT := ρ←−

O
←−
U

which can be assumed to be pure (it will

be as long as the initial state is pure). Note that it is not a
necessary requirement for Alice’s and Bob’s records together
to constitute a perfect monitoring of the quantum system or for
the true state to be pure, but merely a convenient assumption to
make when introducing the idea of quantum state smoothing.
However, since Alice does not have access to the unobserved
measurement record she cannot know the true quantum state.
Nevertheless, Alice can calculate a Bayesian estimate of the
true state ρO�

conditioned on her observed measurement
record O� by averaging over all possible unobserved measure-
ment records with the appropriate probabilities, i.e.,

ρO�
= E←−

U |O�
{ρT} ≡

∑

←−
U

℘(
←−
U |O�)ρ←−

O
←−
U

, (1)

where E{•} denotes an ensemble average. For a filtered esti-
mate of the quantum state, the past observed record is used
(O� = ←−

O ) and ρ←−
O

= ρF. For a smoothed estimate of the
quantum state, the past-future observed record is used (O� =←→
O ) and we define ρ←→

O
= ρS. Unlike ρF, ρS depends on how

Bob chooses to measure his bath, although averaging over
Alice’s result removes this dependence, as one then obtains
the same unconditioned state ρ in both cases.

Since its conception [17], various properties of and sce-
narios for the smoothed quantum state have been studied,
providing considerable insight into the theory [21–25], in-
cluding how different measurement choices by Bob can affect
the purity improvement over the filtered state [22,23] and the
differentiability of the smoothed quantum state [25]. However,
these works did not address one question: Is the smoothed
quantum state an optimal estimator of the true state and if so,
in what sense? Here optimal means minimizing a expected
cost function. The expected cost function is the appropri-
ately conditioned expectation for a cost function C(ρ̌, ρT),
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a measure comparing the estimate state ρ̌ to the true state,
that is,

BO�
(ρ̌) = E←−

U |O�
{C(ρ̌, ρT)}. (2)

Note that in Eq. (2) the expected cost function is defined in
the Bayesian sense [26–29], where it is the unknown quantity
which is averaged over with the observations remaining fixed.
This is as opposed to the frequentist sense [26–29], which
averages over the potential observations with the unknown
quantity fixed, and one typically optimizes the estimator by
considering the worst-case scenario. It is easy to see why we
have adopted the Bayesian approach, as the standard quantum
filtered state is a Bayesian estimator, conditioned on the past
record, and the smoothed quantum state is a generalization of
it, conditioned on the past-future record.

Returning to the Bayesian expected cost function, hence-
forth referred to as the expected cost function for simplicity,
in Eq. (2), in this paper, we show that, for the trace-square
deviation from the true state (Sec. II) and the relative entropy
with the true state (Sec. III) as cost functions, the conditioned
state (1) is the optimal estimator. Furthermore, for each cost
function, we show that the expected cost function of the con-
ditioned state ρO�

reduces to simple measures involving only
ρO�

. When we consider a cost function closely related to the
trace-square deviation, the linear infidelity with the true state
(Sec. IV), we find, somewhat counterintuitively, that ρO�

is
not the optimal estimator. Rather, the lustrated conditioned
state, a pure state corresponding to the largest eigenvalue of
ρO�

, is the optimal estimator. We derive upper and lower
bounds on the expected cost function of the lustrated state for
both the trace-square deviation and linear infidelity expected
cost function.

II. COST FUNCTION: TRACE-SQUARE DEVIATION

In this section we focus on the trace-square deviation
(TrSD) from the true state, a distance measure between
two quantum states, as the cost function of interest, i.e.,
C(ρ̌, ρT) = Tr[(ρ̌ − ρT)2]. This means that the expected cost
function for a given estimate ρ̌ of the true quantum state is

BTrSD
O�

(ρ̌) = E←−
U |O�

{Tr[(ρ̌ − ρT)2]}
= E←−

U |O�
{P(ρT) − 2L(ρ̌, ρT) + P(ρ̌ )}, (3)

where the purity is defined as

P(ρ) = Tr[ρ2] (4)

and the linear fidelity [30] is

L(ρ, σ ) = Tr[ρσ ]. (5)

Note that here we have not restricted our discussion to
smoothed estimates (O� = ←→

O ), but are also allowing for a
filtered estimate (O� = ←−

O ).
To see that the conditioned state, Eq. (1), is the estimator

that minimizes Eq. (3), we will show that any other estimator
ρ ′ = ρO�

+ Ô for any traceless Hermitian operator Ô �= 0
is suboptimal, that is, the expected cost function for ρ ′ is
strictly greater than the expected cost function for ρO�

. By

substituting ρ ′ into the expected cost function we obtain

BTrSD
O�

(ρ ′) = E←−
U |O�

{Tr[(ρ ′ − ρT)2]}
= BTrSD

O�
(ρO�

) + 2 Tr[ÔρO�
]

− 2E←−
U |O�

{Tr[ÔρT]} + Tr[Ô2]

= BTrSD
O�

(ρO�
) + Tr[Ô2]

> BTrSD
O�

(ρO�
). (6)

Here, to obtain the second line we have expanded the trace
term and collected the terms that contribute to BTrSD

O�
(ρO�

),
making use of the cyclic nature of the trace. To obtain the third
line we have used the linear nature of the trace and Eq. (1).
Finally, the inequality in the final line results from the fact
that Ô has real eigenvalues.

Interestingly, we can show that the expected linear fidelity
between the conditioned state ρO�

and the true state is equal
to the purity of the conditioned state, that is,

E←−
U |O�

{L(ρO�
, ρT)} = Tr[ρO�

E←−
U |O�

{ρT}] = P(ρO�
). (7)

This equality also holds for the Jozsa fidelity [31]
F (ρO�

, ρT) = (Tr[
√√

ρTρO�

√
ρT])2 provided the true state is

pure as, in this case, the Jozsa fidelity is equal to the linear
fidelity. Previously [17,22], Eq. (7) was proven only when
also averaging both sides over the observed record O�. [Note
that, in [22], the equality between the Jozsa fidelity and the
purity is typeset incorrectly; in Eq. (9), the left-hand side
should also average over the past unobserved measurement
record.] The expected cost function, Eq. (3), for the optimal
estimator ρ̌ = ρO�

, assuming a pure true state, thus reduces to
the impurity of the conditioned state

BTrSD
O�

(ρO�
) = 1 − P(ρO�

). (8)

To verify Eq. (7), we consider a physical example. The
system is a two-level system, with a driving Hamiltonian
Ĥ = (�/2)σ̂x and radiative damping described by a Lindblad
operator

√
γ σ̂−, where � is the Rabi frequency and γ is

the damping rate. Alice monitors a fraction η of the output
fluorescence using Y homodyne detection so that her Lindblad
operator can be written ĉφ = √

γ ηe−iπ/2σ̂−, defined so that
her photocurrent is dJφ = Tr[ĉφρ + ρĉ†

φ] + dW , where dW
is a Wiener increment satisfying

E{dW } = 0, E{dW 2} = dt . (9)

The remaining 1 − η fraction of the output is monitored by
Bob using photodetection, with the Lindblad operator ĉN =√

γ (1 − η)σ̂− defined so that the average rate of his jumps is
E{dN}/dt = Tr[ĉ†

N ĉNρ]. Note that Alice and Bob’s measure-
ments collectively constitute a perfect measurement, so the
true state is pure. We can describe the evolution of the true
quantum state with the stochastic master equation [3]

dρT = G[ĉN ]ρdN − i[Ĥ, ρT]dt − H
[

1
2 ĉ†

N ĉN
]
ρTdt

+ D[ĉφ]ρTdt + H[ĉφ]ρTdWT, (10)

with the initial condition chosen to be the ground
state ρ(t0) = |0〉〈0|. The superoperators are defined as
G[ĉ]ρ = ĉρĉ†/Tr[ĉρĉ†] − ρ, D[ĉ]ρ = ĉρĉ† − {ĉ†ĉ, ρ}/2,
and H[ĉ]ρ = ĉρ + ρĉ† − Tr[ĉρ + ρĉ†]ρ. Here the vector of
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FIG. 1. Ensemble average of the linear fidelity between the conditioned state, (a) filtered and (c) smoothed, and the true state for the
quantum system of Eq. (10), where Alice and Bob are monitoring the same channel with equal measurement efficiency (η = 0.5) using Y
homodyne detection and photodetection, respectively. The number of trajectories M used to compute the ensemble average for the smoothed
quantum state for this simulation is 2 × 104. The number of trajectories N used to compute the ensemble average for the linear fidelity between
the true state and the smoothed quantum state is 3 × 104. Note that the observed record is fixed in all cases and the ensembles of unobserved
records used to generate the smoothed state and to average the linear fidelity are generated independently. (b) and (d) In order to show the
equality in Eq. (7), we have plotted the difference between the purity and the expected linear fidelity for M = 2 × 103 and N = 3 × 103

unobserved jump trajectories (dashed line) and for M = 2 × 104 and N = 3 × 104 (solid line). We can see that the difference between the
purity and the average fidelity decreases as the number of trajectories used to compute the averages increases, supporting the equality in
Eq. (7). Here h̄ = 1, � = 3γ , and η = 0.5.

