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Unobservable causal loops as a way to explain both the quantum computational
speedup and quantum nonlocality
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We consider the reversible processes between two one-to-one correlated measurement outcomes which
underlie both problem solving and quantum nonlocality. In the former case, the two outcomes are the setting and
the solution of the problem; in the latter, they are those of measuring a pair of maximally entangled observables
whose subsystems are space separate. We argue that the quantum description of these processes mathematically
describes the correlation but leaves the causal structure that physically ensures it free of violating the time
symmetry required of the description of a reversible process. It would therefore be incomplete and could be
completed by time symmetrizing it. This is done by assuming that the two measurements evenly contribute
to selecting the pair of correlated measurement outcomes. Time symmetrization leaves the ordinary quantum
description unaltered but shows that it is the quantum superposition of unobservable time-symmetrization
instances whose causal structure is completely defined. Each instance is a causal loop: Causation goes from
the initial to the final measurement outcome and then back from the final to the initial outcome. In the speedup,
all is as if the problem solver knew in advance half of the information about the solution she will produce in
the future and could use this knowledge to produce the solution with fewer computation steps. In nonlocality,
the measurement on either subsystem retrocausally and locally changes the state of both subsystems when the
two were not yet spatially separate. This locally causes the correlation between the two future measurement
outcomes.
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I. INTRODUCTION

The present work is a further step of the evolutionary
approach [1–4]. In it, with others, we developed a retrocausal
explanation of the quantum computational speedup still ad
hoc for quantum computation. In the present work, we detach
it from quantum computation and show that it derives from
a more universal property of quantum correlation that also
explains quantum nonlocality.

The potentially paradoxical character of the approach is
clear from the abstract. The fact that the problem solver could
benefit from the advanced knowledge of half of the infor-
mation about the solution1 she will produce and read in the
future to produce the solution more efficiently is reminiscent
of the inventor of the time machine sending back in time to
herself, before she had the idea, the design of the machine.
Although the latter is a favored theme of novels and movies,
from a physical standpoint it is obviously nonsense. The
present explanation of the quantum speedup is, so to speak,
half of that nonsense. So, is it still nonsense or is it physically
permissible? The present work deals with this question.

By the way, as quantum computation is still a specialized
field and this work aims to be interdisciplinary, let us provide
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1For the time being, let us think for simplicity that the solution is

an invertible function of the problem setting.

an example of quantum computational speedup, that of the
simplest instance of Grover quantum search algorithm [5].

Bob, the problem setter, hides a ball in a chest of four
drawers. Alice, the problem solver, is to identify the location
of the ball by opening drawers. In the classical and worst
case, to solve the problem Alice has to open three drawers:
If the last drawer opened contains the ball, she has solved the
problem; if not, it must be in the only drawer not yet opened
and she has solved the problem as well. In the quantum case,
i.e., by Grover algorithm, she always identifies the location
of the ball by opening just one drawer. There is a quantum
computational speedup. Also this might appear paradoxical,
of course.

At the level of feeling, saying that, in the quantum case,
Alice opens just one drawer but in a quantum superposition
of the four drawer numbers might mitigate that impression. In
the following, we will try to put things together in an exact
way.

Let us start from an only apparently remote lead. It is, of
course, well known that Einstein, with Podolsky and Rosen
[6], stated that the quantum description is incomplete because
(in particular) it does not physically explain quantum nonlo-
cality, namely the spooky action at a distance. By the way, this
particular case was the real concern of Einstein and is the one
of interest here.

In this work, we revamp that incompleteness issue starting
from another lead. We consider the quantum description of
quantum correlation (forgive the pun). We mean the reversible
process between two one-to-one correlated measurement
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outcomes. Let us show in the first place that this process is
common to the quantum speedup and quantum nonlocality.

In the speedup, the initial and final measurement outcomes
are respectively the outcome of the initial measurement,
which selects the problem setting out of a uniform quantum
superposition of all the possible problem settings, and the
corresponding solution of the problem selected by the final
measurement (in the four-drawer example, they are both the
number of the drawer with the ball). The reversible process
between the two outcomes is, of course, the quantum algo-
rithm.

In nonlocality, the two outcomes are those of measuring
two maximally entangled observables whose subsystems are
space separate.

By the way, note that in both cases that the process be-
tween the two measurement outcomes is reversible in spite
of comprising the final measurement (which does not change
the quantum state). In fact, there is a unitary transformation
between the two one-to-one correlated outcomes.

Now, our thesis is that the ordinary quantum description2

of quantum correlation is incomplete because it mathemati-
cally describes the correlation between the two measurement
outcomes but not the causal structure that physically ensures
it. Because of the reversibility of the quantum process, the
process causal structure would be left free by the ordinary
quantum description and also free of violating the time sym-
metry required of the description of a reversible process. This
would say, first, that this description is incomplete and, sec-
ond, that it is completed by time symmetrizing it. A basic
assumption is that this requires evenly and nonredundantly
sharing between the initial and the final measurements the
selection of the information that specifies the sorted out pair
of correlated measurement outcomes among all the possible
pairs. This is, of course, an unorthodox assumption, but we
will justify it in a detailed way in the next section. We should
proceed as follows.

The initial measurement selects one of the possible halves
of the information in question. The respective measurement
outcome unitarily propagates toward the final measurement
until becoming the state immediately before it. The latter
measurement selects the remaining half of the information.
The respective measurement outcome unitarily propagates to-
ward the initial measurement, by the inverse of the previous
unitary transformation, until becoming its definitive outcome.
The latter propagation, which inherits both selections, is an
instance of the time-symmetrized quantum process. Note that
the causal structure of each time-symmetrization instance is
completely defined and is a causal loop. Causality goes from
the initial to the final measurement outcome and then back
from the final to the initial measurement outcome. Since there
is a plurality of possible instances, each corresponding to a
way of taking half of the information in question, we should
take their quantum superposition.

