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Solvable class of non-Markovian quantum multipartite dynamics
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We study a class of multipartite open quantum dynamics for systems with an arbitrary number of qubits.
The non-Markovian quantum master equation can involve arbitrary single or multipartite and time-dependent
dissipative coupling mechanisms, expressed in terms of strings of Pauli operators. We formulate the general
constraints that guarantee the complete positivity of this dynamics. We characterize in detail the underlying
mechanisms that lead to memory effects, together with properties of the dynamics encoded in the associated
system rates. We specifically derive multipartite “eternal” non-Markovian master equations that we term hy-
perbolic and trigonometric due to the time dependence of their rates. For these models we identify a transition
between positive and periodically divergent rates. We also study non-Markovian effects through an operational
(measurement-based) memory witness approach.
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I. INTRODUCTION

In the theory of open quantum systems, the formulation
of quantum Markovian master equations is completely deter-
mined by the theory of quantum semigroups [1]. In contrast,
the study of non-Markovian memory effects presents two
problems. The first one is that the most general structure of a
quantum master equation that captures memory effects and at
the same time is consistent with the completely positive (CP)
condition of the solution map [2–4] is not known. The second
one is that different inequivalent memory witnesses can be
used to define and measure non-Markovian effects [5,6].

The first problem has been known for many years. In fact,
arbitrary non-Markovian quantum master equations may lead
to unphysical solutions [7–10] in which the average state (the
density matrix) is not positive definite. For tackling this issue
a broad class of phenomenological and theoretical approaches
has been formulated [3], dealing with both time-convoluted
and convolutionless master equations [11]. Examples include
the dynamics induced by stochastic Hamiltonians defined
by nonwhite noises [12], phenomenological single-memory
kernels [13–16], interaction with incoherent degrees of free-
dom [17–22] and arbitrary ancilla systems [23,24], related
quantum collisional models [25–32], quantum generalizations
of semi-Markov processes [33,34], and random (convex) su-
perpositions of unitary and unital maps [35–37], together with
some exact derivations from underlying (microscopic or effec-
tive) unitary dynamics [38–46].

Despite these advances [7–46] most studies of non-
Markovian evolutions are restricted in general to single or
bipartite systems. In fact, in general checking the CP con-

dition of the dynamics is a nontrivial task, whose difficulty
in turn increases with the system’s Hilbert space dimension.
However, quantum information intrinsically requires multi-
partite processing, and as a consequence the formulation of
multipartite non-Markovian dynamics is of interest from both
theoretical and practical points of view.

Our main goal in this paper is to formulate and study a class
of solvable multipartite non-Markovian master equations. The
class of systems we consider is defined in terms of an arbitrary
number N of qubits, whose interaction with the environment
can be taken into account through arbitrary Pauli channels.
The evolution of the system’s density matrix ρt is given by
the time-local master equation (d/dt )ρt = L[ρt ], where the
generator of the evolution has the general structure

L[•] =
∑

i = 1, · · · N
α = x, y, z

�α
i (t )
(
σα

i • σα
i − •)

+
∑

i=1, · · · N
α, β=x, y, z

�
αβ
i (t )
(
σα

i σ
β

i+1 • σ
β

i+1σ
α
i − •)

+
∑

i=1, · · · N
α, β, γ=x, y, z

�
αβγ
i (t )
(
σα

i σ
β

i+1σ
γ

i+2 • σ
γ

i+2σ
β

i+1σ
α
i − • )

+ · · · . (1)

Here, [•] denotes an arbitrary state of the system. Further-
more, σα

i is the αth Pauli operator (α = x, y, z) acting on qubit
i, and �

α···β
i (t ) define local and multipartite time-dependent

(coupling) rates. In general, these rate functions may take
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both positive and negative values. The problem is to charac-
terize which constraints must be fulfilled by them in order to
obtain physically valid solutions. Interestingly, the resolution
of this issue leads us to consider all possible multipartite
interaction terms, that is, decoherence channels that involve
coupling between an arbitrary number of qubits. We also
explore which rates emerge when the memory effects arise
from different underlying mechanisms based on coupling
with incoherent degrees of freedom [20,21]. The explicit
formulation of an operational (measurement based) memory
witness [47–50] further provides an alternative characteriza-
tion of non-Markovian effects.

As a specific example we study a family of “hyperbolic”
and “trigonometric” eternal multipartite non-Markovian mas-
ter equations in which some rates are negative or develop
divergences at all times. These cases provide a nontrivial ex-
tension and generalization of previous results valid for single
systems [51].

This paper is structured as follows. In Sec. II we present
the general class of multipartite dynamics we consider and
characterize the solution of the master equation, resolving as
a consequence the constraints that guarantee the CP condi-
tion of the map. General properties are derived for this class
of models. In Sec. III the eternal multipartite dynamics are
characterized. In Sec. IV we study memory effects through
an operational memory witness. In Sec. V we provide our
conclusions. The Appendixes give the details of derivations
and also provide the rates associated with different underlying
memory mechanisms.

II. MULTIPARTITE DYNAMICS

The system of interest consists of an arbitrary num-
ber N of qubits. For notational convenience we define a
set of Pauli strings Sa ≡ σa1 ⊗ σa2 ⊗ σaN , each one associ-
ated with the vector a = (a1, a2, . . . , aN ). Each component
ak (k = 1, 2, . . . , N ) assumes the values ak = (0, 1, 2, 3) ↔
(I, σx, σy, σz ), with each one being associated with the (two-
dimensional) identity matrix and the standard three Pauli
matrices.

The evolution of the system’s density matrix ρt is written in
a local-in-time way. Arbitrary multipartite decoherence chan-
nels are considered,

d

dt
ρt = L[ρt ] =

∑
a �=0

γ a
t (Saρt Sa − ρt ). (2)

The set of functions {γ a
t } defines the rates associated with the

multipartite Pauli channels. In general, there are 4N − 1 differ-
ent rate functions, as the vector 0 = (0, 0, . . . , 0) is associated
with the identity operator in the full Hilbert space. Our goal
is to characterize the different aspects of this general evolu-
tion. A time-convoluted formulation of the above dynamics is
provided in Appendix A.

