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Alternative approach to the quantization of the damped harmonic oscillator
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In this paper, an alternative approach for constructing Lagrangians for driven and undriven linearly damped
systems is proposed, by introducing a redefined time coordinate and an associated coordinate transformation to
ensure that the resulting Lagrangian satisfies the Helmholtz conditions. The approach is applied to canonically
quantize the damped harmonic oscillator and although it predicts an energy spectrum that decays at the same
rate to previous models, unlike those approaches it recovers the classical critical damping condition, which
determines transitions between energy eigenstates, and is therefore consistent with the correspondence principle.
It is also demonstrated how to apply the procedure to a driven damped harmonic oscillator.
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I. INTRODUCTION

Harmonic oscillators experiencing linear and nonlinear
damping, both with and without a driving force, arise in
a range of physical contexts including modeling supercon-
ducting qubits using Josephson junctions [1–3], heavy ion
scattering [4–6], and nuclear fission [7–9]. There is consensus
in the literature that quantization techniques for the linearly
damped, undriven harmonic oscillator,

q̈ + 2αq̇ + ω2q = 0, (1)

can be generalized to the above contexts [10,11]. Here, q, α,
and ω are the position coordinate, the coefficient of linear
damping, and the oscillator frequency, respectively.

Existing canonical quantization procedures, however, do
not work for nonconservative systems; i.e., it has not been
possible with approaches previously reported in the litera-
ture to write a Lagrangian which produces Eq. (1) as its
Euler-Lagrange equation, as it does not satisfy the Helmholtz
conditions [12]. The attempts to overcome this problem have
resulted in a wide range of proposals over the last century, the
most prominent being that of Bateman [13], Caldirola [14],
and Kanai [15] (hereafter referred to as the BCK approach).
In the BCK approach, one quantizes the Bateman Lagrangian
LB,

LB = 1

2

(
q̇2 − ω2q2

)
e2αt , (2)

from which the Euler-Lagrange equations produces Eq. (1)
multiplied by the integrating factor e2αt . The canonical mo-
mentum associated with q is p = e2αt q̇, and can be used to
write the corresponding Hamiltonian HBCK:

HBCK = 1

2

(
e−2αt p2 + ω2e2αt q2

)
. (3)
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Many other proposed approaches, such as those employing
separation of variables or redefinition of the position variable
q, are equivalent to this BCK approach [10,16–20]. Another
class of approaches involve coupling an undamped oscil-
lator to a loss mechanism [11,21–23], including through a
spin-boson model [24,25] or a Lindbladian master equation
formalism [26–28]. While these approaches have proved suc-
cessful, they require a model of how the dissipation occurs.
However, such an approach is not often practical, for example
when characterizing superconducting quantum circuits, which
rely on experimentally determined estimations of the damping
conditions [29–31]. By providing a closed description of the
system, the BCK approach therefore remains a highly favored
approach to quantize the damped harmonic oscillator—
as evidenced by continued analysis of the approach
[19,20,32–36]—and solutions to HBCK have been thoroughly
investigated [10,37,38].

There are two features of the BCK approach which have
recently caused debate in the literature. First, it was proved
that a square-integrable vacuum cannot be found for the BCK
Hamiltonian [32], a result which has withstood some de-
bate [33,34,36]. Second, in Ref. [35] the authors claim that
Eq. (2) describes a doubled system of both a damped har-
monic oscillator and an amplified harmonic oscillator [Eq. (1)
with α < 0]. In that paper, they propose a modified Bateman
Lagrangian, by introducing additional real dynamical vari-
ables and obtain a ladder of energies,

En(t ) = h̄ωe−2αt

(
n + 1

2

)
, (4)

and find a critical damping condition for the quantized system,
α = ω(

√
5 − 1)/2, which differs from the classical condition

α = ω. Their approach, however, does not satisfy the corre-
spondence principle and relies upon modifying an existing
Lagrangian with multiple dynamical variables.