We will see that this time symmetrization leaves the or-
dinary quantum description unaltered, as it should be since

2We call the usual quantum description ordinary to distinguish it
form the complete quantum description that we are going to propose.

the description of a reversible process should be time sym-
metric to begin with. But, at the same time, it shows that
this description is a quantum superposition of unobservable
time-symmetrization instances whose causal structure is com-
pletely defined. These instances are unobservables because,
of course, they vanish in their quantum superposition, namely
in the ordinary quantum description (which leaves the causal
structure that ensures the correlation free).

For the fact of describing the causal structure that phys-
ically ensures the correlation between the two measurement
outcomes, with respect to the ordinary quantum description
which leaves this causal structure free, they describe the quan-
tum process in a more complete way: a way that immediately
explains the quantum computational speedup and quantum
nonlocality.

We will see that, in the speedup case, the outcome of
the initial measurement encodes the problem to be solved by
Alice and Alice’s knowledge of the solution. The projection of
the quantum state associated with the final measurement that
selects the remaining half of the information, retrocausally,
by the inverse of the time-forward unitary transformation,
changes it. This change reduces the computational complexity
of the problem to be solved and correspondingly increases
Alice’s knowledge of the solution. The latter goes from com-
plete ignorance of the solution to knowledge of half of the
information that specifies it (among all the possible solutions).
Therefore, everything is as if Alice knew in advance half of the
information about the solution she will produce and read in the
future and could use this knowledge to produce the solution
more efficiently than in the classical case. Of course, one can
see the causal loop.

The explanation in question is quantitative in character,
given an oracle problem, it allows us to compute the number
of oracle queries needed to solve it in an optimal quantum
way.3 It is the minimum number logically (classically) needed
to find the solution given the advanced knowledge of half of
the information that specifies it.

By the way, let us note that this is a completely technical
consequence of a fundamental interpretation of quantum me-
chanics. It is a synthetic solution, i.e., axiomatically derived
from fundamental principles, of the so-called quantum query
complexity problem. It is the problem of finding whether the
number of oracle queries needed to solve an oracle problem
(forgive the pun) in an optimal quantum way is quadratic
or exponential (or the like) in problem size. It is central to
quantum computer science and still unsolved in the general
case [7,8]. The fundamental principle presently at play is
that the causal structure of a time-reversible process does not
introduce a preferred time direction of causality.

In the nonlocality case, the time symmetrization of the
quantum process between the two measurement outcomes
revamps, with an improvement, the retrocausal explanation of
quantum nonlocality given by Costa de Beauregard in 1953
[9].

3We will explain in the technical part of the work what oracle
problems and oracle queries are. For the time being, we can see them
just as problems and computation steps.
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Let us lay the situation down. Say that at time t0 two pho-
tons are generated by parametric down-conversion in the state
of maximally entangled polarizations and diverging momenta.
At time t1, after their spatial separation, we measure the po-
larization of one photon. Of course, this instantly changes the
polarization state also of the space-separate photon. There is
the spooky action at a distance. At time t2, we measure, in the
same basis, the polarization of the other photon. There is one-
to-one correlation between the two measurement outcomes.

In the first place, Costa de Beauregard noted that the
unitary transformation that connects the two measurement
outcomes, in a mathematically equivalent way, can go from t1
to t2 either directly or via t0, when the two photons are not yet
space separate. In the latter case, the unitary transformation
goes first backward in time from t1 to t0 and then forward in
time from t0 to t1 and eventually t2. In the former case, there
is action at a distance, which is certainly unphysical. In the
latter, everything is local and therefore physical provided that
we consider retrocausality physical too.

His explanation assumes that, in causal order, the initial
measurement only projects the reduced density operator of
the polarization of the respective photon, leaving that of the
space-separate photon unaltered. Then this projection, on its
way toward the final measurement via t0, at time t0 locally
projects the polarization state of both photons. The resulting
state, still on its way toward the final measurement, at the time
of the initial measurement emulates action at a distance. In
other words, the action from the first measurement outcome
to the polarization state of the space-separate photon would
be local, first through the unitary transformation from t1 to t0
and then through the unitary transformation from t0 to t1. But
the sum of the two times, one negative and the other positive,
is zero; this is what emulates action at a distance.

According to the present approach, this explanation would
have two drawbacks:

(i) Since the initial measurement alone selects the sorted
out pair of measurement outcomes, it violates the time sym-
metry required of the reversible process between the two
outcomes.

(ii) Correspondingly, it involves the (retrocausal) change of
a past state of the ordinary quantum description, namely the
state of maximal polarization entanglement of the two not yet
space-separate photons.

We go now to the explanation provided by the present
work. We should complete the ordinary quantum description
of the reversible process that connects the two measurement
outcomes via t0 by time symmetrizing it. In each time-
symmetrization instance, in causal order, the projection of the
quantum state due to either measurement (which selects one
of the two halves of the information about the outcomes pair)
only projects the reduced density operator of the polarization
of the photon on which the measurement is performed, leav-
ing that of the other photon unaltered. Then this projection,
going toward the other measurement via t0, at time t0 locally
projects the polarization state of both photons. As we will see,
together, these two projections (one for each measurement)
cause the one-to-one correlation between the two measure-
ment outcomes.

The differences with respect to Costa de Beauregard expla-
nation are as follows:

(i) There are no violations of the time symmetry required
of the description of the reversible process between the two
measurement outcomes.

(ii) Correspondingly, no past quantum state of the ordinary
quantum description is changed.

The Costa de Beauregard explanation would be unphysical
and the present explanation would be physical, although the
basic idea is the same.

Another difference, of course, is that the present explana-
tion is provided by the completion of the quantum description
of quantum correlation, which also explains the quantum
speedup. Costa de Beauregard’s explanation is ad hoc for
quantum nonlocality.

Note that the causal loop implicit in the time-
symmetrization procedure this time generates two causal
loops, one for each measurement. Each loop is the
measurement that retrocausally changes the state of the
two not yet space-separate subsystems in a way that in
turn contributes to causing the correlation between the two
measurement outcomes.