A. Subsystem dynamics

Given the evolution above, we ask about the dynamics
of any particular subsystem. Introducing the splitting a =
(as, ae), where as corresponds to the set of local operators
that define the marginal Pauli string of the subsystem of in-

terest and ae corresponds to that of the rest of qubits (now
considered part of the environment), from Eq. (2) the sub-
system density matrix ρs

t = Tre[ρt ] (where Tr[•] is the trace
operation) reads

d

dt
ρs

t =
∑

as

γ as
t

(
Sasρ

s
t Sas − ρs

t

)
, γ as

t ≡
∑

ae

γ as,ae
t . (3)

From this equation we conclude that any subsystem, even
when, in general, it is correlated with the complementary part,
has an independent self-evolution. In addition, the structure
of this evolution belongs to the same class as that of the full
system [Eq. (2)]. Consequently, the following results can be
particularized for any subsystem of arbitrary size.

B. Solution map and completely positive condition

We now show that by using the method of damping bases
or spectral decomposition [52], the solution map ρ0 → ρt

corresponding to Eq. (2) can be obtained in an exact way.
In order the apply this technique, first, we establish a set of
relations fulfilled by the (two-dimensional) Pauli operators.
Maintaining the notation (σ0, σ1, σ2, σ3) ↔ (I, σx, σy, σz ), it
is easy to check that

σaTr[σa•] = 1

2

∑
b

Hab(σb • σb), (4)

where here the input [•] is an arbitrary two-dimensional oper-
ator and b = 0, 1, 2, 3. The inverse relation reads

σa • σa = 1

2

∑
b

Hab σbTr[σb•]. (5)

In these expressions, the coefficients {Hab} define a four-
dimensional Hadamard matrix H, which reads

H ≡

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠. (6)

In deriving Eq. (5), we used that its inverse reads H−1 = H/4.

Also notice that H = HT .

Now, we introduce an extra rate γ 0
t , which is associated

with the identity string in the full Hilbert space

γ 0
t ≡ −

∑
a �=0

γ a
t . (7)

With this definition, the Lindbladian-like structure of Eq. (2)
can straightforwardly be written as

L[•] =
∑

a

γ a
t (Sa • Sa ), (8)

where the sum now includes the (identity) string a = 0. Writ-
ten in this way, applying the “vectorial extension” of Eq. (5)
to the Hilbert space of N qubits, it follows that

L[•] = 1

2N

∑
a

SaTr[Sa•]
∑

b

Habγ
b

t , (9)

where Hab ≡ Ha1b1 Ha2b2 · · · HaN bN can be read as the ma-
trix elements of the external product of N single Hadamard
matrices [see Eq. (6)]. From this last expression, by using
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Tr[SaSb] = 2Nδa,b, it is straightforward to determine the
eigenvalues and eigenoperators of L[•]. They read

L[Sa] = μa
t Sa, μa

t =
∑

b

Habγ
b

t . (10)

Consequently, any Pauli string Sa is a right eigenoperator with
eigenvalue μa

t . Given that L[•] also defines the adjoint evolu-
tion (as the “jump operators” are Hermitian) [52], Sa is also a
left eigenoperator. Notice also that by using the inverse of the
Hadamard matrix, the inverse relation γ a

t =∑b Habμ
b
t /4N

follows.
From the method of damping bases [52], Eq. (10) allows

us to write the solution of Eq. (2) as

ρt = 1

2N

∑
a

exp

[∫ t

0
dt ′μa

t ′

]
SaTr[Saρ0]. (11)

One can see that the conditions Tr[ρt ] = Tr[ρ0] = 1 are sat-
isfied after noting that Tr[Sa] = 2Nδa,0 and μ0

t ′ = 0. This
last equality follows from Eqs. (7) and (10) jointly with the
property H0b = 1 ∀ b. By using the vectorial extension of
Eq. (4), we get the density matrix written in a Kraus repre-
sentation [1,2],

ρt =
∑

a

pa
t (Saρ0Sa ). (12)

The weights are pa
t = 4−N

∑
b Hab exp[

∫ t
0 dt ′μb

t ′ ], which from
Eq. (10) can explicitly be written in terms of the time-
dependent rates as

pa
t = 1

4N

∑
b

Hab exp

[∑
c

Hbc

∫ t

0
dt ′γ c

t ′

]
. (13)

Expressions (12) and (13) are the main results of this sec-
tion. They completely characterize the solution map in terms
of the set of rates {γ a

t } and the initial condition ρ0. In addition,
they naturally provide a constraint that the rates must fulfill
in order to obtain a CP map, that is, one that gives physi-
cal solution. In fact, the Kraus representation theorem [1,2]
implies the conditions 0 � pa

t � 1, which means that {pa
t }

are a set of normalized probabilities. In the single-qubit case
(N = 1), previously obtained constraints are recovered [35].
In the general case, 4N inequalities must be fulfilled. We no-
tice that a sufficient, but not necessary, condition is

∫ t
0 dt ′γ a

t ′ �
0 ∀ a �= 0. In fact, this constraint implies that all eigenvalues
[see Eq. (10)] satisfy μa

t � 0 (a �= 0). Consequently, taking
an arbitrary, but fixed, time t, the solution (11) of the non-
Markovian dynamics, via the association

∫ t
0 dt ′μa

t ′ = tμa
M ,

is equivalent to the solution of a (well-behaved) Markovian
dynamics generated by a Lindbladian with eigenvalues {μa

M}.

C. Non-Markovianity and time-dependent rates

Different (inequivalent) memory witnesses based only
on the system propagator can be used to define non-
Markovianity [5,6] such as the trace distance between two
different initial conditions [53] or those based on the k positiv-
ity of the solution map [54]. Here, as the dynamics is written
naturally in a canonical form [51], memory effects can also
be defined by the negativity of the time-dependent rates {γ a

t }.
In this way, it is of interest to determine these elements for

any well-behaved solution defined by the probabilities {pa
t } in

Eq. (12).
We can invert Eq. (13),

μa
t = d

dt
ln

[∑
b

Hab pb
t

]
, (14)

and using Eq. (10), we get explicit expressions for the set of
rates {γ a

t } in terms of the normalized time-dependent weights
0 � pc

t � 1,

γ a
t = 1

4N

∑
b

Hab
d

dt
ln

[∑
c

Hbc pc
t

]
. (15)

The signs of {γ a
t } can be taken as a signature of departure

from a Markovian regime [51]. Alternatively, in Sec. V we
study operational measures for non-Markovianity. We notice
that Eqs. (13) and (15) provide a multipartite generalization of
the case N = 1 studied in Ref. [35].

D. Additivity of non-Markovian master equations

Given two sets of (arbitrary) normalized probabilities {pa
t }

and { p̃a
t }, the relation (15) allows us to obtain the correspond-

ing sets of rates {γ a
t } and {γ̃ a

t }. From these we can obtain a
new master equation defined by Eq. (2) with rates {γ a

t + γ̃ a
t }.

