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Dimension-dependent noncontextuality inequalities with large contexts
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Quantum theory shows a striking nonclassical feature of contextuality, which is also a crucial resource
for quantum information processing. In this paper, we study the dependence of violating noncontextuality
inequalities against the dimension of quantum systems. To this end, we consider the restrictions imposed
on relations among measurements by limitation of dimensions. Based on the graph-theoretic approach to
quantum contextuality, we construct noncontextuality inequalities using multiple mutually orthogonal projectors
which are unique to high-dimensional quantum systems. We report two typical classes of dimension-dependent
noncontextuality inequalities for one of which a violation implies the dimension of the quantum system is
higher than a threshold, and for the other, different amounts of violations correspond to different thresholds
of dimension. Our paper is expected to inspire more dimension-dependent noncontextuality inequalities.

DOI: 10.1103/PhysRevA.104.032208

I. INTRODUCTION

Contextuality is a striking feature of quantum theory (QT)
[1,2] and is being recognized as the crucial resource for vari-
ous quantum information processes [3–7]. Since contextuality
was originally proposed [8], physicists have spent decades
to test it using fewer measurements and lower-dimensional
system [1,2]. This goal was accomplished by a contextutal-
ity experiment using a three-dimensional system [9,10] and
further investigated with two-level systems but in different
scenarios [11–14]. In this paper, we investigate an interesting
and seemingly opposite target that is to test contextuality us-
ing higher-dimensional systems. More precisely, we focus on
the contextuality that can be tested only by the system with a
dimension higher than a threshold, i.e., dimension-dependent
contextuality.

An efficient method for testing contextuality in an exper-
iment is testing noncontextuality (NC) inequalities [2]. In
these contextuality experiments, a set of measurements are
implemented in different contexts where a context is the joint
measurement of a subset of measurements that are jointly
measurable. After that, measurement statistics show contex-
tuality by a violation of the NC inequality of which the bound
is predicted by NC hidden variable (NCHV) theory.

The violations of NC inequalities always depend on the
dimension of the quantum system [15–18]. For example, the
Klyachko-Can-Binicioǧlu-Shumovsky (KCBS) inequality [9]
can only be violated by a system with dimension, at least, 3.
Moreover, multipartite nonlocality inequalities [19] are NC
inequalities that can be violated by a special high-dimensional
system when considering locality as a special case of NC
[20,21]. In 2014, Gühne et al., showed that the NC inequality
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can be used to witness the lower bounds on the dimension of
a quantum system accessed by the measurements [15].

To single out new NC inequalities, Cabello, Severini, and
Winter (CSW) proposed a modern and elegant approach based
on graph theory [22]. CSW approach associates an exclu-
sive graph to a contextuality experiment and then addresses
the issue of NC inequality using graph properties. Based on
CSW approach, Ray et al., developed the idea in Ref. [15]
and presented a numerical method to calculate the maximum
violation of NC inequality in a certain dimensional quantum
system [18].

In this paper, we study the relation between the violation
of NC inequality and the dimension of a quantum system.
We consider a situation where the finite system dimensions
impose additional restrictions on the relationship between
measurements. As examples, we consider NC inequalities
with large contexts by introducing a basic property of high-
dimensional systems that is the existence of multiple mutually
orthogonal states. Within those examples, we analyze two
typical dimension-dependent classes of NC inequalities.

This paper is organized as follows. Section II introduces
the CSW approach to contextuality. In Sec. III, we discuss
the effect of dimension restriction on the violation of NC
inequality. In Sec. IV, we analysis analyze some examples of
dimension-dependent NC inequalities. All results are summa-
rized and discussed in Sec. V.

II. CSW APPROACH TO NC INEQUALITY

In a contextuality experiment, measurements are ideal
and each measurement Mj is compatible (jointly measur-
able) with some other measurements Mk , i.e., p(a j |Mj ) =∑

ak
p(a j, ak|Mj, Mk ). As in Ref. [18], a measurement is

ideal when it yields the same outcome when repeated on the
same physical system and does not disturb any compatible
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observable. In this paper, we consider a special but widely
considered case where each measurement has two outcomes
a j ∈ {0, 1}, and two events e j = (1|Mj ) and ek = (1|Mk ) of
obtaining outcome 1 for two measurements Mj and Mk are
exclusive if the two measurements are jointly measurable. In
QT, such measurements can be realized as projective (sharp)
measurements, Mj = |ψ j〉〈ψ j |, and two measurements Mj and
Mk are jointly measurable if and only if 〈ψ j | ψk〉 = 0. With
these measurements, contextuality correlation is quantified
as a positive linear combination of probabilities of events
e j = (1|Mj ),