By the way, all the above would seem to answer Einstein
et al.’s call in [6]. It shows (i) why the ordinary quantum
description is incomplete (it would be so because it allows
causal structures that violate the time symmetry required of
a reversible process) and (ii) how to complete it (by time
symmetrizing it). Our hidden (unobservable) variables, which
complete the ordinary quantum description by telling the two
photons, when they are not yet spatially separate, how to
behave in the future measurements on them (as Einstein and
the others required), are the time directions of the causations
between the two measurement outcomes in the unobservable
time-symmetrization instances.

While all the above would seem to exactly answer Ein-
stein’s expectations, it does so in a way that likely was not
imagined at the time. It is, of course, an unorthodox way
also at the present time. However, it benefits, so to speak,
two paradigm shifts well successive to Einstein et al.’s time:
time-symmetric quantum mechanics [10–16] and quantum
computation [17], with the respective speedup [18,19]. By
the way, the present unorthodox approach, in particular, has
been inspired by Ref. [12] about the nonsequential behavior of
the wave function, which we call here the ordinary quantum
description.

We should eventually note that the quantum computational
speedup and quantum nonlocality are the two known tasks that
cannot be performed classically. By definition, the speedup is
with respect to the classical algorithms; in the case of quan-
tum nonlocality, we are dealing with quantum cryptography
based on Bell’s theorem [20], whose security has no classical
parallel. This work shows that they both rely on quantum
causal loops. This suggests the conjecture that the present
unobservable form of quantum retrocausality has to do with
the very difference between quantum and classical mechanics.

Given the unconventional character of the work, before get-
ting lost in the formalizations, we provide in the next section
a very detailed line of reasoning. It goes from the diagnosis
of the incompleteness of the ordinary description of quantum
correlation to the prescription of the way of completing it.
In particular, it comprises our best justification of all the
unorthodox assumptions taken in the present work.
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II. LINE OF REASONING

We provide our line of reasoning, segmented as a
numbered sequence of consequential steps. Since it is an
unorthodox line of reasoning that goes against conventions,
we have done our best to be precise.

(i) Our starting argument is that the ordinary quantum de-
scription of the reversible processes between two one-to-one
correlated measurement outcomes mathematically describes
the correlation but leaves the causal structure that physically
ensures it free.

Naturally, this goes against the convention that causality
only goes forward in time. Our justification for doing without
this convention in the case of a reversible quantum process
is twofold. On the one side, the convention in question is not
implied by the dynamic equations of the reversible quantum
process but is an add-on to them. On the other, it is a conven-
tion that clashes with the very definition of reversible process.
Let us recall it: A deterministic process is time reversible if the
time-reversed process satisfies the same dynamic equations as
the original process. Of course, in the time-reversed process,
causality goes backward in time, hence the clash.

(ii) The first critical step of the present line of reasoning
is doing without that convention. Without it, the ordinary
quantum description (the dynamic equations) does not provide
any information about the causal structure that ensures the
correlation between the two measurement outcome. It leaves
this causal structure free.

In the first place, the initial measurement outcome can be
considered the cause of the final measurement outcome or,
time symmetrically, the final measurement outcome the cause
of the initial one. We should keep in mind that between the
two one-to-one correlated measurement outcomes there is a
unitary transformation.

We note that, until now, choosing either time direction
of causality does not add any information to the ordinary
quantum description. It is like reading it from left to right or
right to left. The information about the quantum process is the
same in either case.

What is important is that, once accepted that causality can
also go backward in time, in the quantum world the ambiguity
about the time direction of causality can go down to a deeper
level. Causality can go forward or backward in time between
any two corresponding (correlated) parts of the two measure-
ment outcomes and, independently, forward or backward in
time between the two complementary parts.

Let us exemplify this in the four-drawer instance of Grover
algorithm. Say that the number of the drawer with the ball
selected by the initial measurement (out of the quantum su-
perposition of the four drawer numbers) in binary notation
is 01. The corresponding solution, selected by the final mea-
surement, is naturally 01 too. The sorted-out pair of correlated
measurement outcomes is thus (01, 01).

Under the convention that causality only goes forward
in time, the initial measurement selects the number 01 and
this causes the number 01 “selected” (just read) by the final
measurement. As we will soon see, without that convention,
the ordinary quantum description allows to assume a different
picture. The left digit of the initial measurement outcome can
be the cause of the left digit of the final measurement outcome

and the right digit of the final measurement outcome can be
the cause of the right digit of the initial measurement out-
come. Correspondingly, we should share the selection of the
sorted-out pair of correlated measurement outcomes between
the initial and final measurements. The initial measurement
selects the left digit of the pair and the final measurement the
right one.

Note that the ordinary quantum description leaves us free
to choose which amount of information is selected by the
initial measurement and which by the final measurement. The
information that specifies this choice, among all the possible
choices, is information about the quantum process that the
ordinary quantum description, which leaves this choice free,
does not provide. Once accepted the fact that causality in the
quantum world can also go backward in time, this fact alone
shows that the ordinary quantum description is incomplete.
There is information about the quantum process that it does
not provide.

(iii) The second critical step of the present line of rea-
soning, allowed by the previous one, is asking that the
causal structure that ensures the correlation between the two
measurement outcomes does not introduce a preferred time di-
rection of causality. In other words, we ask that the initial and
final measurements evenly (and of course nonredundantly)
contribute to select the pair of correlated measurement out-
comes among all the possible pairs. In equivalent terms, we
require that each measurement selects one of the possible
halves of the information that specifies the pair of outcomes
among all the possible pairs and the other measurement selects
the other half. Since there is a plurality of ways of taking half
of the information, we should take their quantum superposi-
tion. At point (vii), we will see how to put all things together.

This would seem to be the natural thing to do since we
are dealing with a time-reversible process. However, we can
justify it in a stronger way, by comparing the case that the two
measurements are one after the other with the case that they
are simultaneous.

First, we note that it does not matter whether we perform
the two measurements simultaneously or not. In the nonlocal-
ity case, we can postpone the initial measurement to the time
of the final measurement, or anticipate the latter to the time of
the initial measurement. In the case of the speedup, the initial
measurement that selects the problem setting (e.g., the number
of the drawer with the ball) can be postponed to the time of
the final measurement (also here the respective observables
commute). In this case, Alice performs the algorithm in a
quantum superposition of all the possible problem settings.
Then, simultaneously, Bob’s measurement selects the problem
setting and Alice’s measurement the corresponding solution.
In either the nonlocality or the speedup case, everything evi-
dently remains the same: action at a distance and respectively
the maximum speedup achievable by the quantum algorithm.