In fact, it is always possible to associate a set of probabilities
{qa

t } with these added rates, that is,{
pa

t

}↔ {γ a
t

}
,
{

p̃a
t

}↔ {γ̃ a
t

}
, ⇒ ∃{qa

t

}↔ {γ a
t + γ̃ a

t

}
.

(16)
Consequently, as occurs with Markovian Lindblad equa-
tions [2], for our class of models arbitrary well-behaved
evolutions (defined by a given set of rates) can be added
in an arbitrary way. The validity of this result follows from
the commutation of two arbitrary propagators, Eq. (12), a
property supported by the relation

SaSb • SbSa = SbSa • SaSb = Sc • S†
c , (17)

which is valid for arbitrary Pauli strings Sa and Sb, where
Sc = SaSb or, equivalently, Sc = SbSa. Equation (17) can be
straightforwardly demonstrated from Eq. (5).

E. Coupling with incoherent degrees of freedom

Memory effects are induced whenever extra degrees of
freedom are traced out. Here, we consider a general coupling
with incoherent degrees of freedom, which define the environ-
ment. Based on Ref. [17], the more general case can always
be described by writing the system density matrix ρt and the
probabilities of the incoherent system {qh

t } [
∑

h qh
t = 1] as

ρt =
∑

h

ρh
t , qh

t = Tr
[
ρh

t

]
, (18)

where the auxiliary states {ρh
t } correspond to the system state

given that the extra (hidden) incoherent degrees of freedom
are in the particular state h. The evolution of the states {ρh

t }
may involve coupling between all of them. Assuming sepa-
rable initial conditions, the general coupling structure defined
in Ref. [17] guarantees the CP condition of the solution map
ρ0 → ρt .
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Given the structure Eq. (2), each auxiliary state ρh
t must

assume the form

ρh
t =
∑

α

gh
α (t )(Sαρ0Sα ), (19)

where the parameter α runs over a set of Pauli strings that
depends on each specific problem. The functions gh

α (t ) in turn
obey a classical master equation whose structure also depends
on each specific model.

The (separable) initial conditions read ρh
0 = ρ0qh

0 , where
ρ0 is the initial system state and qh

0 is the initial probability
of the incoherent degrees of freedom. In fact, at time t, qh

t =∑
α gh

α (t ). On the other hand, the system density matrix evolu-
tion [Eq. (12)] is defined by the probabilities pα

t =∑h gh
α (t ).

A general treatment for getting ρt is not possible, nor
is it possible to predict the specific memory properties of
the solution map for a given underlying coupling. Relevant
examples are worked out in Appendix B such as a mapping
with a classical Markovian master equation, stochastic Hamil-
tonians, and statistical mixtures of Markovian evolutions. In
all cases, explicit expressions for the rates [Eq. (15)] can be
obtained. A representative class of dynamics is studied in the
next section.

III. MULTIPARTITE ETERNAL NON-MARKOVIANITY

For a single qubit, N = 1, the system density-matrix evo-
lution, Eq. (2), may involve rates that are negative at all times.
This property is called “eternal non-Markovianity” [20,51].
The results of Appendix B [see Eqs. (B8), (B13), and (B19)]
and Appendix C [see Eqs. (C2) and (C4)] guarantee that this
property also emerges in multipartite dynamics, N > 1, which
have 4N − 1 rates.

In order to provide simple (multipartite) examples, here,
we restrict ourselves to the case where the evolution is

L[•] = {γ a
t (Sa • Sa − •) + γ

b
t (Sb • Sb − •)

+ γ
c

t (Sc • S†
c − •)
}
, (20)

where Sa and Sb are two arbitrary multipartite Pauli strings
and Sc = SaSb. Depending on the time dependence of the
rates, we define what we term “hyperbolic” and “trigonomet-
ric” cases of eternal non-Markovianity. Interestingly, these
cases emerge by considering that the environment has only
two possible states.

A. Hyperbolic eternal non-Markovianity

The system density matrix is written as the addition of two
auxiliary states ρt = ρ

(1)
t + ρ

(2)
t [Eq. (18)], whose evolution

reads

dρ
(1)
t

dt
= −γ ρ

(1)
t + γ Saρ

(1)
t Sa, (21a)

dρ
(2)
t

dt
= −ϕρ

(2)
t + ϕSbρ

(2)
t Sb. (21b)

The initial conditions for the auxiliary states are taken to
be ρ

(1)
0 = ρ

(2)
0 = ρ0/2. Given that the auxiliary states do not

couple between them, from Eq. (21) it is simple to notice
that this property is inherited by the incoherent degrees of

freedom, which in turn do not evolve in time, q(i)
t = Tr[ρ (i)

t ] =
(1/2) (i = 1, 2). Thus, the system dynamic is defined by a
statistical superposition (with equal weights) of two different
uncoupled Lindblad evolutions (with rates γ and ϕ).

The rates of the non-Markovian evolution follow from
Eq. (15) with probabilities pa

t = [pa
1(t ) + pa

2(t )]/2, with the
sets {pa

1(t )} and {pa
2(t )}, via Eq. (13), associated with ρ

(1)
t

and ρ
(2)
t , respectively. Taking ϕ = γ , we get [see also the

derivation of Eq. (B19) in Appendix C]

γ
a

t = γ
b

t = 1
2γ , γ

c
t = − 1

2γ tanh(γ t ). (22)

This result provides a multipartite generalization, (N > 1),
of the single-qubit case (N = 1) studied in Ref. [51]. We
notice that similar to the results of Ref. [20], in this particular
case, alternative dynamics such as the mapping to a classical
master equation [see Eq. (B8)] and stochastic Hamiltonians
[see Eq. (B13)] also lead to the same rates.

B. Trigonometric eternal non-Markovianity

Based on Eq. (18), instead of the evolution (21), here, we
consider

dρ
(1)
t

dt
= −γ ρ

(1)
t + ϕSbρ

(2)
t Sb, (23a)

dρ
(2)
t

dt
= −ϕρ

(2)
t + γ Saρ

(1)
t Sa. (23b)

Both auxiliary states are intrinsically coupled. In this case, it
is simple to check that the probabilities q(i)

t = Tr[ρ (i)
t ] (i =

1, 2) of the incoherent degrees of freedom obey a classical
master equation. Notice that the incoherent transitions (1) ↔
(2) imply the system transformations ρ → Sa/bρSa/b.