S =
∑

j

p(e j ),

where we consider weights of all events as 1 [22].
Given a set of events {e j} with certain exclusive relation,

CSW associates an exclusivity graph G to these events [22]. In
this graph G, each vertex j ∈ V (G) represents the event e j and
two vertices are adjacent, { j, k} ∈ E (G) if two corresponding
events e j and ek are exclusive. The maximum value of S
predicted by NCHV theory is the independence number α(G)
of the graph [22], which gives the NC inequality as

S
NCHV
� α(G). (1)

Here, the independence number α(G) is simply the maximum
order of all sets of nonadjacent vertices of G.

In QT, the maximum value of S is exactly the Lovász

theta of graph ϑ (G), S
QT
�ϑ (G) [22,23]. The Lovász theta

ϑ (G) can be exactly achieved by QT [18,22] implies that
ϑ (G) = max(SQ) with SQ = ∑

i∈V (G) |〈φ | ψi〉|2, where the
maximization is over all normalized pure states |φ〉 and |ψi〉
and subject to the orthogonal restriction represented by G that
〈ψ j | ψk〉 = 0 for all { j, k} ∈ E (G). Moreover, for arbitrary
graph G, there is a sandwich relation [22] α(G) � ϑ (G) �
α∗(G), where α∗(G) is the fractional packing number defined
as α∗(G) = max

∑
i∈V (G) pi where the maximization subject

to the restriction that sum of probabilities of events within
arbitrary clique is no larger than 1.

Through the CSW approach, singling out a NC inequality
is to construct a graph G that satisfies ϑ (G) > α(G). Follow-
ing Ref. [24], we call these graphs quantum contextual graphs
(QCG).

It is not difficult to find a QCG [24,25]. For example, any
graph with a noninteger Lovász theta is a QCG since the
independence number is always an integer α(G) � �ϑ (G)�.
What is difficult is to construct a QCG for specific demands,
e.g., a graph with a large ratio of Lovász theta to independence
number [26]. This difficulty is partially due to that the number
of graphs grows exponentially with the order of graphs and
computing the independence number of an arbitrary graph is
nondeterministic polynomial (NP) complete.

III. DIMENSION-DEPENDENT NC INEQUALITY

During the calculation of Lovász theta, one does not
impose any restriction to the dimension of states. When a
dimensional restriction is imposed, the maximum value of
SQ might be less than ϑ (G). A simple example is that the
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FIG. 1. Exclusive graph for the KCBS inequality C5 (left) and
the graph K2 ∨ C5 (right).

maximum value of SQ in the KCBS inequality is 2 with a
two-dimensional system.

It is defined as rank-constrained Lovász theta ϑd (G) that
the maximum value of SQ one can obtain from an experi-
ment using d-dimensional quantum system [18]. For d ′ > d ,
the d-dimensional quantum system is a subsystem of the
d ′-dimensional one, so the rank-constrained Lovász theta sat-
isfies ϑd (G) � ϑd ′

(G) � ϑ (G).
Given a graph G with the rank-constrained Lovász theta

as ϑd (G) > ϑd−1(G), the corresponding NC inequality is
a dimension-dependent one. We call these graphs d-QCG.
Given a graph that is d-QCG, once one obtains a value S >

ϑd−1(G), the experimental system is contextual, and if the
system is quantum its dimension is, at least, d (Noting that
there are theories that are contextual but not quantum [27,28]).
For example, C5 is a d-QCG if and only if d = 3. Therefore, a
dimension-dependent NC inequality simultaneously provides
a contextuality sensor and a quantum dimension witness [18].

It is to be noted that when calculating rank-constrained
Lovász theta, the states should not be restricted to nonzero
ones. Otherwise, the NC inequality corresponding to the graph
Kn ∨ C5, which is the join of graphs Kn and C5, would be
a trivial dimension-dependent one. For example, the graph
K2 ∨ C5 as shown in Fig. 1 has the same independence number
and Lovász theta as these of C5. If all states are required
to be nonzero, a system that realizes these measurements
has a dimension, at least, 4. However, using the same three-
dimensional states |φ〉 and |ψi〉 for i ∈ [0 · · · 4] as those for
the maximum violation of KCBS inequality and choosing
|ψ5〉 = |ψ6〉 = 0, the maximum violation is obtained. These
zero states correspond to null measurements that extract no
information from the system.