In this work, we propose an alternative approach for
quantizing driven and undriven linearly damped systems of
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the form

q̈ + 2αq̇ +
∑

i

gi(q, t ) = 0, (5)

where gi(q, t ) is an arbitrary continuous function of q and
t . Our approach only requires a single dynamical variable,
does not require modification of an existing Lagrangian, and
is therefore easily generalized. We do so by introducing a
new time coordinate in Eq. (5), for which we find an exact
Lagrangian and Hamiltonian which is then quantized. Impor-
tantly, while we predict the energy spectrum given by Eq. (4),
we recover the classical critical damping condition α = ω.
Therefore, our quantization satisfies the correspondence prin-
ciple. Finally, we demonstrate how to apply our approach to
driven linearly damped systems, by considering an example
from superconducting quantum computing.

II. DERIVING A HAMILTONIAN VIA THE HELMHOLTZ
CONDITIONS

For a set of coordinates qi and their derivatives with respect
to time t , the Helmholtz conditions state that a Lagrangian can
be written for a system of differential equations Ei(t, qi, q̇i, q̈i )
if they satisfy [12]

∂Ei

∂ q̈k
− ∂Ek

∂ q̈i
= 0, (6a)

∂Ei

∂ q̇k
+ ∂Ek

∂ q̇i
− d

dt

(
∂Ei

∂ q̈k
+ ∂Ek

∂ q̈i

)
= 0, (6b)

∂Ei

∂qk
− ∂Ek

∂qi
− 1

2

d

dt

(
∂Ei

∂ q̇k
− ∂Ek

∂ q̇i

)
= 0. (6c)

A single differential equation trivially satisfies Eqs. (6a)
and (6c); however, Eq. (5) [and thus Eq. (1)] does not sat-
isfy Eq. (6b). Therefore, in this coordinate system, it is not
possible to write a Lagrangian which produces Eq. (1) as its
Euler-Lagrange equation.

We propose considering a new time coordinate τ = f (t ),
where f (t ) is a continuous and differentiable function for
all t � 0, such that the Helmholtz conditions are satisfied.
Equation (5) becomes(

dτ

dt

)2

q̈(τ ) +
[(

d2τ

dt2

)
+ 2α

(
dτ

dt

)]
q̇(τ )

+
∑

i

fi(q(τ ), τ ) = 0,

(7)

assuming that dτ/dt �= 0 for all times t of interest, that α

and ω are time independent, and derivatives are with respect
to τ . Since Eq. (7) is a differential equation E (τ, q, q̇, q̈), it
may be substituted into Eq. (6b) to ensure that the Helmholtz
conditions are satisfied:(

d2τ

dt2

)
+ 2α

dτ

dt
= d

dτ

[(
dτ

dt

)2]
. (8)

This condition is trivially satisfied for α = 0 (the undamped
oscillator), and we consider α �= 0 for the remainder of this
work. In that case, Eq. (8) is generally satisfied by

τ = Ke2αt − τ0, (9)

where K and τ0 are constants of integration. K must be
nonzero for the transform to be defined, but τ0 corresponds
only to a time translation of our system τ → τ + τ0. Since this
has no physical implications, we set τ0 = 0 for the remainder
of this work.

Observe that Eq. (8) is independent of gi(q, t ), so it is
possible to write a Lagrangian for any linearly damped sys-
tem. However, we start by considering the undriven damped
harmonic oscillator, for which the equation of motion in τ is

4α2τ 2 d2q

dτ 2
+ 8α2τ

dq

dτ
+ ω2q = 0. (10)

It is straightforward to show that Eq. (10) is the Euler-
Lagrange equation corresponding to the Lagrangian

L = 1

2

[
4α2τ 2q̇2 − ω2q2]. (11)

The canonical momentum p for L is

p = ∂L

∂ q̇
= 4α2τ 2q̇, (12)

and thus the classical Hamiltonian H for our system is

H = 1

2

[
1

4α2τ 2
p2 + ω2q2

]
. (13)

It follows from Eq. (9) that τ > 0 for t > −∞, so H is defined
for all time and α > 0. So the resulting classical Hamiltonian,
Eq. (13), produces Eq. (1) as its equation of motion. To the
best of our knowledge, Eq. (13) has not been found in the
earlier literature on the quantization of the damped harmonic
oscillator. Nor has this procedure for deriving a Hamiltonian
for a dissipative system been proposed in the earlier literature
on the quantization of dissipative systems.