The initial conditions are taken as ρ
(1)
0 = [ϕ/(ϕ + γ )]ρ0

and ρ
(2)
0 = [γ /(ϕ + γ )]ρ0, where ρ0 is the system initial state

and the weights correspond to the stationary solution of the
(environment) classical master equation. Thus, q(1)

t = ϕ/(ϕ +
γ ), and q(2)

t = γ /(ϕ + γ ).
Taking into account Eq. (19), in order to solve Eq. (23)

each auxiliary state is written as (h = 1, 2)

ρ
(h)
t = g(h)

0 ρ0 + g(h)
a Saρ0Sa + g(h)

b Sbρ0Sb + g(h)
c Scρ0S†

c , (24)

where as before Sc = SaSb and g(h)
α are time-dependent func-

tions. Using Eq. (17), it is possible to derive a classical master
equation for the (eight) g functions, which involves coupling
between pairs of them. The corresponding solutions allow us
to obtain the probabilities pa

t =∑h g(h)
a (t ). Finally, the rates

associated with the non-Markovian evolution follow from
Eq. (15),

γ
a

t = γ
b

t = ϕγ (ϕ + γ )

et (ϕ+γ )(ϕ − γ )2 + 4ϕγ
. (25)

Furthermore,

γ
c

t = ϕγ (δ+ϒ2(1 − etϒ ) − δ2
−{ϒ(1 + etϒ )

+ etδ+ [(δ+ − ϒ) − etϒ (δ+ + ϒ)]})

×{(etδ+δ2
− + 4ϕγ )[(1 + etϒ )ϒδ+

− (1 − etϒ )δ2
−]}−1, (26)
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FIG. 1. Scaled time-dependent rates [Eqs. (25) and (26)] cor-
responding to the multipartite trigonometric eternal non-Markovian
evolution [Eq. (23)] for different values of the rate ratio ϕ/γ .

where the coefficients are

ϒ ≡ (ϕ2 − 6ϕγ + γ 2)1/2, δ± ≡ ϕ ± γ . (27)

Depending on the ratio ϕ/γ , different characteristic behav-
iors are obtained. In Fig. 1 we plot both rates. Consistent with
Eq. (25), γ

a
t and γ

b
t are always positive functions. However,

this is not the case for γ
c

t , Eq. (26), which, depending on ϕ/γ ,
develops a transition between positivity [Figs. 1(a) and 1(d)]
and a periodic divergent behavior [Figs. 1(b) and 1(c)]. From
Eq. (27) we deduce that this change occurs in the boundaries
of the interval 3 − √

8 < (ϕ/γ ) < 3 + √
8, with γ

c
t develop-

ing divergences in this interval while being positive outside it.
Notice that this interval defines the regime where the system
dynamics is CP indivisible.

From the plots it is also evident that γ
a

t and γ
b

t approach
a constant when ϕ ≈ γ . In fact, when ϕ = γ , the previous
expressions reduce to

γ
a

t = γ
b

t = 1
2γ , γ

c
t = 1

2γ tan(γ t ). (28)

Based on Eq. (22), we name this case a trigonometric eternal
non-Markovian. The probabilities {pa

t } [Eq. (12)] also assume
a simple form,

p0
t = 1

2
e−γ t [cosh(γ t ) + cos(γ t )], (29a)

pa
t = pb

t = 1

4
[1 − e−2γ t ], (29b)

pc
t = 1

2
e−γ t [cosh(γ t ) − cos(γ t )]. (29c)

These solutions apply to arbitrary multipartite Pauli strings a
and b.

C. Adding non-Markovian evolutions

Added to the previous examples (see also Appendix C), the
possibility of adding arbitrary (well-defined) rates [Eq. (16)]
gives us a procedure for constructing a large family of well-

behaved dynamics. Consistent with the goal of studying
master equations with the structure defined by Eq. (1), as an
example we write

L[•] =
N∑

i=1

γi

2

{(
σ x

i σ x
i+1 • σ x

i+1σ
x
i − •)

+ (σ y
i σ

y
i+1 • σ

y
i+1σ

y
i − •)

+ fi(t )
(
σ z

i σ z
i+1 • σ z

i+1σ
z
i − •)}. (30)

In this translational-invariant generator (say, with periodic
boundaries in one dimension), we may choose fi(t ) =
− tanh(γit ) or, alternatively, fi(t ) = tan(γit ) [see Eqs. (22)
and (28), respectively].

One interesting aspect of using additivity for construct-
ing multipartite evolutions is that, even when the underlying
evolutions have a clear memory mechanism (see also Ap-
pendix B), the resulting dynamics does not necessarily have
one. For example, while our approach guarantees that Eq. (30)
leads to a completely positive dynamics [with a solution de-
fined by Eqs. (12) and (13)], it is not evident which underlying
processes may lead to this master equation. In addition, in
general there may be subsystems that are coupled between
them, one part being Markovian and the other being non-
Markovian. For example, take fi(t ) = γi/2 for i � N0 and
fi(t ) = tan(γit ) for i > N0.

IV. OPERATIONAL MEMORY WITNESS

An alternative and deeper characterization of quantum
non-Markovianity can be obtained by defining memory ef-
fects via measurement-based approaches [47–49]. Here, we
study a conditional past-future (CPF) correlation [48]. This
object relies on performing three successive measurements of
arbitrary system observables and calculating the correlation
between the last (future) and first (past) outcomes conditioned
to a given intermediate (present) outcome. For Markovian
dynamics it vanishes identically, while memory effects lead to
a non-null CPF correlation. The method was experimentally
implemented in different quantum optical arrangements [50].

The measurements, denoted in successive order by x, y,

and z, correspond to observations of three Hermitian opera-
tors Sm with eigenvectors {|m〉} and eigenvalues {m},

Sm|m〉 = m|m〉, m = x, y, z. (31)

The CPF correlation then reads [48]

Cp f (t, τ )|y =
∑
z,x

zx[P(z, x|y) − P(z|y)P(x|y)], (32)

where {x}, {y}, and {z} denote the three sets of successive
outcomes (operators eigenvalues, assumed to be dimension-
less) and t and τ are the (first and second) time intervals
between the successive measurements. With P(u|v) we denote
the conditional probability of u given v.

All probabilities appearing in Eq. (32) can be determine
from the (outcome) joint probability P(z, y, x) ↔ P(z, t +
τ, y, t ; x, 0), which in turn can be calculated after knowing the
underlying system-environment dynamics. In Appendix D we
show that P(z, y, x) and Cp f (t, τ )|y can be calculated exactly
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assuming that memory effects emerge due to the coupling
with incoherent degrees of freedom [Eqs. (18) and (19)].