(true) innovations dWT = dJφ − Tr[ĉφρT + ρTĉ†
φ]dt satisfies

properties similar to those in Eq. (9).
For the details of how the true state ρT, the filtered state ρF,

the smoothed state ρS, and the ensemble averages E←−
U |O�

{•}
are computed, see the Appendix. In Fig. 1 we can see the
convergence of E←−

U |O�
{F (ρO�

, ρT)} to the purity P(ρO�
) as

the number of unobserved trajectories averaged over increases
for both the filtered state and the smoothed state. When a large
number ensemble is used, the two are almost indistinguish-
able.

III. COST FUNCTION: RELATIVE ENTROPY

We now direct our attention to another cost function, the
relative entropy with the true state. The consideration of this
cost function stems from the work in Ref. [32], where the
authors derived bounds on the average relative entropy be-
tween the state obtained by an omniscient observer (the true
state) and either an ignorant (one who has no measurement
information) or partially ignorant observer (one who has a
fraction of the measurement output). The key difference here
is that we are considering the optimal estimator that minimizes
the (conditional) average of the relative entropy, as opposed to
finding the upper and lower bounds. Furthermore, we consider
a more general setting, allowing the omniscient observer to
perform a different measurement (Bob’s measurement in our
formulation) on the remaining portion of the output to the
partially ignorant observer (Alice in our formulation).

The relative entropy is defined as [30,33,34]

S(ρ||σ ) = Tr[ρ log ρ] − Tr[ρ log σ ]. (11)

The relative entropy S(ρ||σ ) is a measure of state distin-
guishability between states ρ and σ , more specifically, it
is akin to the likelihood that state σ will not be confused
with state ρ, where a relative entropy of zero corresponds
to completely indistinguishable states. Note that, unlike many
other cost functions, like the TrSD, the relative entropy is not
symmetric in its arguments. Consequently, the estimation task
is to find the state that minimizes the expected cost function

BRE
O�

(ρ̌) = E←−
U |O�

{S(ρT||ρ̌)}. (12)

Once again, the state that minimizes this expected cost
function is the usual conditioned state. We can show the
optimality of this state using the same method as before, that
is, any state ρ ′ �= ρO�

will be suboptimal. Substituting ρ ′ into
the expected cost function, we get

BRE
O�

(ρ ′) = E←−
U |O�

{Tr[ρT log ρT] − Tr[ρT log ρ ′]}
= E←−

U |O�
{Tr[ρT log ρT] − Tr[ρO�

log ρO�
]}

+ E←−
U |O�

{Tr[ρO�
log ρO�

] − Tr[ρT log ρ ′]}. (13)

Remembering that ρO�
= E←−

U |O�
{ρT}, the expected cost func-

tion becomes

BRE
O�

(ρ ′) = E←−
U |O�

{S(ρT||ρO�
)} + S(ρO�

||ρ ′)

> E←−
U |O�

{S(ρT||ρO�
)}, (14)

where the inequality results from the fact that the relative
entropy is non-negative and is saturated only when ρ ′ = ρO�

[34].
In a similar vein to the TrSD case, when we restrict our

analysis to pure true states, the expected cost function of the
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(a)

(b)

FIG. 2. Relative entropy expected cost function for the (a) fil-
tered state and (b) smoothed state for the quantum system described
in Eq. (10). We have also computed the difference (thin black line
with the scale on the right y axis) between the expected cost func-
tion and the von Neumann entropy to illustrate that the equality
in Eq. (12) holds, where log2 has been used for the entropy in
both cases. Other details, including the randomly generated observed
record

←→
O , are as in Figs. 1(a) and 1(c).

conditioned state simplifies to the von Neumann entropy of
ρO�

, that is,

BRE
O�

(ρO�
) = S(ρO�

). (15)

This follows from the fact that for a pure state ρ, Tr[ρ log ρ] =
0. Note that a similar equality was also derived in Ref. [32];
however, there only the average over both the observed and
unobserved records was considered and not the conditional
averages. We verify that this equality is correct using the
previous physical example in Eq. (10), with good agreement
seen in Fig. 2.