III. CANONICAL QUANTIZATION

Canonical quantization is now carried out in the usual way
by promoting q and p to their corresponding self-adjoint oper-
ators satisfying [q̂, p̂] = ih̄. We now define, in the Schrödinger
picture, the annihilation operator

â(τ ) = 1√
2h̄

[√
2ωατ q̂ + i

1√
2ωατ

p̂

]
, (14)

which satisfies [â(τ ), â†(τ )] = 1 for all τ , where â†(τ ) is the
corresponding creation operator. Our quantized Hamiltonian
may thus be written

Ĥ (τ ) = h̄ω

2ατ

[
â†(τ )â(τ ) + 1

2

]
. (15)

Using the ground-state vector |0, τ 〉 which satisfies
â(τ )|0, τ 〉 = 0, the Fock basis vectors are constructed
as |n, τ 〉 = (1/

√
n!)(â†(τ ))n|0, τ 〉 for positive integer n.

The Fock basis vectors are eigenstates of the Hamiltonian
Ĥ (τ )|n, τ 〉 = En(τ )|n, τ 〉. The expectation value of the
Hamiltonian, Ēn(τ ), in state |n, τ 〉 is then

Ēn(τ ) = 〈n, τ | Ĥ |n, τ 〉 = h̄ω

2ατ

(
n + 1

2

)
. (16)
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Thus, in the original time coordinate t , the expectation values
of the energy spectrum of the damped harmonic oscillator are

Ēn(τ ) = h̄ω

2αK
e−2αt

(
n + 1

2

)
. (17)

Consistent with Eq. (4), the energy eigenvalues constitute an
equally spaced ladder, and their expectation values decrease
exponentially with time. Note that a choice of K = 1/2α

ensures that Ēn reproduces exactly the harmonic oscillator
spectrum at t = 0. The eigenvalues decrease as exp(−2αt ),
which is the same rate as that expected for a corresponding
classical oscillator.

IV. POSITION-SPACE ENERGY EIGENFUNCTIONS

We define the Fock state |n, τ 〉 in the position basis |x〉 as

|n, τ 〉 =
∫

dxψn(x, τ ) |x〉 , (18)

where the ψn(x, τ ) are the position-space wavefunctions.
Having defined the annihilation operator â(τ ), following a
standard approach [39] the eigenfunctions

ψn(x, τ ) =
(

2ωατ

π h̄

)1/4 1√
2nn!

Hn

(√
2ωατ

h̄
x

)

× exp
(
−ωατ

h̄
x2

)
(19)

are obtained, where Hn is the nth Hermite polynomial. Writing
these wavefunctions in the original time coordinate then gives

ψn(x, t ) =
(

2ωαK

π h̄

)1/4 1√
2nn!

Hn

(√
2ωαK

h̄
exp (αt )x

)

× exp
(αt

2
− ωαK

h̄
x2 exp (2αt )

)
. (20)

Observe that, up to a phase factor, these are the same wave-
functions as found in Ref. [35] for K = m/2α (where m is
the mass of the oscillator). In Fig. 1(a), we plot |ψn(x, t )|2
for Eq. (20) at t = 0 for the n = 0 and n = 1 cases, which
correspond to the initial position-space wavefunctions of the
ground state and first excited state, for ω = 10, α = 0.005,
h̄ = 1, and K = 1/2α.

In Fig. 1(b) we plot the n = 0 and n = 1 wavefunctions
at t = 250 for Eq. (20) with the same choice of constants.
As t increases, observe that |ψn(x, t )|2 becomes increasingly
localized around the origin x = 0, as the oscillator’s motion is
damped.

V. SOLUTIONS TO THE SCHRÖDINGER EQUATION

We now calculate the evolution of a state obeying the
time-dependent Hamiltonian equation (15) in the Schrödinger
picture. In particular, our time-dependent wavefunctions obey
the eigenvalue equation,

Ĥ (τ )ψn(x, τ ) = En(τ )ψn(x, τ ). (21)

As the energy levels of our Hamiltonian are nondegener-
ate, the general solutions �(x, τ ) for the time-dependent
Schrödinger equation are found in the standard way to give,

FIG. 1. |ψn(x, t )|2 for Eq. (20) for n = 0, 1 at (a) t = 0 and
(b) t = 250. All quantities are in natural units with h̄ = 1.