Each specific model [see examples (21) and (23)] is com-
pletely defined by the set of functions {gh

α (t )} [Eq. (19)].
Given that they obey a (linear) classical master equation, they
can be written as

gh
α (t ) =

∑
h′

f hh′
α (t )qh′

0 ≡ (h|Fα (t )|q0), (33)

where the set of functions { f hh′
α (t )} is independent of the

initial conditions {qh
0}. Furthermore, for notational simplicity,

we introduced a vectorial orthogonal base {|h)} for the inco-
herent degrees of freedom, such that f hh′

α (t ) ↔ (h|Fα (t )|h′)
and qh

0 ↔ (h|q0).
The observables Sm [Eq. (31)] may, in principle, be defined

by arbitrary linear combinations of Pauli strings {Sa}. Here,
for simplicity they are defined by a unique Pauli string. In this
case, the general expression for the CPF correlation [Eq. (D5)]
reduces to (see Appendix D)

Cp f (t, τ )|y

= δz,yδy,x
(1 − 〈x〉2)

[2N P(y)]2

∑
α,β

HyαHyβ[(1|Fα (τ )Fβ (t )|q0)

− (1|Fα (τ )|qt )(1|Fβ (t )|q0)]. (34)

Here, |qt ) =∑α Fα (t )|q0) define the probabilities of the in-
coherent degrees of freedom at time t, while (1| ≡∑h(h|.
Furthermore, 〈x〉 ≡∑x xP(x), where P(x) = 〈x|ρ0|x〉. Fi-
nally, P(y) is the probability of the outcomes of the second
measurement. It is

P(y) = 1

2N

[
1 + y〈x〉δy,x

∑
α

Hyα (1|Fα (t )|q0)

]
. (35)

The term δz,yδy,x in Eq. (34) implies that, for observables
defined by unique Pauli strings, memory effects are detected
only when the three observables are the same Sx = Sy = Sz.

This constraint does not emerge when the observables corre-
spond to other bases of operators (see, for example, Ref. [49]).

The general solution (34) can be specified for the trigono-
metric eternal model [Eq. (23)]. Stationary initial conditions
are assumed, |qt ) = |q0), with q(1)

0 = ϕ/(ϕ + γ ) and q(2)
0 =

γ /(ϕ + γ ). For simplicity, first, we consider the case N = 1.

When the three measurements are performed in direction a or
b, we get

Cp f (t, τ )|y = − (1 − 〈x〉2)

[2N P(y)]2
exp [−(t + τ )(γ + ϕ)/2]

× 42γ 2ϕ2

(γ + ϕ)2ϒ2
sinh

(
ϒt

2

)
sinh

(
ϒτ

2

)
.

(36)

When the three measurements are performed in direction c,
we get

Cp f (t, τ )|y = (1 − 〈x〉2)

[2N P(y)]2

4γ ϕ(γ − ϕ)2

(γ + ϕ)4

×[1 − e−τ (γ+ϕ)][1 − e−t (γ+ϕ)]. (37)

FIG. 2. (Dimensionless) CPF correlation [Eq. (36)] correspond-
ing to the eternal non-Markovian trigonometric model [Eq. (23)] for
different values of ϕ/γ and measurement time-interval relations τ/t .
In all cases, the system initial condition is such that 〈x〉 = 0.

These results allow us to analyze the transition to divergent
rates [Eq. (26)] in a complementary way. In Fig. 2 we plot
the CPF correlation (36). We observe that when the rate γ

c
t

does not develop divergences and is positive [Fig. 2(a)], the
CPF correlation is negative for any value of the time intervals
t and τ. Thus, even when criteria based on CP divisibility
lead us to consider the dynamics to be “Markovian,” the CPF
method detects the presence of memory effects. In fact, they
are induced by the underlying fluctuations of the incoher-
ent degrees of freedom. On the other hand, in the interval
3 − √

8 < (ϕ/γ ) < 3 + √
8, where the rate γ

c
t develops di-

vergences [Fig. 2(b)], the CPF correlation presents (finite)
oscillations between positive and negative values. In this case,
both memory criteria (negative rates and a nonvanishing CPF
correlation) coincide.

For the model (23), the generalization to N > 1, inde-
pendent of the chosen observables, always leads to Eq. (36)
or Eq. (37). This results follows by noting that in Eq. (34)
the coefficients α and β assume only the four values α, β =
(0,a, b, c) [see Eq. (24)]. Furthermore, using HyαHyβ = Hyγ ,

where γ corresponds to the string Sγ = SαSβ, for a fixed
y (y = a, y = b, or y = c) the four matrix elements Hyγ ,

similar to the case with N = 1, can assume only the values
(±1), which always lead to Eq. (36) or Eq. (37). On the other
hand, for N > 1, accidentally, it may also happen that the CPF
correlation vanishes. This occurs because we assumed that
the incoherent degrees of freedom are stationary, which im-
plies
∑

α,β [(1|Fα (τ )Fβ (t )|q0) − (1|Fα (τ )|qt )(1|Fβ (t )|q0)] =
0. Thus, when Hyγ = 1, it follows that Cp f (t, τ )|y = 0 [see
Eq. (34)]. These accidental cases can always be surpassed by
considering arbitrary measurement operators written as linear
combinations of the Pauli strings.

As an example, we consider a bipartite case where
Sa = σ x

1 σ x
2 , Sb = σ

y
1 σ

y
2 , and Sc = σ z

1σ z
2 . The CPF cor-

relation (36) is obtained when the three measurement
are defined by any of the bipartite operators Sm =
(σ x

1 σ z
2 ), (σ y

1 σ z
2 ), (σ z

1σ x
2 ), (σ z

1σ
y
2 ); Eq. (37) is obtained when

Sm = (σ x
1 σ

y
2 ), (σ y

1 σ x
2 ), while Cp f (t, τ )|y = 0 when Sm =

(σ x
1 σ x

2 ), (σ y
1 σ

y
2 ), (σ z

1σ z
2 ).

V. SUMMARY AND CONCLUSIONS

We studied a class of solvable multipartite non-Markovian
master equations in which the system consists of an arbitrary
number of qubits and whose structure is written in terms of
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arbitrary multipartite Pauli coupling terms. Starting from a
local-in-time representation of the evolution, we found the
explicit solution for the system density matrix, which in turn
allowed us to formulate the constraints that time-dependent
rates must obey in order to guarantee the completely positive
condition of the solution map.

We also found explicit analytical expressions for the time-
dependent rates associated with a given evolution. Their sign
(positive or negative) can be used as an indicator of non-
Markovianity. Memory effects were also characterized by
operational methods, where a CPF correlation defined by a set
of three consecutive system measurements becomes a mem-
ory witness. We showed that this quantity can be obtained
in an exact way for arbitrary measurement processes and
arbitrary interaction with incoherent degrees of freedom.