IV. COST FUNCTION: LINEAR INFIDELITY

Given the previous two cost functions, one might assume
that the conditioned state ρO�

would be the optimal estimator
for any cost function that was a distance or distinguishability
measure. However, this is not the case. The last measure we
will consider as a cost function is the linear infidelity (LI) with
the true state, i.e., C(ρ̌, ρT) = 1 − L(ρ̌, ρT), where the linear
fidelity is defined in Eq. (5). Note that one will obtain the same
cost function for the Jozsa infidelity when assuming a pure
true state, as discussed above. Once again, the task is to find
the state that minimizes the expected cost function, here

BLI
O�

(ρ̌) = E←−
U |O�

{1 − L(ρ̌, ρT)}. (16)

By the linearity of the trace, we can immediately simplify this
expected cost function to BLI

O�
(ρ̌) = 1 − Tr[ρ̌ρO�

]. Further-
more, we can reframe the optimization problem in this case
to find the estimated state ρ̌ that maximize the linear fidelity
L(ρ̌, ρO�

) = Tr[ρ̌ρO�
].

Now, using the fact that ρO�
is Hermitian and hence di-

agonalizable with some unitary matrix U , the linear fidelity

becomes

Tr[ρ̌ρO�
] = Tr[ρ̌U�O�

U †] =
∑

i

λi(U
†ρ̌U )ii

= λmax
O�

∑

i

λi

λmax
O�

(U †ρ̌U )ii, (17)

where �O�
is a diagonal matrix whose entries are the eigen-

values λi of ρO�
and λmax

O�
is the largest eigenvalue of ρO�

.
Since ρO�

is positive semidefinite, as it is a valid quantum
state, 0 � λi/λ

max
O�

� 1. Furthermore, we know (U †ρ̌U )ii is
positive since ρ̌ must be a valid quantum state and hence is
positive semidefinite. Thus we can take the upper bound on
λi/λ

max
O�

, giving an upper bound on the linear infidelity

Tr[ρ̌ρO�
] � λmax

O�

∑

i

(U †ρ̌U )ii = λmax
O�

Tr[U †ρ̌U ] = λmax
O�

,

(18)
where the final equality is obtained using the cyclic property
of the trace and Tr[ρ̌] = 1. Importantly, this upper bound is
independent of the particular choice of estimator, meaning
that this is the maximum possible value any estimator can
obtain for the linear fidelity. Thus, if we can find an estimator
that will saturate this upper bound, it will minimize the linear
infidelity expected cost function and will be an optimal esti-
mator for this cost function. In fact, it is fairly easy to find such
an estimator which saturates the upper bound in Eq. (18), that
is, by choosing the estimated state to be

ρL
O�

= ∣∣ψmax
O�

〉〈
ψmax

O�

∣∣, (19)

|ψmax
O�

〉 is the eigenstate corresponding to the largest eigen-
value λmax

O�
of the conditioned state. By choosing the eigenstate

that corresponds to the largest eigenvalue of the conditioned
state, we know that ρO�

|ψmax
O�

〉 = λmax
O�

|ψmax
O�

〉, from which it
is easy to see that this estimator will saturate the upper bound
in Eq. (18). Since this state estimator is, in some sense, a
purification of the conditioned state, we will call this state the
lustrated conditioned state, hence the superscript L.

As was the case for the previous two cost functions, the
expected cost function for the optimal estimator can be sim-
plified to

BLI
O�

[
ρL

O�

] = 1 − λmax
O�

, (20)

which follows trivially from

E←−
U |O�

{
L
(
ρL

O�
, ρT

)} = λmax
O�

. (21)

In this case, contrary to the other distance measures, we notice
that the expected cost function does not reduce to a simple
measure of the optimal estimator. Instead, the expected cost
function depends on the conditioned state. To verify Eq. (21),
we will consider the (not-lustrated) physical system presented
in Sec. II. In Fig. 3 we indeed see that the average fidelity
of the lustrated conditioned state ρL

O�
is equal to the largest

eigenvalue of the conditioned state ρO�
.