Now, in the case that the two measurements are simultane-
ous, the assumption that they evenly contribute to the selection
of the sorted-out pair of outcomes becomes mandatory. As
we will see in the formalizations, in both the speedup and the
nonlocality case we are dealing with two measurements that
simultaneously select two maximally entangled observables.
There is a perfect symmetry between them and no reason for
which they should differently contribute to the selection.
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In order that everything remains the same when the two
measurements are not simultaneous, one has to keep the
causal structure of the simultaneous case. In other words,
when made subsequent to each other, the two measurements
should continue to evenly contribute to the selection of the
outcome pair. In equivalent terms, we should require that
the causal structure that physically ensures the correlation
between the two measurement outcomes does not introduce
a preferred time direction of causality.

(iv) The adoption of this requirement implies that the
causal structures allowed by the ordinary quantum description
can violate it. Of course, with the causal structure free, the
amount of information about the outcomes pair selected by
one measurement can be different from that selected by the
other measurement. This has in turn the two following conse-
quences.

(v) The ordinary quantum description of the processes in
question is incomplete because it allows causal structures that
violate the no preferred time direction of causality require-
ment.

(vi) To complete the ordinary quantum description, it is
sufficient to time symmetrize it.

(vii) All the above already define how to time symmetrize
the ordinary quantum description of the processes in question.
We have already anticipated this in the introduction, We repeat
it here in the example of the four-drawer problem.

The initial measurement, performed in a quantum super-
position the four possible numbers of the drawer with the
ball (numbers for short), selects one of the possible halves
of the information that specifies the number (among the four
possible numbers). For example, it selects the value 0 of
the left digit of the number. The corresponding measurement
outcome is therefore the superposition of the numbers 00 and
01. This superposition unitarily propagates toward the final
measurement until becoming the state immediately before it
(as a superposition of two tensor products, each a number
beginning with 0 and the corresponding solution—that same
number). The latter measurement selects the remaining half
of the information (say the value 1 of the right digit, so that
the number selected by the two measurements is 01). The
respective measurement outcome unitarily propagates toward
the initial measurement, by the inverse of the previous unitary
transformation, until becoming its definitive outcome. The lat-
ter propagation, which inherits both selections, is an instance
of the time-symmetrized quantum process.

Note that the causal structure of each time-symmetrization
instance is completely defined and is a causal loop: Causation
goes from the initial to the final measurement outcome and
then back from the final to the initial outcome. Since there is
a plurality of possible instances, each corresponding to a way
of taking half of the information in question, we should take
their quantum superposition.

By the way, we should note that the causal structure of
these instances, whose formation essentially relies on quan-
tum superpositions, would not be possible in a classical
version of the algorithm, even under the idealization that there
are reversible classical processes. We could not divide the
evolution of the two-digit number into two evolutions, one for
the left and the other for the right digit, perfectly isolated from
one another as required if the time directions of causality are

to be opposite in them. In fact, oracle queries must work in an
inseparable way on the two digits together. Going deeper into
this topic could be an interesting research prospect.

(viii) To complete our line of reasoning, we must anticipate
another result that will come out from the formalizations. We
will see that the superposition of all the time-symmetrization
instances yields the ordinary quantum description of the pro-
cess between the two measurement outcomes back again.

Of course this is as it should be, because the quantum
description of a reversible process should be time symmetric
to begin with, so it is right that it remains unchanged under its
time symmetrization.

Also note that such instances, with a completely defined
causal structure, are unobservable because they vanish in the
superposition of all of them, which is indeed the ordinary
quantum description which leaves the causal structure that
physically ensures the correlation between the two measure-
ment outcomes free.

(ix) However, the fact that the time symmetrization of
the ordinary quantum description gives us the same de-
scription back again does not mean that we are left with
nothing in hand. On the contrary, we have found that the
ordinary quantum description of the reversible process be-
tween two one-to-one correlated measurement outcomes,
which leaves the causal structure that physically ensures the
correlation free, is a quantum superposition of unobservable
time-symmetrization instances whose causal structure is com-
pletely defined.

(x) The key feature of these instances is that they are causal
loops.

(xi) Because of their completely defined causal structure,
such causal loops describe the quantum process between the
two measurement outcomes in a more complete way than
their quantum superposition—the ordinary quantum descrip-
tion which leaves the causal structure free.

(xii) As we will see in the formalizations, they immediately
and exactly explain the quantum computational speedup and
quantum nonlocality.

(xiii) Of course, what completes the ordinary quantum
description is the description of the quantum superposition it
is made of, in fact, that of the unobservable quantum causal
loops.

With this, we have finished exposing our line of reasoning.
What emerges seems to be a very interesting form of quantum
retrocausality.

Probably, the reason one is skeptical about the existence
of retrocausality is its ability to change the past. This, in
the macroscopic world, leads to well-known paradoxical
consequences. However, the unobservable form of quantum
retrocausality we are dealing with never changes the past as
described by the ordinary quantum description, given that it
vanishes in it. It should therefore be immune to the paradoxes
that plague classical retrocausality.

III. TIME SYMMETRIZING THE ORDINARY QUANTUM
DESCRIPTION OF THE COMPUTATIONAL SPEEDUP

This section is a review of the explanation of the quan-
tum computational speedup developed in the evolutionary
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approach [1–4] with further clarifications and in a form that
immediately fits the notion of quantum causal loop.

Before proceeding, let us explain what an oracle, an oracle
problem, and an oracle query are in the present context. An
oracle is a black box that computes a function, for example,
the Kronecker delta. The oracle problem is finding, by means
of the oracle, a characteristic of that function, for example,
the argument for which the Kronecker delta is 1. Alice, the
problem solver, gives the oracle a value of the argument of
the function; in jargon, she performs an oracle query. The
oracle gives her back the corresponding value of the function.
The whole procedure counts for a single computation step, or
oracle query. The number of oracle queries needed to solve
an oracle problem in an optimal quantum way is its quantum
query complexity.