As an application of the previous results, we presented
simple underlying dynamics that lead to the phenomenon of
eternal non-Markovianity, that is, multipartite dynamics in
which some rates depart at all times from that of a Marko-
vian regime. Both hyperbolic and trigonometric cases were
established, characterized by a rate that is negative at all
times or that develops periodical divergences. Even when
these features develop, the CPF correlation is always a smooth
function.

In the Appendixes we find the rates associated with dif-
ferent underlying memory mechanisms such as a mapping
with a classical master equation, stochastic Hamiltonians, and
statistical superpositions of Markovian dynamics. We show
that under particular conditions different mechanisms may
lead to the same time-dependent rates. Nevertheless, these
accidental degeneracies do not occur in general. We also find
that the phenomenon of eternal non-Markovianity becomes
quite common in multipartite dynamics.

The class of models we studied here provides a useful
solvable framework for studying quantum non-Markovianity
in multipartite settings. This allows us to formulate a wide
range of well-behaved multipartite non-Markovian master
equations. The study of diverse memory witnesses can be
tackled starting from here. Our results also lead to interest-
ing questions such as determining which kind of underlying
dynamics can be associated with an arbitrary non-Markovian
multipartite Pauli evolution. Finally, our approach could be
the starting point to studying other system operator algebras
with more complex commutation relations.
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APPENDIX A: TIME-CONVOLUTED APPROACH

Instead of the local-in-time formulation defined by Eq. (2),
alternatively, one may start with a time-convoluted evolution

d

dt
ρt = L[ρt ] =

∑
a

a �= 0

∫ t

0
dt ′ka(t − t ′)(Saρt ′Sa − ρt ′ ), (A1)

where the set of time-dependent kernels {ka(t )} must be con-
strained such that the solution map is CP. Like in Sec. II, by
defining the kernel k0(t ) ≡ −∑a (a �=0) ka(t ), here, the weights
of solution (12) can be written as

pa
t = 1

4N

∑
b

Habλb(t ), (A2)

where the coefficients λb(t ) obey the evolution

d

dt
λb(t ) =

∫ t

0
dt ′kb(t − t ′)λb(t ′). (A3)

The inverse relations for determining the kernels {ka(t )} as a
function of probabilities {pa(t )} can be written in a Laplace
domain [ f (z) = ∫∞

0 dte−zt f (t )] as

ka(z) = zλa(z) − 1

λa(z)
, λa(z) =

∑
b

Hab pb(z). (A4)

APPENDIX B: NON-MARKOVIAN UNDERLYING
MECHANISMS

Here, we consider different mechanisms that lead to
memory effects. The present analysis provides nontrivial mul-
tipartite extensions of some results developed in Ref. [20] for
the case N = 1.

1. Mapping with a classical Markovian master equation

The solution map [Eq. (12)] is defined by a set of nor-
malized probabilities {pa

t }. It is possible to formulate an
underlying mechanism such that {pa

t } correspond to the solu-
tion of an arbitrary Markovian classical master equation with
4N different states.

We assume that the system density matrix interacts with an
incoherent system whose states, in contrast to Eq. (18), can be
put in one-to-one correspondence with the Pauli string vectors
{a}. Therefore, the system density matrix ρt can be written in
terms of a set of auxiliary states {ρa

t } [17] such that

ρt =
∑

a

ρa
t . (B1)

The evolution of the auxiliary states is Markovian and in-
volves coupling between all of them. We write

d

dt
ρa

t = −
∑

b
b �= a

φbaρ
a
t +
∑

b
b �= a

φabSaSbρ
b
t SbSa. (B2)

Here, {φba} are arbitrary rates. The stochastic interpretation of
this equation is quite simple. Whenever the incoherent system
undergoes the transition b → a, the quantum system under-
goes the transformation ρ → SaSbρSbSa. Between transitions
the system is frozen. The average system dynamics is given
by Eq. (B2), where ρa

t corresponds to the conditional system
state given that the incoherent one is in the state associated
with a.

It is simple to check that the solutions {ρa
t } of Eq. (B2) can

be written as

ρa
t = pa

t (Saρ0Sa ), (B3)
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where the weights pa
t must fulfill the classical master equation

d

dt
pa

t = −
∑

b
b �= a

φba pa
t +
∑

b
b �= a

φab pb
t . (B4)

Consequently, from Eqs. (B1) and (B3) we recover the solu-
tion Eq. (12) [ρt =∑a pa

t (Saρ0Sa )], where the probabilities
{pa

t } fulfill a the classical master equation (B4). For consis-
tence, its initial condition must be pa

0 = δa,0.

Particular case. Given that Eq. (B4) is arbitrary, it is
not possible to find a general expression for the rates {γ a

t }
[Eq. (15)] in terms of the underlying ones {φba}. Nevertheless,
this mapping can be performed, for example, when Eq. (B4)
assumes the form

d

dt
p0

t = −φp0
t + ϕ
∑

a
a �= 0

pa
t ,

d

dt
pa

t = −ϕpa
t + xaφp0

t ,

(B5)
where φ and ϕ are arbitrary rates and the weights {xa} satisfy∑

a(a �=0) xa = 1. The probabilities, with initial condition pa
0 =

δa,0, can be written as

pa
t = pa

∞[1 − exp(−�t )] + δa,0 exp(−�t ), (B6)

where � ≡ (φ + ϕ) and the stationary values are

p0
∞ = ϕ

φ + ϕ
, pa

∞ = xaφ

φ + ϕ
. (B7)

From the solutions (B6), the general expression (15), after
some calculations steps [55], leads to

γ a
t = 1

4N

∑
b

�

2
Hab

[
tanh

(
t�

2
+ ζb

)
− 1

]
, (B8)

where the parameters are

ζb ≡ 1

2
ln

(
hb

∞
1 − hb∞

)
, hb

∞ ≡
∑

c

Hbc pc
∞. (B9)

It is simple to check that, due to probability normalization,
h0

∞ = 1. Hence, in Eq. (B8) the term with b = 0 cancels out.
Furthermore, if hb

∞ = 0, it follows that tanh(t�/2 + ζb) →
−1. In general, the time dependence of the rate γ a

t arises
from a linear combination of hyperbolic tangent functions
with coefficients that are ±1. Thus, in general some rates can
be negative at any time.