Given a set of d-dimensional quantum states |ψi〉 for i ∈
V (G), with 〈ψi | ψi〉 = 0, 1, we call it a d-dimensional quan-
tum representation (d-DQR) of graph G if those states satisfy
the orthogonal restriction 〈ψi|ψ j〉 = 0 for all adjacent vertices
{i, j} ∈ E (G).

With limited dimension, choosing a d-DQR of a graph
might introduce additional restrictions to the states other than
the orthogonal restriction by the graph. A typical situation is
that some of the states must be chosen as zero ones. In this
case, the nonzero states is a d-DQR of graph H , where H is
a subgraph of G induced by the vertices that corresponding to
nonzero states. Therefore, we have SQ � ϑd (H ). We call such
a graph H as the nonzero graph of the d-DQR of G. Another
situation is that some states corresponding to nonadjacent
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vertices being orthogonal. In this case, let us associate an
orthogonal graph Go to these states as each vertex represents
a state and two vertices are adjacent if two corresponding
states are orthogonal. Therefore, we have V (Go) = V (G) and
E (G) ⊆ E (Go) due to these states are the d-DQR of graph
G. Since these states are also a d-DQR of Go, we have SQ �
ϑd (Go). Therefore, we have the following theorem.

Theorem 1. Given a graph G, the rank-constrained Lovász
theta satisfies that

ϑd (G) � max
H

[ϑd (H )] � max
H

[ϑ (H )], (2)

and

ϑd (G) � max
Go

[ϑd (Go)] � max
Go

[ϑ (Go)],

where the maximization maxH is over all nonzero graphs of
all d-DQR of G, and the maximization maxGo is over all
orthogonal graphs of d-DQR of G.

This theorem provides a way to estimate the upper bound
of rank-constrained Lovász theta ϑd (G) through Lovász theta
ϑ (H ). Moreover, these graphs H and Go have the following
properties.

Lemma 1. (i) If Go is a graph with V (Go) = V (G) and
E (G) ⊆ E (Go), then ϑd (Go) � ϑd (G) and ϑ (Go) � ϑ (G).
(ii) If H is an induced subgraph of G, then ϑd (H ) � ϑd (G)
and ϑ (H ) � ϑ (G).

Proof. (i) Since states E (G) ⊆ E (Go), every state satisfies
the orthogonal restriction of graph Go must also satisfy the
orthogonal restriction of graph G but not vice versa. Hence,
ϑd (Go) � ϑd (G) and ϑ (Go) � ϑ (G).

(ii) For rank-constrained Lovász theta, suppose ϑd (H ) =∑
i∈V (H ) |〈φ′ | ψ ′

i 〉|2, where the d-dimensional states |φ′〉 and
|ψ ′

i 〉 are d-DQR of graph H . One can construct a set of states
|ψ ′′

i 〉 for i ∈ V (G) as |ψ ′′
i 〉 = |ψ ′

i 〉 for i ∈ V (H ) and |ψ ′′
i 〉 =

0 for i /∈ V (H ). These states |ψ ′′
i 〉 are d-DQR of graph G.

Therefore, the rank-constrained Lovász theta of G is ϑd (G) �∑
i∈V (G) |〈φ′ | ψ ′′

i 〉|2 = ∑
i∈V (H ) |〈φ′ | ψ ′

i 〉|2 = ϑd (H ).
For the Lovász theta, the proof is similar, where the new

states |ψ ′′〉 for i /∈ V (H ) are chosen as 〈φ | ψi〉 = 0 and 〈ψ j |
ψi〉 = 0 for all j ∈ V (H ). This choice is always possible be-
cause the dimension of state can be arbitrarily high. �

For a special case that α(H ) = α(G), Lemma 1 implies that
if the NC inequality corresponding to H can be violated by a
d-dimensional system, then the NC inequality corresponding
to G can also be violated by the system.

IV. EXAMPLES

A. Exclusive graphs with higher-order cliques

A critical feature of high-dimensional system is the exis-
tence of multiple mutually orthogonal states, which implies
the existence of high-order sets of mutually exclusive events.
The exclusive graph for a set of mutually exclusive events
is a complete graph. Here, we consider dimension-dependent
NC inequalities with exclusive graphs have subgraphs as high-
order complete graphs, i.e., high-order cliques.

Let us consider a special set of graphs Gc,s
n of which each

graph has n vertices, and each vertex is included by s maxi-
mum cliques of order c. For example, C5 ∈ G2,2

5 . It is easy to
see that a graph G ∈ Gc,s

n has ns/c maximum cliques in total.