in terms of τ ,

�(x, τ ) =
∑

n

cn(τ )ψn(x, τ )eiθn (τ ), (22)

where |cn(τ )|2 is the probability of being in the nth energy
level at time τ , and

θn(τ ) = −1

h̄

∫ τ

K
En(τ ′) dτ ′. (23)

Here, the cm obey

dcm

dτ
= − cm 〈m, τ | d

dτ
|m, τ 〉

−
∑
n �=m

cn
〈m, τ | dH

dτ
|n, τ 〉

En − Em
ei(θn−θm ), (24)

where |m, τ 〉 are the Fock basis states defined before. The in-
tegral in Eq. (23) is integrated from K , corresponding to τ (t =
0). Then, for the Hamiltonian given by Eq. (13), Eq. (24)
becomes

dcm

dτ
= 1

4τ

[
cm−2

√
m(m − 1)

( τ

K

)iω/α

−cm+2

√
(m + 2)(m + 1)

( τ

K

)−iω/α]
. (25)
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Transforming back to the original time coordinate t gives

dcm

dt
=α

2

[
cm−2

√
m(m − 1)ei2ωt

−cm+2

√
(m + 2)(m + 1)e−i2ωt

]
, (26)

for the time rate of change of the coefficients. Equation (26)
may be solved as described in Ref. [35], and the references
therein, for initial condition cm(0) = δm,n, where |n, 0〉 is the
initial state of our system. This is achieved by solving

∂G

∂t
= −

[
α

2

(
∂2

∂q2
− q2

)
+ iωq

∂

∂q

]
G, (27)

for G(q, t ) �
∑

j q je−i jωt/2c j (t )/
√

j! with initial conditions

G(q, 0) = qn/
√

n! and G(0, t ) = c0(t ). The cm(τ ) can then
be used to find the probability of the system being found in
any eigenstate, after initially being in the nth energy level.
This is of particular interest in the study of superconducting
quantum circuits, where knowledge of the transition rates is
necessary for the control of the quantum system. We consider
here the cases n = 0 and n = 2 in particular. Observe that
interestingly Eq. (26) only couples modes of the same parity,
so it is sufficient to consider only the even-order modes.

A. Case n = 0

In the case n = 0, where the system in initially in the
ground state, cm(t ) may be written

cm(t ) =

⎧⎪⎨
⎪⎩

(m−1)!!√
m!

√
ξei(m+1/2)ωt

× (sinh (ξαt ))m/2

(cosh (ζ+ξαt ))(m+1)/2 for m = 2k,

0 for m = 2k + 1,

(28)

where
∑

m |cm(t )|2 = 1, k ∈ Z, and

ξ =
√

1 − ω2/α2, (29a)

e±ζ = ξ ± iω/α. (29b)

Critical damping occurs when ξ = 0 which, from
Eq. (29a), gives the condition for critical damping as α = ω,
consistent with the result for an equivalent classical system.
Note that this condition differs from the result of Ref. [35]
(α = ω(

√
5 − 1)/2).

In Figs. 2(a)–2(c) we show |cm(t )|2 with m = 0, 2, 4, 6 for
the underdamped case (α < ω), the case of critical damping
(α = ω), and the overdamped case (α > ω), with ω = 1 and
α defined accordingly.

In Fig. 2(a), ξ is imaginary and cm(t ) is oscillatory. In
Fig. 2(a), we show the underdamped case, with α = 0.75 <

ω. The transition probabilities oscillate with period π/|αξ | =
π/

√
ω2 − α2.

In Fig. 2(b), ξ = 0. Expanding about ξ = 0, we then obtain

cm(t ) = (m − 1)!!√
m!

ei(m+1/2)ωt (ωt )n/2

(1 + iωt )(n+1)/2
. (30)

In Fig. 2(b), we show this critically damped case, with
α = ω = 1. The transition probability |cm(t )|2 decreases
monotonically for the ground state m = 0, while for m �

FIG. 2. For an initial state of |0, 0〉, we plot |cm(t )|2 for m =
0, 2, 4, 6 in (a) the underdamped case, (b) the critically damped case,
and (c) the overdamped case. All quantities are in natural units with
h̄ = 1.

2 it increases to a local maximum before also decreasing
monotonically.