Due to the similarity between the LI and the TrSD cost
functions, it is possible to derive upper and lower bounds on
the expected cost function of the lustrated state for both a LI
and a TrSD cost. To begin, since the lustrated conditioned
state is the optimal estimator for the LI expected cost function,
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(a)

(b)

FIG. 3. Ensemble average of the linear fidelity between the
true state and the lustrated conditioned state, (a) filtered and
(b) smoothed, and its difference from the maximum eigenvalue of
the conditioned state (thin black line with the scale on the right y
axis) for the quantum system in Eq. (10) with Alice and Bob using Y
homodyne detection and photodetection, respectively. Other details,
including the randomly generated observed record

←→
O , are as in

Figs. 1(a) and 1(c).

we have the trivial bound

BLI
O�

[
ρL

O�

]
� BLI

O�
[ρO�

], (22)

where an equality occurs when the conditioned state is pure.
While this is trivial for a LI cost, this relationship places
a nontrivial upper bound on the TrSD expected cost func-
tion for the lustrated conditioned state. Specifically, it is
easy to show, using Eq. (7) and assuming a pure true state,
that Eq. (22) implies that 1

2BTrSD
O�

[ρL
O�

] � BTrSD
O�

[ρO�
]. Simi-

larly, we can derive a lower bound on the LI expected cost

function for the lustrated conditioned state by considering
BTrSD

O�
[ρO�

] � BTrSD
O�

[ρL
O�

]. In this case, we obtain the lower
bound 1

2BLI
O�

[ρO�
] � BLI

O�
[ρL

O�
]. As a result, we obtain the

following bounds on the expected cost functions of their re-
spective optimal estimators:

1
2B

TrSD
O�

[
ρL

O�

]
� BTrSD

O�
[ρO�

] � BTrSD
O�

[
ρL

O�

]
, (23)

1
2B

LI
O�

[ρO�
] � BLI

O�

[
ρL

O�

]
� BLI

O�
[ρO�

]. (24)

To verify these bounds on the expected cost functions, we will
once again consider the physical example presented in Sec. II.
In Fig. 4 we consider both the TrSD [Figs. 4(a) and 4(c)] and
LI [Figs. 4(b) and 4(d)] expected cost functions for the filtered
[Figs. 4(a) and 4(b)] and smoothed [Figs. 4(c) and 4(d)] states,
observing the bounds in Eqs. (24) and (23). Note that one
might think that the upper bound in Eq. (23) could become
a trivial bound when BTrSD

O�
[ρO�

] > 1 as the maximum value
of the TrSD expected cost function is 2. In fact, this is never
trivial as, from Eq. (8), we can see that BTrSD

O�
[ρO�

] � 1.

V. CONCLUSION

In this paper, we have shown that the smoothed quantum
state is an optimal state estimator. Specifically, the smoothed
quantum state simultaneously minimizes the expected cost
function for a trace-square deviation and relative entropy cost
function. Furthermore, we showed that, in both cases, the
expected cost function of the smoothed state reduces to simple
measures acting solely on the smoothed state, specifically, the
impurity and von Neumann entropy of the smoothed state, re-
spectively. However, when we considered the linear infidelity
as a cost function we found, somewhat counterintuitively, that
the smoothed quantum state was not optimal. Instead, the lus-
trated smoothed state, defined as the eigenstate corresponding
to the maximum eigenvalue of the smoothed quantum state, is
the optimal estimator for such a cost function.

(a) (b)

(c) (d)

FIG. 4. The (a) and (c) TrSD and (b) and (d) LI expected cost functions for the conditioned and lustrated conditioned state, respectively,
for the system in Eq. (10). We evaluate the TrSD expected cost function for the (a) filtered and (b) smoothed quantum states and evaluate
the LI expected cost function for the (c) filtered lustrated and (c) smoothed lustrated states. The bounds on these expected cost functions are
calculated for (a) and (c) from Eq. (23) and for (b) and (d) from Eq. (24). Other details, including the randomly generated observed record

←→
O ,

are as in Figs. 1(a) and 1(c).
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As was the case for the other cost functions, we showed
that the linear infidelity expected cost function of the lustrated
smoothed state reduces to a simple measure. However, in this
case the measure does not depend on the lustrated smoothed
state itself, rather it depends on the maximum eigenvalue
of the smoothed quantum state. Finally, we calculated some
upper and lower bounds on the expected cost function of the
lustrated smoothed state for both the trace-square deviation
and the linear infidelity.