Theorem 2. Given a graph G ∈ Gc,s
n , (i) α(G) � �n/c�; (ii)

α∗(G) = n/c.
Proof. (i) Given an independent vertex set Iv (G) ⊆ V (G)

with elements that are mutually nonadjacent vertices, one can
construct a corresponding maximum clique set Ic(G) ⊆ C(G)
with the elements are all the maximum cliques that include
a vertex in Iv (G). Since each vertex is shared by s maximum
cliques, a vertex in Iv (G) corresponds to s elements in Ic(G).
Moreover, two nonadjacent vertices cannot share any clique,
so a set Iv (G) of order |Iv (G)| implies that the set Ic(G)
is on the order of |Ic(G)| = s|Iv (G)|. Since there are ns/c
maximum cliques in total, the order of the independent set sat-
isfies |Iv (G)| = |Ic(G)|/s � (ns/c)/s = n/c. Since |Iv (G)| is
an integer, the independence number α(G) = max |Iv (G)| �
�n/c�.

(ii) Assuming sums of probabilities of events in all max-
imum cliques are 1. The sum of these probabilities of all
maximum cliques is ns/c where the probabilities of each
vertex is counted for s times. Hence, the fractional packing
number is α∗(G) = n/c. �

Theorem 2 does not predict any QCG since the lack of the
Lovász theta, which is usually calculated through semidefinite
programming (SDP). Whereas, the fractional packing num-
ber provides an upper bound of the Lovász theta, ϑ (G) �
α∗(G). Thus, this excludes those graphs with α(G) = α∗(G)
as a QCG.

For concrete examples, let us consider a kind of circu-
lant graphs Cic

n with c � �n/2� − 1, which have n vertices
in [0 · · · n − 1] and each vertex i is adjacent to vertices j =
(i ± l ) for all l ∈ [1 · · · c − 1]. For the sake of simplicity, we
omit the subscript of the module in the following.

It is easy to verify that Cic
n ∈ Gc,c

n . Moreover, the indepen-
dence number is �n/c� since one can choose an independent
set with vertices lc for l ∈ [0 · · · �n/c� − 1] and the upper
bound in Theorem 2. According to Theorem 2, we have
α∗(Cic

n) = n/c. We have numerically calculated the Lovász
theta of some of these graphs for c ∈ [2 · · · 6] except those
with (n/c) /∈ Z. The numerical results are shown in Table I.
Interestingly, all these graphs are QCGs.

We now discuss two typical classes of these graphs and
analyze the relation between the violation of corresponding
NC inequalities and the dimension of quantum systems.

B. Typical example 1: Cic
2c+1.

These graphs Cic
2c+1 as shown in Fig. 2 have been

well studied as QCGs [24]. The independence number is
α(Cic

2c+1) = 2. The Lovász theta is ϑ (Cic
2c+1) =

1+cos[π/(2c+1)]
cos[π/(2c+1)] , which can be obtained through the well-known

Lovász theta of cyclic graphs C2c+1, which are complementary
graphs of Cic

2c+1 [29], and a theorem of Lovász theta [23,24].
Let us consider the rank-constrained Lovász theta of

graphs Cic
2c+1. A coarse result is that ϑc−1(Cic

2c+1) = 2 ac-
cording to Theorem 1. We are not going to prove this
result because a tighter one was proved in Ref. [24] that
is ϑ�(4c+2)/3�−1(Cic

2c+1) = 2. Here, we improve the result
through a constructive manner.

Lemma 2. ϑ2c−2(Cic
2c+1) = 2.

Proof. Let d-dimensional quantum states |φ〉 and |ψi〉 for
i ∈ [0 · · · 2c] being a d-DQR of graph Cic

2c+1, so states |ψ(i+l )〉
for l ∈ [0 · · · c − 1] are mutually orthogonal.
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TABLE I. The Lovász theta ϑ for graphs Cic
n. Here, the independence number is �ϑ�.

n 5 7 9 11 13 15 17
c = 2

ϑ 2.2361 3.3177 4.3601 5.3863 6.4042 7.4171 8.4270
n 7 8 10 11 13 14 16

c = 3
ϑ 2.1099 2.3431 3.1672 3.4518 4.2011 4.5055 5.2235
n 9 10 11 13 14 15 17

c = 4
ϑ 2.0642 2.2361 2.4082 3.1060 3.3177 3.5294 4.1329
n 11 12 13 14 16 17 18

c = 5
ϑ 2.0422 2.1436 2.2877 2.4535 3.0744 3.2134 3.3867
n 13 14 15 16 17 19 20

c = 6
ϑ 2.0299 2.1099 2.2361 2.3431 2.4875 3.0556 3.1672

Let us first show the statement: (S1) if SQ > 2, then 〈ψi |
ψ(i+c)〉 �= 0.