2. Stochastic Hamiltonians

We consider a stochastic evolution where the system wave
vector |ψt 〉 is driven by a stochastic Hamiltonian,

d|ψt 〉
dt

= −iHst |ψt 〉 = −i
1

2
ξα

t Sα|ψt 〉. (B10)

The Hamiltonian Hst is characterized by a noise with an
arbitrary statistics but null average 〈〈ξα

t 〉〉 = 0. The index
α ↔ αt run overs all possible Pauli strings. Its time variation
is very slow such that over a single realization it can be
considered a frozen parameter. Thus, the average state ρα

t =
〈〈|ψt 〉〈ψt |〉〉 for a given α reads ρα

t = (1/2)[1 + Gα
t ]ρ0 +

(1/2)[1 − Gα
t ](Sαρ0Sα ), where

Gα
t ≡
〈〈

exp

(
i
∫ t

0
dt ′ξα

t ′

)〉〉
, (B11)

is the characteristic noise function for a given α. After av-
eraging this parameter, the system state can be written as
ρt =∑α,(α �=0) xαρα

t , where
∑

α,(α �=0) xα = 1. The parameters
{xα} correspond to the statistical weight of each Pauli string
during the variation of the coefficient α. It is straightforward
to check that ρt =∑a pa

t (Saρ0Sa ), which recovers Eq. (12)
with

p0
t = 1

2

⎛
⎜⎜⎜⎝1 +

∑
a

a �= 0

xaGa
t

⎞
⎟⎟⎟⎠, pa

t = xa

2

(
1 − Ga

t

)
. (B12)

Like in the previous model, it is not possible to find a general
simple expression for the rates γ a

t in terms of these probabili-
ties. Manageable expressions arise in the following situations.

Particular cases. If the noise is the same for all “directions”
Ga

t = Gt , from Eqs. (15) and (B12), after some algebra [55],
we get the rates

γ a
t = 1

4N

∑
b

ġt

2
Hab

[
tanh
(gt

2
+ ζb

)
− 1
]
, (B13)

where the scalar functions read

gt = ln(1/Gt ), ġt = − 1

Gt

dGt

dt
(B14)

and ζb is defined by Eq. (B9) with, instead of Eq. (B7), p0
∞ =

1/2 and pa
∞ = xa/2.

For a stationary Gaussian white noise, where 〈〈ξtξt ′ 〉〉 =
�δ(t − t ′), Eq. ( (B11)) becomes G(t ) = exp(−�t ). It is
simple to check that in this situation Eq. (B13) recovers the
solution (B8) of the previous model with ϕ = φ. These results
show that there are different underlying models that may lead
to the same system density-matrix evolution. This degeneracy
is not universal and clearly depends on the underlying param-
eters.

For a stationary symmetric dichotomic noise with ampli-
tude A and switching rate η, the characteristic noise function
[Eq. (B11)] is

Gt = e−ηt

[
cosh(χt ) + η

χ
sinh(χt )

]
, χ ≡

√
η2 − A2.

(B15)
In contrast to the previous cases, here, the rates defined
by Eq. (B13) may develop divergences. In fact, the func-
tions (B14) become

gt = ln(1/Gt ), ġt = A2

η + χ [1/ tanh(χt )]
. (B16)

Hence, divergent rates are found whenever η < A.

3. Statistical mixtures of Markovian evolutions

Departures with respect to a Markovian regime emerge
whenever the system evolution is written as the statistical
superposition of different Markovian propagators. Hence, we
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write

pa
t =

n∑
k=1

qk pa
k (t ), (B17)

where {qk} are normalized positive weights (
∑n

k=1 qk = 1)
and each set of probabilities {pa

k (t )} is associated with a
Markovian solution of Eq. (2) with time-independent positive
rates {γ a

k }.
From Eq. (15), the non-Markovian evolution is character-

ized by the rates

γ a
t = 1

4N

∑
b

Hab

∑n
k=1 qkμ

b
k exp
(
tμb

k

)
∑n

k′=1 qk′ exp
(
tμb

k′
) , (B18)

where μb
k are eigenvalues of the k-Markovian dynamics, μb

k =∑
c Hbcγ

c
k . The specific properties of these rates strongly de-

pend on the considered Markovian evolutions and statistic
weights.

Particular cases. In the two-state case, n = 2, the prob-
abilities are pa

t = q1 pa
1(t ) + q2 pa

2(t ), where each solution is
associated with the rates γ a

1 and γ a
2 and q1 + q2 = 1. From

Eq. (B18), after some algebra [55], we get

γ a
t = 1

2

(
γ a

1 + γ a
2

)+ 1

4N

∑
b

Hab�b tanh(t�b + ζ ), (B19)

where the parameters are

�b ≡ 1

2

∑
c

Hbc
(
γ c

1 − γ c
2

)
, ζ ≡ 1

2
ln

(
q1

q2

)
. (B20)

In this case, many rates may also be negative at all times (see
particular cases in Appendix C).

In the other extreme, a continuous-state case can be con-
sidered. Thus, Eq. (B17) is rewritten as

pa
t = 1

4N

∑
b

Hab

〈∏
c

exp(tHbcγ
c )

〉
, (B21)

where we used the explicit expression (13) and the re-
placement

∑n
k=1 qk → 〈· · · 〉. The symbol 〈· · · 〉 denotes an

average over the set of random rates {γ c}, with each “real-
ization” defining a Markov solution. Assuming that all rates
are independent random variables, it follows that 〈· · · 〉 →∫∞

0 dγ c · · · P(γ c ), where P(γ c ) is the corresponding proba-
bility density. By assuming an exponential probability density
P(γ c ) = τc exp(−γ cτc ), by using γ 0 = −∑c(c �=0) γ

c [see
Eq. (7)], we get

pa
t = 1

4N

∑
b

Hab

∏
c

c �= 0

τc

τc + (1 − Hbc )t
, (B22)

where we have used Hb0 = 1. From Eq. (15), the correspond-
ing rates associated with the non-Markovian evolution are

γ a
t = − 1

4N

∑
b

Hab

∑
c

c �= 0

(1 − Hbc )

τc + (1 − Hbc )t
. (B23)

We notice that both {pa
t } and {γ a

t } develop a power-law be-
havior. In spite of this feature the rates are positive at all times,
γ a

t > 0 (a �= 0). While most of the memory witnesses [5,6]

associate this property with a Markovian regime, from opera-
tional approaches it is possible to detect and infer the presence
of memory effects [48,49].