In Fig. 2(c) we show the overdamped case, α = 2 > ω.
Now ξ �= 0 and has only real components, so we observe
similar behavior to the case of critical damping except for the
expected faster rate of decay.
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B. Case n = 2

When the initial state is the second excited state of the
system, n = 2, the transition amplitudes are

cm(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(m−1)!!√
2m!

√
ξei(m+1/2)ωt

× (sinh (ξαt ))m/2

(cosh (ζ+ξαt ))(m+3)/2

×( mξ 2

sinh (ξαt ) − sinh (ξαt )
)

for m = 2k,

0 for m = 2k + 1,

(31)

which again satisfies the normalization condition∑
m |cm(t )|2 = 1, with the parameters ξ and ζ defined as

before.
In Figs. 3(a)–3(c), we plot |cm(t )|2 with m = 0, 2, 4, 6 for

the underdamped case (α < ω), the case of critical damping
(α = ω), and the overdamped case (α > ω), with ω = 1 and
α defined accordingly.

Figure 3(a) shows |cm(t )|2 for α = 0.75 < ω. As before,
we observe oscillations in the transition probabilities with pe-
riod π/|αξ | = π/

√
ω2 − α2. However, we observe “beating”

between α and ω in the modes m > n. This beating is not
present in the n = 0 case considered earlier.

As before, in the critically damped case ξ = 0, so follow-
ing Ref. [35] we expand around ξ = 0 to obtain

cm(t ) = (m − 1)!!√
2m!

ei(m+1/2)ωt
( m

ωt
− ωt

)

× (ωt )m/2

(1 + iωt )(m+3)/2 . (32)

In Fig. 3(b) we show the critically damped case with α = ω =
1. In this case it is the initially occupied m = 2 mode which
decreases monotonically, while the m = 0 mode increases
before decreasing.

In Fig. 3(c), we show the overdamped case α = 2 > ω. As
before, we observe qualitatively similar behavior to the critical
damping case, except for the expected greater rate of decay.

VI. EXAMPLES OF DRIVEN DAMPED HARMONIC
OSCILLATORS

As foreshadowed in the Introduction, this quantization of
the damped harmonic oscillator has many potential applica-
tions. In what follows, the quantization procedure is applied
to two of the simplest superconducting qubits, the phase qubit
and flux qubit, and provides an example of the application of
the quantization procedure in the case of a driven damped
harmonic oscillator. The coordinate of interest here is δ, the
phase of the current through the Josephson junction, and, as is
well known, the equations of motion for these qubits in terms
of this dynamical variable are determined through the use of
the resistively capacitance shunted junction model model and
Kirchhoff’s circuital laws and may be written

h̄C

2e

∂2δ

∂t2
+ h̄

2eR

∂δ

∂t
+ (I0 sin δ − I ) = 0, (33a)

h̄C

2e

∂2δ

∂t2
+ h̄

2eR

∂δ

∂t
+ I0 sin δ + h̄

2eL
(δ − δX ) = 0. (33b)

FIG. 3. For an initial state of |2, 0〉, we plot |cm(t )|2 for m =
0, 2, 4, 6 in (a) the underdamped case, (b) the critically damped case,
and (c) the overdamped case. All quantities are in natural units with
h̄ = 1.

Here, C and R are the capacitance and resistance of the cir-
cuit, respectively, and I0 is the critical current of the Josephson
junction. I is the current bias in the phase qubit, and L and δX

respectively the inductance and a dimensionless parameter for
the flux through the flux qubit. Neither Eq. (33a) nor Eq. (33b)
satisfies the second Helmholtz condition [Eq. (6b)]. Thus, in
both cases, we introduce the dimensionless time coordinate

τ = K exp
( t

CR

)
, (34)
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where K is a constant of integration [40], obtaining

( τ

CR

)2 d2δ

dτ 2
+ 2τ

C2R2

dδ

dτ
+ 2e

h̄C
(I0 sin δ − I ) = 0, (35a)

( τ

CR

)2 d2δ

dτ 2
+ 2τ

C2R2

dδ

dτ
+ 2e

h̄C
I0 sin δ + 1

LC
(δ − δX ) = 0,

(35b)

for the phase and flux qubits, respectively. We can define the
same canonical momentum π for each case,