Suppose that 〈ψi | ψ(i+c)〉 = 0, we have SQ < ϑ (Go) with
Go a graph V (Go) = V (G) and E (Go) = E (G) ∪ {i, i + c}.
The graph Go can be separated into two cliques with vertices
{(i + l ): l ∈ [0 · · · c]} and {(i + c + l ′): l ′ ∈ [0 · · · c − 1]}, so
ϑ (Go) = 2, which contradicts with that SQ > 2. Hence, state-
ment (S1) is true.

Statement (S1) can be rephrased as following: (S1′) If SQ >

2, then 〈ψi | ψc+ j〉 = 0 if j �= i, i + 1, and 〈ψi | ψc+ j〉 �= 0 if
j = i, i + 1, where i, j ∈ [0 · · · c − 1]. In the following, we
show another statement: (S2) Given states ψi that satisfy the
inner products as (S1′), one can always construct (2c − 1)
mutually orthogonal states from linear combination of those
states. When the statement (S2) is true, these state must have
dimension no less then (2c − 1), which proves the lemma.

Since 〈ψ0 | ψc〉 �= 0, we can denote state |ψc〉 as |ψc〉 =
β0|ψ0〉 + η0|s0〉 with nonzero state |s0〉 that satisfies 〈ψ0 |
s0〉 = 0, where β0 �= 0. As the inner product 〈ψc+1 | ψc〉 =
β0〈ψc+1 | ψ0〉 + η0〈ψc+1 | s0〉 = 0 and β0〈ψc+1 | ψ0〉 �= 0,
we have η0 �= 0 and 〈ψc+1 | s0〉 �= 0. Moreover, for i ∈
[1 · · · c − 1], we have 〈ψi | ψc〉 = η0〈ψi | s0〉 = 0. Noting
that 〈ψ0 | s0〉 = 0, so 〈ψi | s0〉 = 0 for i ∈ [0 · · · c − 1].

The result that η0 �= 0 implies that we can obtain state |s0〉
from linear combination (Gram-Schmidt orthonormalization)
of |ψ0〉 and |ψc〉. As 〈ψi | s0〉 = 0 for i ∈ [0 · · · c − 1], we
obtain (c + 1) mutually orthogonal states that are |ψi〉 for
i ∈ [0 · · · c − 1] and |s0〉. Therefore, statement (S2) is true for
c = 2.

For c � 3, we have 〈ψc+k | ψc〉 = η0〈ψc+k | s0〉 = 0 for
k ∈ [2 · · · c − 1]. Since η0 �= 0, we have 〈ψc+k | s0〉 = 0 for
k ∈ [2 · · · c − 1].
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FIG. 2. Graphs Cic
2c+1 with c = 3 (left) and c = 4 (right).

Since 〈ψ0 | ψc+1〉 �= 0, 〈ψ1 | ψc+1〉 �= 0, and 〈s0|ψc+1〉 �=
0, we can denote state |ψc+1〉 as |ψc+1〉 = α1|ψ0〉 + β1|ψ1〉 +
γ1|s0〉 + η1|s1〉 with a nonzero state |s1〉 that satisfies
〈ψ0 | s1〉 = 〈ψ1 | s1〉 = 〈s0 | s1〉 = 0, where α1, β1, γ1 �= 0.
As 〈ψc+2 | ψc+1〉 = β1〈ψc+2 | ψ1〉 + η1〈ψc+2 | s1〉 = 0 and
β1〈ψc+2 | ψ1〉 �= 0, we have η1 �= 0 and 〈ψc+2 | s1〉 �= 0. For
i ∈ [2 · · · c − 1], we have 〈ψi | ψc+1〉 = η1〈ψi | s1〉 = 0. Con-
sidering that 〈ψ0 | s1〉 = 〈ψ1 | s1〉 = 0, we have 〈ψi | s1〉 = 0
for i ∈ [0 · · · c − 1].

Since the results that 〈s0 | s1〉 = 0, η1 �= 0, and 〈ψi|s1〉 =
0 for i ∈ [0 · · · c − 1], we can obtain (c + 2) mutually orthog-
onal states that are |ψi〉 for i ∈ [0 · · · c − 1], |s0〉, and |s1〉.
Therefore, statement (S2) is true for c = 3.