It is natural to think that, in order to understand what hap-
pens within a quantum process, one must have a description
of the same as complete as possible. With respect to the usual
description of quantum algorithms, which is limited to the
process of solving the problem, we physically describe also
(1) the process of setting the problem and (2) the fact that
consequently the problem setting should be hidden from the
problem solver (otherwise it would tell her the solution of
the problem before she begins her problem-solving action).
By the way, this is particularly evident in the four-drawer
problem, where the problem setting is the number of the
drawer with the ball, which is also the solution of the problem.
Only after these two completions of the object of the quantum
description, we will complete the quantum description itself
by time symmetrizing it—this is step 3.

A. Step 1: extending the usual quantum description to the
process of setting the problem

Let us consider the simplest instance of the oracle problem
solved by Grover quantum search algorithm [5], known as

Grover’s problem from now on. Bob hides a ball in one of four
drawers. Alice is to locate it by opening drawers. Opening
drawer number a amounts to querying the oracle with the
question: Is the ball in drawer a? The oracle computes the
Kronecker function δ(b, a), where b is the number of the
drawer with the ball, and of course gives back 1 if a = b and
0 otherwise. As is well known, the four-drawer instance of the
Grover algorithm always yields the solution of the problem—
locates the ball—with just one oracle query, performed in a
quantum superposition of the four possible drawer numbers.
Since in the classical case it may be necessary to perform up
to three queries, there is a quantum computational speedup.

The usual description of quantum algorithms is limited to
Alice’s problem-solving action. We extend it to Bob’s action
of setting the problem.

Let us introduce the notation first:
We number the four drawers in binary notation:

00,01,10,11.
A quantum register B, under the control of the problem

setter Bob, is meant to contain the problem-settingb (the num-
ber of the drawer with the ball). Its basis vectors are thus
|00〉B, |01〉B, |10〉B, |11〉B.

A quantum register A, under the control of the problem
solver Alice, is meant to contain a, the number of the drawer
that Alice wants to open; it will eventually contain the solution
of the problem (the number of the drawer with the ball b). Its
basis vectors are thus |00〉A, |01〉A, |10〉A, |11〉A.

Let the observable B̂, of eigenstates/eigenvalues
respectively |00〉B, |01〉B, |10〉B, |11〉B / 00,01,10,11,
be the number contained in register B; the ob-
servable Â, of eigenstates/eigenvalues respectively
|00〉A, |01〉A, |10〉A, |11〉A / 00,01,10,11, be the number
contained in register A.

The process of setting and solving the problem is rep-
resented by the following table (from now on we disregard
normalization):

time t1, meas. of B̂ t1 → t2 time t2, meas. of Â

(|00〉B + |01〉B + |10〉B + |11〉B)|00〉A

⇓
|01〉B|00〉A ⇒ Û1,2 ⇒ |01〉B|01〉A

. (1)

We assume that, in the initial state, the number of the
drawer with the ball is completely indeterminate. This is
represented by a uniform quantum superposition of all the
basis vectors of register B, top left corner of Eq. (1) (by the
way, the basis of this register will never be rotated). Register
A is initially in an arbitrary sharp state standing for a blank
blackboard.

At time t1, Bob measures B̂ in that initial state. This
projects the initial superposition on an eigenstate of B̂ selected
at random, say |01〉B (follow the vertical arrow on the left of
the table). The corresponding eigenvalue, b = 01, is the prob-
lem setting selected by Bob, here the number of the drawer
with the ball. By the way, Bob could unitarily change it into a
desired number. For simplicity, we disregard this operation.

We denote by Û1,2 the unitary part of Alice’s problem-
solving action. It should send the input state |01〉B|00〉A into
the output state |01〉B|01〉A = Û1,2|01〉B|00〉A, which contains
in register A the solution of the problem—again the number
of the drawer with the ball selected by Bob—right-pointing
horizontal arrows.

Of course, Û1,2 can be the unitary part of Grover algorithm,
or even a less efficient quantum algorithm that solves Grover’s
problem. However, to us, it can remain an unknown unitary
transformation. We only need to know that there can be a
unitary transformation between the input and output states,
which is always the case with this kind of representation
where the output has a full memory of the input. Note that
the input and output states of Û1,2 are known once the oracle
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problem—the set of the problem-settings and the correspond-
ing solutions—is known. In other words, that of Eq. (1) is an
external description of the quantum algorithm—of what the
quantum algorithm should do to solve the oracle problem—
which only depends on the oracle problem. Û1,2, the unitary
part of the quantum algorithm, can remain an unknown unitary
transformation.

Eventually, at time t2, Alice acquires the solution by mea-
suring Â. The output state of Û1,2, namely |01〉B|01〉A, with
register A already in an eigenstate of Â, remains unaltered;
there is then a unitary transformation between the initial and
final measurement outcomes; the process between them is
physically reversible as no information is lost in it.

B. Step 2: relativizing the extended quantum description to the
problem solver

Register B contains the problem setting b. Its state rep-
resents the knowledge of the problem setting on the part of
Bob and any external observer. Initially it represents complete
ignorance of it; see the top left corner of Eq. (1). After the
initial measurement of B̂ on the part of Bob, it represents full
knowledge of it; see the bottom left corner of Eq. (1).

Therefore, we can see that the description of Eq. (1) works
for Bob and any external observer, not for Alice. Immediately
after the initial measurement, she would know the solution of
the problem4 before she begins her problem-solving action.
To Alice, the problem-setting selected by Bob must be hidden
inside a black box.

To physically represent the concealment of the outcome of
the initial measurement from Alice (the problem solver and
observer of the final measurement), in the first place we must
be able to have two different descriptions of the quantum algo-
rithm, one with respect to Bob and any external observer and
the other with respect to Alice. For this, we resort to relational
quantum mechanics [21,22]. In it, quantum states are not ab-
solute but relative to the observer. We relativize the description
of the quantum algorithm with respect to Alice as follows.