APPENDIX C: BIPARTITE AND TRIPARTITE ETERNAL
NON-MARKOVIAN EVOLUTIONS

In addition to the previous examples, the developed ap-
proach allows us to show that master equations characterized
by eternal non-Markovian effects are quite common for mul-
tipartite systems. As an example, we consider the statistical
superposition of two different Markovian dynamics charac-
terized by the rates γ a

1 and γ a
2 and equal weights [q1 = q2

in Eq. (B19)]. Taking γ a
1 = γ (δa,a − δa,0) and γ a

2 = γ (δa,b −
δa,0) and using (Hαa − Hαb)/2 = (±1, 0) and HαaHαb = Hαc,
from Eq. (B19) we recover the rates defined in Eq. (22). When
each (vectorial) rate involves different Pauli channels, more
complex expressions are obtained.

As a first example, take a bipartite system (N = 2) with

γ a
1 = γ (δa,10 + δa,01 − 2δa,00), (C1a)

γ a
2 = γ (δa,20 + δa,02 − 2δa,00). (C1b)

Thus, each dynamics is defined by a local (single) dephasing
mechanism acting alternatively in the x and y directions. From
Eq. (B19) we obtain

γ a0
t = 1

2γ , γ
a±

t = ± 1
4γ tanh(2γ t ), (C2)

where a0 and a± correspond to the following Pauli strings:
a0 = (10), (01), (20), (02), a+ = (11), (22), and a− = (30),
(03), (12), (21). Furthermore,

γ 33
t = −γ

4
[2 tanh(γ t ) − tanh(2γ t )] = −2γ

sinh4(γ t )

sinh(4γ t )
,

while γ a
t = 0 if a �= (a0, a+, a−). There are 11 non-null rates

out of the 15 possible ones, with 5 of them being negative at
all times.

As a second example we consider a tripartite system (N =
3), where

γ a
1 = γ (δa,110 + δa,101 + δa,011 − 3δa,000), (C3a)

γ a
2 = γ (δa,220 + δa,202 + δa,022 − 3δa,000). (C3b)

Hence, each Markovian evolution corresponds to dephasing in
the x and y directions but now considers all pairs of bipartite
dephasing operators. From Eq. (B19) we get

γ
a+

t = 1

4
γ [2 + tanh(2γ t )], (C4a)

γ
a−

t = −1

4
γ tanh(2γ t ), (C4b)

where a± correspond to the following Pauli strings: a+ =
(110), (101), (011), (220), (202), (022) and a− = (330),
(303), (033), (123), (132), (213), (231), (312), (321), where
γ a

t = 0 if a �= a+, a−. In this case, out of 63 possible rates, 15
are non-null, with 9 of them being negative at all times.

APPENDIX D: CPF CORRELATION CALCULUS

For a system coupled to incoherent degrees of freedom
[Eq. (18)], the (bipartite) system-environment state ρse

t =
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∑
h ρh

t |h), from Eqs. (19) and (33), reads

ρse
t =
∑

α

(Sαρ0Sα ) Fα (t )|q0). (D1)

This evolution defines the system-environment dynamics
between measurements. The measurement of operator Sm
[Eq. (31)] leads to the transformation ρse =∑h ρh|h) →
|m〉〈m||qm), where |qm) =∑h 〈m|ρh

t |m〉/Tr[〈m|ρh
t |m〉]|h).

With these ingredients, the calculation of the joint probability
can be performed in a standard way. We get

P(z, y, x)

P(x)
=
∑
α,β

|〈z|σα|y〉|2|〈y|Sβ |x〉|2(1|Fα (τ )Fβ (t )|q0),

(D2)
where P(x) = 〈x|ρ0|x〉 and (1| ≡∑h(h|. This result is valid
for arbitrary Hermitian system observables.

Using the Bayes rule, the conditional probabilities that
define the CPF correlation [Eq. (32)] can be written as
P(z, x|y) = P(z, y, x)/P(y), where P(y) =∑z,x P(z, y, x).
Furthermore, P(z|y) =∑x P(z, x|y), and P(x|y) =∑

z P(z, x|y). From Eq. (D2), using∑
z

z|〈z|Sα|y〉|2 = 〈y|SαSzSα|y〉, (D3a)

∑
x

x|〈y|Sβ |x〉|2P(x) = 〈y|SβSxρxSβ |y〉, (D3b)

∑
x

|〈y|Sβ |x〉|2P(x) = 〈y|SβρxSβ |y〉, (D3c)

where the system state ρx is

ρx ≡
∑

x

P(x)|x〉〈x| =
∑

x

〈x|ρ0|x〉|x〉〈x|, (D4)

the CPF correlation can be written as

Cp f (t, τ )|y = 1

P(y)2

∑
α,β,γ

�αβγ |y�αβγ (t, τ ). (D5)

The coefficients �αβγ |y are

�αβγ |y = 〈y|SαSzSα|y〉〈y|SβSxρxSβ |y〉〈y|σγ ρxSγ |y〉,
while the time dependence follows from

�αβγ (t, τ ) = +(1|Fα (τ )Fβ (t )|q0)(1|Fγ (t )|q0)

− (1|Fα (τ )Fγ (t )|q0)(1|Fβ (t )|q0),

where |qt ) =∑α Fα (t )|q0) and the probability P(y) is

P(y) =
∑

α

(1|Fα (t )|q0)〈y|SαρxSα|y〉. (D6)

Expression (D5) is valid for arbitrary observables σm
[Eq. (31)]. In general, they can be written as linear combi-
nations of Pauli strings Sa. Assuming, for simplicity, that each
Sm corresponds to a unique Pauli string operator, from Eq. (5)
it follows that

〈y|SαSzσα|y〉 = Hαyδz,yay, (D7a)

〈y|SβSxρxSβ |y〉 = 1

2N
(Hβyδy,xay + 〈x〉), (D7b)

〈y|Sγ ρxσγ |y〉 = 1

2N
(1 + Hγ yδy,xay〈x〉), (D7c)

where 〈x〉 ≡ Tr[Sxρx]. By introducing these equalities in
Eq. (D5), after some algebra we get Eq. (34). Generalization
to arbitrary observables can be worked out in a similar way
from Eq. (D5).
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[16] D. Chruściński and A. Kossakowski, Sufficient conditions for
a memory-kernel master equation, Phys. Rev. A 94, 020103(R)
(2016).

[17] A. A. Budini, Lindblad rate equations, Phys. Rev. A 74, 053815
(2006).

[18] A. A. Budini, Post-Markovian quantum master equations from
classical environment fluctuations, Phys. Rev. E 89, 012147
(2014).

[19] B. Vacchini, Non-Markovian dynamics for bipartite systems,
Phys. Rev. A 78, 022112 (2008).
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