For c � 4, we have 〈ψc+k | ψc+1〉 = η1〈ψc+k | s1〉 for k ∈
[3 · · · c − 1]. Since η1 �= 0, we have 〈ψc+k | s1〉 = 0 for k ∈
[3 · · · c − 1].

In the following, we show this statement: (S3) For all
j ∈ [1 · · · c − 2], states |ψc+ j〉 can be denoted as |ψc+ j〉 =
α j |ψ j−1〉 + β j |ψ j〉 + γ j |s j−1〉 + η j |s j〉 with α j, β j, γ j, η j �=
0, 〈ψ j+1 | s j〉 �= 0, and 〈ψi | s j〉 = 〈s j′ | s j〉 = 0 for i ∈
[0 · · · c − 1] and j′ ∈ [0 · · · j − 1]; moreover, if j � c − 3,
then 〈ψc+k | s j〉 = 0, k ∈ [ j + 2 · · · c − 1].

It has been shown that statement (S3) is true for
j = 1. Assuming that (S3) is true for m ∈ [0 · · · c − 3],
we have 〈ψc | ψc+m+1〉 �= 0, 〈ψc+1 | ψc+m+1〉 �= 0, and
〈sm | ψc+m+1〉 �= 0. Therefore, we can denote state |ψc+m+1〉
as |ψc+m+1〉 = αm+1|ψm〉 + βm+1|ψm+1〉 + γm+1|sm〉 +
ηm+1|sm+1〉 with a nonzero state |sm+1〉 that satisfies
〈ψm | sm+1〉 = 〈ψm+1 | sm+1〉 = 〈sm | sm+1〉 = 0, where
αm+1, βm+1, γm+1 �= 0. Due to 〈ψc+m+2 | ψc+m+1〉 =
βm+1〈ψc+m+2 | ψm+1〉 + ηm+1〈ψc+m+2 | sm+1〉 = 0 and
βm+1〈ψc+m+2 | ψm+1〉 �= 0, we have ηm+1 �= 0 and
〈ψc+m+2 | sm+1〉 �= 0. For i ∈ [0 · · · c − 1] and i �= m, m + 1,
we have 〈ψi | ψc+m+1〉 = ηm+1〈ψi | sm+1〉 = 0. Consid-
ering that 〈ψm | sm+1〉 = 〈ψm+1 | sm+1〉 = 0, we have
〈ψi | sm+1〉 = 0 for i ∈ [0 · · · c − 1]. For j′ ∈ [0, m − 1], we
have 〈s j′ | ψm+1〉 = ηm+1〈s j′ | sm+1〉 = 0. Considering that
〈sm | sm+1〉 = 0, we have 〈ψ j′ | sm+1〉 = 0 for j′ ∈ [0 · · · m].
Moreover, if m + 1 � c − 3 since 〈ψc+k | ψc+m+1〉 =
ηm+1〈ψc+k | sm+1〉 for k ∈ [m + 2 · · · c − 1] and ηm+1 �= 0,
we have 〈ψc+k | sm+1〉 = 0 for k ∈ [m + 2 · · · c − 1].
Therefore, statement (S3) is true.

Since statement (S3) is true, one can obtain (2c − 1) mutu-
ally orthogonal states that are |ψi〉 for i ∈ [0 · · · c − 1] and |s j〉
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FIG. 3. Graphs Cic
3c−1 with c = 3 (left) and c = 4 (right).

for j ∈ [0 · · · c − 2]. Therefore, statement (S2) is true, which
proves the Lemma. �

We have numerically calculated the rank-constrained
Lovász theta ϑ2c−1(Cic

2c+1) for c ∈ [2 · · · 11]. To calculate
rank-constrained Lovász theta requires rank-constrained SDP,
which is NP-hard problems. We adopt the heuristic approach
proposed by Ray et al., which iteratively solve two SDPs with
one to satisfy all the Lovász theta SDP condition and the
other restricts the rank of the solution [18]. The calculation
shows that ϑ2c−1(Cic

2c+1) = ϑ (Cic
2c+1) for c ∈ [2 · · · 11]. The

numerical results and Lemma 5 suggest the following result.
Result 1. For graphs Cic

2c+1, (i) Cic
2c+1 is not a d-QCG for

d � 2c − 2; (ii) at least, for c ∈ [2 · ·11], Cic
2c+1 is a d-QCG

if and only if d = 2c − 1.
It remains an open question whether the statement (ii)

of Result 1 is true for arbitrary large c. Numerically, when
calculate ϑ21(Ci11

23 ), the heuristic method successfully gives
the valid result 12 times during 1000 iterations.