Since the lustrated state is pure, an obvious question is
whether it is related to the pure states in the most-likely-path
approach of Refs. [15,35]. This and many other related ques-
tions are answered by the general cost function approach to
quantum state estimation using past and future measurement
records introduced in Ref. [36]. However, the most-likely path
[15,35,36] is restricted to homodyne-like unknown records,
whereas in this paper we have used an example where the
unknown record is comprised of discrete photon counts. It
remains an open question as to whether the most-likely-
path cost functions of Ref. [36] can be generalized to such
cases. Another interesting avenue for future work would be to
consider the implications of using a frequentist approach as
discussed in the Introduction.
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APPENDIX: NUMERICS

In this Appendix we present the methods used to compute
the filtered, true, and smoothed quantum states and all the
measures in this paper. To begin, a typical homodyne mea-
surement current, which will remain fixed for all calculations,
was generated in parallel with the associated filtered state and
calculating the measurement current via

dJφ (t ) = Tr[ĉφρF(t ) + ρF(t )ĉ†
φ]dt + dWF(t ), (A1)

where dWF is the filtered innovation generated from a Gaus-
sian distribution with the moments in Eq. (9). The filtered state
was computed using quantum maps [3], where the evolution
of the filtered state in a finite time step δt is given by

ρF(t + δt ) = MHMdJφ (t )MuρF(t )

Tr[MHMdJφ (t )MuρF(t )]
, (A2)

where the completely positive map MA subscripts denote
the particular type of evolution the system is undergoing: Ĥ
denotes the Hamiltonian part, dJφ (t ) denotes the homodyne
part, and u denotes the remaining unconditioned dynamics.
The Hamiltonian part is MH• = exp(−iHδt ) • exp(iHδt ).
The unconditioned map can be described by averaging over
Bob’s jump process to make a trace-preserving map,

Mu• =
1∑

dN (t )=0

M̂dN (t ) • M̂†
dN (t ). (A3)

The homodyne (conditioned) map is described by a single
measurement operator MdJφ (t )• = M̂dJφ (t ) • M̂†

dJφ (t ). In partic-
ular, we used completely positive quantum maps [37], where
the M̂ operators have been taken to a second order in δt to
ensure the positivity of the quantum state to high accuracy.
For details on the particular operators used for the homodyne
measurement and the jump measurement see Ref. [37].

With this typical record, both the unnormalized filtered
state ρ̃F and the unnormalized true state ρ̃T can be computed.
The unnormalized filtered state is computed using Eq. (A2)
without the trace term in the denominator, and the unnormal-
ized true state evolves as

ρ̃T(t + δt ) = MHMdJφ (t )MdN (t )ρT(t ). (A4)

The reason why the unnormalized versions of these states are
computed, as opposed to the normalized version, is because
their traces correspond to the ostensible probability distri-
butions Tr[ρ̃F] = ℘ost (

←−
O ) and Tr[ρ̃T] = ℘ost (

←−
O ,

←−
U ). These

distributions are needed for computing the ensemble average
over

←−
U given

←−
O via ℘ost (

←−
U |←−O ) = ℘ost (

←−
O ,

←−
U )/℘ost (

←−
O ).

Specifically, the ensemble average using this conditional prob-
ability is

E←−
U |←−O {•} = 1

Ntot

Ntot∑

n=1

Tr
[
ρ̃

(n)
T

]

Tr[ρ̃F]
•, (A5)

where the superscript (n) labels the nth realization of the
true state with Ntot being the total number of realizations
computed.

For the smoothed quantum state, it is necessary to perform
the ensemble average E←−

U |←→O . Thus we require the ostensible

distribution ℘ost (
←−
U |←→O ) = ℘ost (

←→
O ,

←−
U )/℘ost (

←→
O ). Both the

numerator and denominator are obtained by introducing the
retrofiltered effect ÊR, a positive operator-valued measure.
element that evolve backward-in-time from a final uninforma-
tive state ÊR(T ) = I conditioning on the measurement result
back to the time τ . The retrofiltered effect is computed as the
adjoint of the unnormalized filtered state, that is,

ÊR(t − δt ) = M†
uM†

dJφ (t )M
†
H ÊR(t ), (A6)

where Tr[ÊRρ] = ℘(
−→
O |ρ). The ostensible distributions are

then obtained by Tr[ρ̃TÊR] = ℘ost (
←→
O ,

←−
U ) and Tr[ρ̃FÊR] =

℘ost (
←→
O ). Thus the ensemble average conditioning on

←→
O is

computed as

E←−
U |←→O {•} = 1

Ntot

Ntot∑

n=1

Tr[ρ̃ (n)
T ÊR]

Tr[ρ̃FÊR]
• . (A7)

Note that, for a fair comparison of the various equalities pre-
sented in this paper, the ensemble of true states (of size M)
used to compute the ensemble average for the smoothed state
was generated independently of the ensemble of true states
(of size N) used to compute the ensemble averages of other
quantities, like the linear fidelities and relative entropies.
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