To her, we postpone after the end of her problem-solving
action the projection of the quantum state associated with the
initial measurement (note that B̂ and Â commute). This is, of
course, a mathematically legitimate operation provided that
the two ends of the projection undergo the unitary transfor-
mation Û1,2.5

While the description of the quantum algorithm with re-
spect to Bob and any external observer is that of Eq. (1), that
with respect to Alice becomes the following:

time t1, meas. of B̂ t1 → t2 time t2, meas. of Â

(|00〉B + |01〉B + |10〉B + |11〉B)|00〉A ⇒ Û1,2 ⇒ |00〉B|00〉A + |01〉B|01〉A + |10〉B|10〉A + |11〉B|11〉A

⇓
|01〉B|01〉A

. (2)

To Alice, the initial quantum superposition of the four pos-
sible numbers of the drawer with the ball remains unaltered
after the initial Bob’s measurement of B̂—the top left corner
of the table. This superposition represents her complete igno-
rance of the number of the drawer with the ball selected by
Bob. By Û1,2 (horizontal arrows), this superposition unitarily
evolves into the superposition of four tensor products, each
the product of a number of the drawer with the ball and
the corresponding solution (that same number but in register
A). Eventually, the final measurement of Â projects the latter
superposition on |01〉B|01〉A, the tensor product of the number
of the drawer with the ball already selected by Bob and the
corresponding solution (vertical arrow). Note that this projec-
tion is indifferently that due to the initial Bob’s measurement,
postponed.

4This is particularly evident in the present case, where the problem
setting and the solution are both the number of the drawer with the
ball. But it holds in general, since Alice always knows the function
computed by the black box.

5Alternatively, we could postpone at the end of Alice’s action the
very measurement of B̂. This can be done because the reduced den-
sity operator of register B remains unaltered throughout Û1,2. Note
that, with reference to point (iii) of Sec. II, this would make the two
measurements simultaneous.

C. Step 3: completing the ordinary quantum description
by time symmetrizing it

With probability one of reading the solution, there is the
unitary transformation Û1,2 between the initial and final mea-
surement outcomes. The process between them is reversible
in spite of comprising the final measurement, which does not
change the quantum state. Correspondingly, its ordinary quan-
tum description leaves the direction of causality unspecified.
We have seen that this allows causal structures that violate
the time symmetry required of the description of a reversible
process (violate the requirement of the absence of a preferred
time direction of causality), thus showing that the ordinary
quantum description of the process in question is incomplete.
This also says that the description is completed by time sym-
metrizing it.

We time symmetrize the description by imposing that the
initial and final measurements evenly contribute to the se-
lection of the information that specifies the sorted out pair
of correlated measurement outcomes (among all the possible
pairs). Since there is a plurality of ways of sharing the in-
formation in question into two halves, we should take their
quantum superposition.

We should assume that the initial measurement of B̂ and
the final measurement of Â in all the possible ways reduce to
complementary partial measurements that evenly and nonre-
dundantly contribute to the selection of the pair of outcomes.
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For example, the initial measurement of B̂ could reduce
to that of B̂l (the left binary digit—bit—of the number in
register B) and the final measurement of Â to that of Âr (the
right bit of the number in register A), or vice versa. Together,
the measurement of B̂l at time t1 and that of Âr at time t2
select a well defined problem setting; say it is 01. How to
arrange together the selections performed by the two succes-
sive measurements in order that, together, they determine the

process between the two outcomes is explained in the next
subsection.

1. Time symmetrizing the description of the quantum algorithm
to Bob and any external observer

The description of the quantum algorithm of Eq. (1) is
that with respect to Bob and any external observer. We time
symmetrize it by the following time-symmetrization (TS) for-
malism:

time t1, meas. of B̂l t1�t2 time t2, meas. of Âr

(|00〉B + |01〉B + |10〉B + |11〉B)|00〉A

⇓
(|00〉B + |01〉B)|00〉A ⇒ Û1,2 ⇒ |00〉B|00〉A + |01〉B|01〉A

⇓
|01〉B|00〉A ⇐ Û†

1,2 ⇐ |01〉B|01〉A

. (3)

The initial measurement of B̂l , selecting the 0 of 01, projects the initial quantum superposition on the superposition of the
terms beginning with 0, vertical arrow on the left of the table. Under Û1,2, the latter superposition evolves into the superposition
of the two products number of the drawer with the ball⊗corresponding solution (right-pointing horizontal arrows). Then the
final measurement of Âr , selecting the 1 of 01, projects the superposition in question on the term ending in 1 (vertical arrow
on the right of the table). The backward in time propagation, by Û†

1,2, of this output state, which inherits both selections, is an
instance of the time-symmetrized description of the quantum algorithm with respect to Bob and any external observer (bottom
line of the table). Moreover, it is also the superposition of all instances since their bottom lines are all identical to each other.
One can see that the bottom line of the table remains the same regardless of how we evenly share the selection of the sorted
out pair of measurement outcomes between the initial and final measurements. It is also identical to the bottom line of Eq. (1),
namely to the ordinary description of the quantum algorithm, since the symbol “⇐ Û†

1,2 ⇐” is equivalent to “⇒ Û1,2 ⇒”. As
anticipated in the introduction, the superposition of all the time-symmetrization instances gives the ordinary quantum description
back again—in a trivial way in the present case.

The above zigzag diagram yields the time-symmetric causal structure that ensures the correlation between the two measure-
ment outcomes in the case of the quantum algorithm with respect to the problem setter Bob and any external observer. We
have given this for completeness. It will be the causal structure of the quantum algorithm with respect to Alice the one that
immediately explains the quantum speedup.

By the way, with reference to point (ii) of Sec. II, one can see the essential role played by quantum superposition in order that
the left digit 0 of the number of the drawer with the ball 01 selected by the initial measurement causes the corresponding digit
of the final measurement outcome and the left digit 1 selected by the final measurement causes the corresponding digit of the
initial measurement outcome.