C. Special example 2: Cic
3c−1.

These graphs Cic
3c−1 as shown in Fig. 3 have the

same independence number 2 as that of graphs Cic
2c+1,

but a larger fractional packing number α∗(Cic
3c−1) = 2 +

(c − 1)/c for c � 3, which, in principle, allows larger
violations.

These graphs Cic
3c−1 for c � 2 are QCG. This is because for

c � 2, the graph Ci(c−1)
3(c−1)−1 is an induced subgraph of Cic

3c−1
by removing the vertices vc−1, v2c−1, and v3c−2. Therefore,
for c < c′, graph Cic

3c−1 is an induced subgraph of Cic′
3c′−1. Ac-

cording to Lemma 1, graphs Cic
3c−1 are QCG with maximum

quantum values as ϑ (Cic
2c+1) � ϑ (Cic−1

2(c−1)+1) and ϑ (Ci2
5 ) =√

5. Moreover, for arbitrary c and c′ � c if Cic
3c−1 is violated

with the d-dimensional system, Cic′
3c′−1 can also be violated

by the d-dimensional system with an amount of violation no
less than that of Cic

3c−1.
Let us consider the rank-constrained Lovász theta of

graph Ci3
8.

Lemma 3. For graph Ci3
8, ϑ3(Ci3

8 ) = ϑ3(C5), ϑ4(Ci3
8 ) �

ϑ4(Ci3
8 − v j ) � ϑ (Ci3

8 − v j ), where graph Ci3
8 − v j is the in-

duced subgraph of Ci3
8 by removing a vertex v j .

Proof. Given states |ψi〉 that are the d-DQR of graph Ci3
8,

let us consider the orthogonal graph Go of these states in three
cases.

(C1) Graph Go has no induced subgraph as C5. Accord-
ing to the necessary condition of QCG in Ref. [24], that if

ϑ (Go) > 2 the graph Go must have an induced subgraph cyclic
graph with odd vertices, we have ϑ2(Ci3

8 ) = 2. Therefore,
according to Theorem 1, ϑd (G) = 2 if these d-DQRs only
allow the orthogonal graph as (C1).

(C2) Go has an induced subgraph as C5. In this case, it is
well known that the dimension of state is, at least, 3. Consid-
ering the result of (C1), we have ϑ2(G) = 2.

(C3) Go has an induced subgraph as C5, and one of the
states that corresponds to vertices not in the C5 is nonzero.
In the following, without loss of generality, let us denote
the induced subgraph C5 as the one that includes vertices
{0, 1, 3, 4, 6}. If |ψ2〉 is nonzero, states |ψ0〉–|ψ2〉 are mutu-
ally orthogonal. Therefore, state |ψ3〉 = α3|ψ0〉 + β3|x3〉 with
〈ψ0 | x3〉 = 〈ψ1 | x3〉 = 〈ψ2 | x3〉 = 0 and β3 �= 0. Hence, the
dimension of states is, at least, 4. For other cases |ψ5〉 or |ψ7〉
is nonzeros, the result is also true. Therefore, according to
Theorem 1, we have ϑ3(Ci3

8 ) � ϑ3(C5). Considering Lemma
1, which is ϑ3(Ci3

8 ) � ϑ3(C5), we have ϑ3(Ci3
8 ) = ϑ3(C5).

(C4) Go has an induced subgraph as C5 and all states
are nonzero. Let us assume that the dimension of states
is 4. One can denote state |ψ3〉 = α3|ψ0〉 + β3|x3〉 with
nonzero α3 and β3. For i ∈ [4 · · · 7], we can denote |xi〉 =
β∗

i−1|ψi−4〉 − α∗
i−1|xi−1〉 and |ψi〉 = αi|ψi−3〉 + βi|xi〉. In this

case, we have 〈ψi− j | xi〉 = 0 for i ∈ [3 · · · 7] and j ∈
[1 · · · 3]. With this notation, let us consider three in-
ner products 〈ψ0 | ψ6〉 = α6〈0 | ψ3〉 + β6〈0 | x5〉 = 0, 〈ψ1 |
ψ7〉 = α7〈1 | ψ4〉 + β7〈1 | x6〉 = 0, and 〈ψ0 | ψ7〉 = α7〈0 |
ψ4〉 + β7〈0 | x6〉 = 0. From the first two equalities, we
got β6 = −α6〈0 | ψ3〉/〈0 | x5〉 and β7 = −α7〈1 | ψ4〉/〈1 |
x6〉. Substituting those two into the third equality and eval-
uates the inner products finally gives |α5|2|β3|2 + |α3|2 = 0,
which contradicts with that α3 is nonzero. Therefore, such
states must have dimension, at least, 5. In other words, a
4-DQR of graph Ci3