π =
( τ

CR

)2
δ̇, (36)

and obtain Hamiltonians for each system. These are HP and
HF ,

HP = 1

2

[(CR

τ

)2

π2 − 4e

h̄C
(I0 cos δ + Iδ)

]
, (37a)

HF = 1

2

[(CR

τ

)2

π2 − 4e

h̄C
I0 cos δ + 1

LC

(
δ2 − 2δX δ

)]
,

(37b)

for the phase and flux qubit, respectively. Quantization is now
achieved through the standard method of promoting δ and
π to their corresponding self-adjoint operators satisfying the
commutator [δ̂, π̂ ] = ih̄. In the regime where δ̂ is small, we
use the series expansion

cos δ̂ ≈ 1 − 1

2
δ̂2 (38)

to write

ĤP = 1

2

[
1

α2
Pτ 2

π̂2 + 
2
P

(
δ̂2 − 2

I

I0
δ̂ − 2

)]
, (39a)

ĤF = 1

2

[
1

α2
F τ 2

π̂2 + 
2
F

(
δ̂2 − 2δX

LC
2
F

δ̂ − 2

2

P


2
F

)]
, (39b)

where we have defined

αP = αF = 1

CR
, (40a)


P =
√

2eI0

h̄C
, (40b)


F =
√


2
P + 1

LC
. (40c)

The translated operators

δ̂P = δ̂ − I

I0
, (41a)

δ̂F = δ̂ − δX

LC
2
F

, (41b)

obey the commutation relations [δ̂P, π̂ ] = [δ̂F , π̂ ] = ih̄. In
terms of these new canonically conjugate pairs, we obtain the

Hamiltonians

ĤP = 1

2

[
1

α2
Pτ 2

π̂2 + 
2
P δ̂2

P

]
−

(

2

P +
( I

I0

)2)
, (42a)

ĤF = 1

2

[
1

α2
Pτ 2

π̂2 + 
2
F δ̂2

F

]

−
(


2
P +

(
δX

LC
2
F

)2)
. (42b)

From our earlier results, the expectation values of the en-
ergy spectra Ē (P)

n (t ) and Ē (F )
n (t ) for each of the qubits are

Ē (P)
n (t ) = h̄
P

αPK
e−αPt

(
n + 1

2

)
−

(

2

P +
( I

I0

)2)
, (43a)

Ē (F )
n (t ) = h̄
F

αF K
e−αF t

(
n + 1

2

)
−

(

2

P +
(

δX

LC
2
F

)2)
.

(43b)

The associated conditions for critical damping are

R =
√

h̄

8eI0C
, (44a)

R =
√

h̄L

4C(2eI0L + h̄)
, (44b)

for the phase and flux qubits, respectively.

VII. CONCLUSIONS

We have proposed an alternative approach to the quan-
tization of driven and undriven linearly damped harmonic
oscillators via a change of time coordinate to produce classical
equations of motion that satisfy the Helmholtz conditions. The
resulting quantum model is qualitatively similar to previous
approaches, such as Refs. [19,35], since we predict the ex-
pectation values of the energy eigenvalues to obey an equally
spaced ladder decaying at a rate given by exp(−2αt ). How-
ever, unlike Ref. [35], the result of our quantization predicts
a critical damping parameter α = ω, which is the same as
for an equivalent classical oscillator. Thus, our quantization
is unique in that it recovers the correspondence principle in
this respect.

We have shown that a system initially in a single eigenstate
has a nonzero probability to transition to a different eigenstate
of the same parity. Additionally, for systems initially in the
second excited state, the quantization predicts different dy-
namics and the presence of beating when α < ω, vanishing at
the point of critical damping. These transition rates are of par-
ticular relevance to modeling the control of superconducting
quantum circuits. Indeed, the expectation values of the energy
eigenvalues and the critical damping points have been found
for the cases of the simplest phase and flux qubits.

Importantly, this new quantization method for the damped
harmonic oscillator requires only a single classical dynami-
cal variable and is therefore easily generalized. In particular,
this approach should also be applicable to systems with
time-dependent damping α(t ), in which case the constraint
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equation for τ becomes(
d2τ

dt2

)
+ 2α(t )

dτ

dt
= d

dτ

[(
dτ

dt

)2]
, (45)

which will admit different solutions depending upon the func-
tional form of α.
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