2. Time symmetrizing the description of the quantum algorithm to Alice

We time symmetrize the description of the quantum algorithm with respect to Alice of Eq. (2). The following zigzag diagram
yields the time-symmetrization instance for problem setting b = 01, the measurement of B̂ reduced to that of B̂l , and the
measurement of Â to that of Âr :

time t1, meas. of B̂l t1�t2 time t2, meas. of Âr

(|00〉B + |01〉B + |10〉B + |11〉B)|00〉A ⇒ Û1,2 ⇒ |00〉B|00〉A + |01〉B|01〉A + |10〉B|10〉A + |11〉B|11〉A

⇓
(|01〉B + |11〉B)|00〉A ⇐ Û†

1,2 ⇐ |01〉B|01〉A + |11〉B|11〉A

. (4)

The projection of the quantum state associated with the
initial measurement of B̂l must be postponed after the end of
Alice’s problem-solving action, outside Eq. (4), which is lim-
ited to this action. In fact, any information about the problem
setting must be hidden from her. The top line of the diagram
is thus the same of Eq. (2). Then the measurement of Âr in the
output state of Û1,2, selecting the 1 of 01, projects it on the

superposition of the terms ending with 1 (vertical arrow). The
propagation of the latter superposition—which inherits both
selections—backward in time by Û†

1,2 (left-pointing horizon-
tal arrows) is an instance of the time-symmetrized quantum
algorithm to Alice. See the bottom line of Eq. (4).

In view of what will follow, note that we can speak as well
of projection of the top line of the diagram on the bottom line.
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Let us repeat this bottom line—i.e., the time-symmetrized
quantum algorithm—below for convenience:

time t1 t1 ← t2 time t2

(|01〉B+|11〉B)|00〉A ⇐ Û†
1,2 ⇐ |01〉B|01〉A + |11〉B|11〉A

.

(5)
The above equation can also be read the other way around

as

time t1 t1 → t2 time t2

(|01〉B + |11〉B)|00〉A ⇒ Û1,2 ⇒ |01〉B|01〉A+|11〉B|11〉A

.

(6)
By the way, let us say for completeness that the output

state |01〉B|01〉A + |11〉B|11〉A will eventually be projected on
|01〉B|01〉A by the projection due to the initial measurement of
B̂l postponed after the end of Alice’s action, outside Eq. (4),
which is limited to this action.

For b = 01, there are in total three time-symmetrization in-
stances. In each of them, the problem setting selected by Bob,
b = 01, pairs with another problem setting (it pairs with b =
11 in the above instance). The superposition of all instances
of the time-symmetrized quantum algorithm [one is that of
Eq. (6)], also for all the possible problem settings,6 gives back
the unitary part of the original quantum algorithm to Alice,
the top line of Eq. (2). Of course, the superposition of all the
pairs of basis vectors of register B yields the superposition of
all the basis vectors, namely the top left state of Eq. (2).

3. Interpretation

Equation (5), or identically (6), yields an instance of the
time-symmetrized quantum algorithm with respect to Alice.
From now, on we will refer to the latter table, which is a more
familiar description of a quantum algorithm.

Note that, besides the element of a quantum superposition,
each instance can be seen itself as a full-fledged quantum
algorithm. In the instance we are dealing with, it suffices to
think that actually Bob measures B̂l in the initial state and
Alice Âr in the output state of Û1,2; of course, this selects the
entire problem setting 01 too. The time symmetrization of the
quantum algorithm in this case only consists in propagating
forward in time the selection due to the initial measurement
and backward in time that due to the final measurement.
The time-symmetrized quantum algorithm in this case is just
one time-symmetrization instance and it obviously involves
the same number of oracle queries of the original quantum
algorithm.

As one can see in Eq. (6), the computational complexity of
Grover’s problem reduces in the time-symmetrized quantum
algorithm with respect to the problem solver Alice. Alice’s
problem is now locating the ball hidden in the pair of drawers
{01, 11}; check the input and output states of Û1,2 in that table.
Let us call the new problem the reduced problem.

In equivalent terms, Eq. (6) tells us that Alice, immediately
after the initial measurement, knows that the ball is in the pair

6In the quantum algorithm to Alice, the problem setting is selected
only after the unitary part of Alice’s problem-solving action.

of drawers {01, 11}. In fact, in the description of the quantum
algorithm with respect to her, the state of register B represents
her state of knowledge of the number of the drawer with the
ball. In the input state of her problem-solving action, this
changes from knowledge that the ball is in one of four drawers
(i.e., from complete ignorance of the number of the drawer
with the ball), into knowledge that the ball is in one of two
drawers—compare the states in the top left and bottom left
corners of Eq. (4). This is because Alice is shielded from the
half information about the number of the drawer with the ball
coming to her from the initial measurement, not from the half
coming to her back in time from the final measurement.

Summing up, all is as if Alice knew in advance half of
the information about the solution of the problem she will
produce and read in the future and could use this knowledge
to reduce the computational complexity of the problem to be
solved. Below, we show that this allows us to compute the
number of oracle queries needed to solve Grover’s problem
in an optimal quantum way (of course, without knowing the
quantum algorithm).

The reduced problem, as any other problem, can always
be solved quantumly with the number of oracle queries re-
quired by a (reversible) classical algorithm, i.e., logically
required.7 The question then becomes whether it could be
solved with even fewer queries, namely itself with a quan-
tum speedup. Now, under the reasonable assumption that the
quantum speedup is essentially related to the reduction, under
time symmetrization, of the computational complexity of the
problem to be solved, the answer must be negative. In fact,
the quantum algorithm that solves the reduced problem has
been time symmetrized already. Further time symmetrizing it
would leave it unaltered without further reducing the compu-
tational complexity of the problem.8

Summing up, it turns out that the number of queries needed
to solve Grover’s problem in an optimal quantum way is
that needed to solve the corresponding reduced problem in
an optimal logical (classical) way. In the present four-drawer
instance of Grover’s problem, this is only one query. In fact,
the reduced problem, i.e., locating a ball hidden in a pair of
drawers, can be classically solved by opening either drawer.
Note that we have found the number of oracle queries needed
to solve Grover’s problem in an optimal quantum way without
knowing Grover algorithm, namely Û1,2.