8 must include, at least, one zero state.
According to Theorem 1, we have ϑ4(Ci3

8 ) � ϑ4(Ci3
8 − v j ) �

ϑ (Ci3
8 − v j ). �

Through numerical calculation, we have ϑ (Ci3
8 − v j ) =

2.2361 ≈ √
5 and ϑ5(Ci3

8 ) = 2.3431 = ϑ (Ci3
8 ). Therefore,

according to Theorem 3, we have the following result.
Result 2. For c = 3, graph Cic

3c−1 is d-QCG if and only if
d = 3, 5.

For large c, it is interesting to investigate whether Result 2
can be generalized as that graph Cic

3c−1 is d-QCG if and only
if d = 2e − 1 with e ∈ [2 · · · c]. We have numerically cal-
culated the rank-constrained Lovász theta for c = [2 · · · 11].
The numerical results show ϑ2c(Cic′

3c′−1) = ϑ2c−1(Cic′
3c′−1) =

ϑ (Cic
3c−1) for c′ � c, which support this conjecture.

V. CONCLUSION AND DISCUSSION

To summarize, we study the relation between the viola-
tion of the noncontextuality inequality and the dimension
of quantum systems. We evaluate the upper bound of rank-
constrained Lovász theta ϑd of a graph through the Lovász
theta of graphs corresponding to d-DQR of that graph. As
examples, we consider two typical kinds of NC inequalities,
for one of which, the violation provides a witness of a di-
mension, for the other one, different amounts of violations
provide witnesses of different dimensions. Our paper fulfills
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the knowledge about quantum contextuality, and the method
might inspire further investigations of the dimension depen-
dence of NC inequalities.

In order to produce better witness of dimension d , graphs
that are d-QCG should have the properties with larger ratio
ϑd/ϑd−1. A limitation of our examples is that such ratio is
small, especially for large d . This limitation also exists for the
graphs in Ref. [18]. We expect that better graphs might be sin-

gled out within future NC inequalities with larger violations
[18,26,30].
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[16] P. Kurzyński and D. Kaszlikowski, Contextuality of almost all
qutrit states can be revealed with nine observables, Phys. Rev.
A 86, 042125 (2012).

[17] A. Cabello, Specker’s fundamental principle of quantum me-
chanics, arXiv:1212.1756.

[18] M. Ray, N. G. Boddu, K. Bharti, L.-C. Kwek, and A. Cabello,
Graph-theoretic approach to dimension witnessing, New J.
Phys. 23, 033006 (2021).

[19] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[20] A. Fine, Hidden Variables, Joint Probability, and the Bell In-
equalities, Phys. Rev. Lett. 48, 291 (1982).

[21] S. Abramsky and A. Brandenburger, The sheaf-theoretic struc-
ture of non-locality and contextuality, New J. Phys. 13, 113036
(2011).

[22] A. Cabello, S. Severini, and A. Winter, Graph-Theoretic Ap-
proach to Quantum Correlations, Phys. Rev. Lett. 112, 040401
(2014).

[23] L. Lovasz, On the Shannon capacity of a graph, IEEE Trans.
Inf. Theory 25, 1 (1979).

[24] A. Cabello, L. E. Danielsen, A. J. López-Tarrida, and J. R.
Portillo, Basic exclusivity graphs in quantum correlations, Phys.
Rev. A 88, 032104 (2013).

[25] Z.-P. Xu and A. Cabello, Necessary and sufficient condition for
contextuality from incompatibility, Phys. Rev. A 99, 020103(R)
(2019).

[26] B. Amaral, M. T. Cunha, and A. Cabello, Quantum theory
allows for absolute maximal contextuality, Phys. Rev. A 92,
062125 (2015).

[27] A. Cabello, S. Severini, and A. Winter, (non-)contextuality of
physical theories as an axiom, arXiv:1010.2163.

[28] R. Ramanathan, A. Soeda, P. Kurzyński, and D. Kaszlikowski,
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