More generally, we should consider the generic number of
drawers N = 2n, where n is the number of binary digits (bits)
in the drawer number. Also note that in the variant provided
by Long [23], the Grover algorithm gives the solution with
certainty for any value of N . Everything we said for the four
drawers still holds.

7What face each other here are not quantum and classical physics
but quantum physics and classical logic.

8We have seen that Bob and Alice can effectively perform the
partial measurements of the instance we are dealing with. The time
symmetrization in this case consists in propagating forward in time
the selection performed by Bob’s measurement and backward in time
that performed by Alice’s measurement. Doing this a second time
changes nothing.
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In order that the initial and final measurements evenly con-
tribute to the selection of the pair of measurement outcomes,
it suffices to evenly share between the two measurements the
selection of the n bits that specify the number of the drawer
with the ball. This means ascribing to the final measurement
the selection of n/2 bits. Since Alice knows these bits in ad-
vance, the reduced problem is locating the ball in 2n/2 drawers.
It can be solved logically (classically) with O(2n/2) queries.

In summary, the time-symmetrization formalism foresees
that the number of queries needed to solve Grover’s problem
in an optimal quantum way is that needed to solve the cor-
responding reduced problem in an optimal logical (classical)
way, namely O(2n/2) queries. Also, in the quantum case, we
must make reference to an optimal quantum algorithm since a
nonoptimal one could take any higher number of queries. That
Grover’s problem can be solved quantumly with any number
of queries above that required by the optimal Grover/Long
algorithm has been shown in Refs. [23,24].

All the above is in agreement with the fact that Grover
algorithm (more precisely Grover/Long algorithm) is demon-
strably optimal [23–25] and employs O(2n/2) queries [5].

Let us eventually note that the present explanation of the
quantum speedup ascribes it to a quantum causal loop: The
final measurement of the solution changes back in time the
initial state of knowledge of the solution on the part of Alice
and this in turn allows Alice to produce the solution with fewer
oracle queries, which closes the loop.

4. From Grover’s problem to any oracle problem

The method to compute the number of oracle queries
needed to solve Grover’s problem in an optimal quantum
way can immediately be extended to any oracle problem, as
follows.

In any quantum algorithm relativized to Alice, we have the
following:

(i) an initial state which is the superposition of all the
possible problem settings tensor product the blank blackboard
that will eventually contain the solution of the problem and

(ii) a state immediately before the final Alice’s measure-
ment of the solution, which is a superposition of tensor
product, each a problem setting multiplying the corresponding
solution.

In other words, provided that we change the size of the
quantum registers, the diagrams developed for Grover algo-
rithm hold for the process of solving any oracle problem.

The only possible difference with respect to Grover’s case
is that the solution is a noninvertible function of the problem
setting.

This difference is eliminated by thinking that Alice, at the
end, measures both the content of register A, which contains
the solution, and that of register B, which contains the problem
setting. This is legitimate since this Alice’s measurement of
the content of B occurs after the unitary part of her problem-
solving action, namely when the reason for hiding from her
the problem setting has fallen.

The time symmetrization of this process requires that, in
each time-symmetrization instance, the two measurements of
the content of register B (the initial measurement made by

Bob and the final one made by Alice9) reduce to two partial
measurements that evenly and nonredundantly contribute to
the selection of the problem setting and the corresponding so-
lution. Eventually, we should take the quantum superposition
of all the time-symmetrization instances.

Let us further introduce a simplification. Since the reduced
density operator of register B remains unaltered throughout
the unitary part of Alice’s action, any final measurement of
a content of B on the part of Alice can be anticipated to the
time of the initial measurement. The requirement of evenly
sharing between the initial Bob’s measurement and the final
Alice’s measurement the selection of the pair of correlated
measurement outcomes can be replaced by that of splitting
the initial measurement of the content of register B into two
partial measurements that evenly and nonredundantly con-
tribute to selecting the problem setting and the corresponding
solution. In each time-symmetrization instance, Alice knows
in advance the information selected by either partial measure-
ment. Taking this into account yields the following advanced
knowledge rule that holds for any oracle problem:

We should split the initial measurement of the problem set-
ting in a state of maximal indetermination of it into two partial
measurements that evenly and nonredundantly contribute to
the selection of the problem setting and the corresponding
solution. Alice knows in advance the information acquired by
either partial measurement. The number of queries needed to
solve the oracle problem in an optimal quantum way is that
needed to solve it in an optimal logical (classical) way given
the advanced knowledge in question.

Let us consider for example the problem solved by
Deutsch-Jozsa algorithm [26]. The set of functions computed
by the black box is all the constant and balanced functions
fb : {0, 1}n → {0, 1} (balanced functions have an even num-
ber of zeros and ones). The following array of function tables
gives four of the eight functions for n = 2:

a f0000(a) f1111(a) f0011(a) f1100(a) ...

00 0 1 0 1 ...

01 0 1 0 1 ...

10 0 1 1 0 ...

11 0 1 1 0 ...

.

The first column from the left contains the argument of the
function, the second and third columns show the correspond-
ing values of the two constant functions, the fourth column
shows those of a balanced function, etc. Note that we have
chosen as problem setting (and function suffix) b the table of
the function (the sequence of function values for increasing
values of the argument).

Bob selects one of these functions—a valuation of b—at
random, Alice is to find whether fb is constant or balanced by
performing oracle queries. In the classical and worst case, an
exp(n) number of queries is needed, in the quantum case just
one.

9Alice’s measurement of the solution is redundant with her mea-
surement of the problem setting and can be ignored.
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We apply the advanced knowledge rule to this algorithm.
The outcome of the initial Bob’s measurement is the problem
setting b. We should split this measurement into two partial
measurements that evenly and nonredundantly contribute to
the selection of b and the corresponding solution; Alice knows
in advance the information acquired by either partial measure-
ment.

As one can see, this implies that these two partial mea-
surements measure two halves of the bit-string b that contain
either all zeros or all ones; we call such halves good
half-tables. For example, let b = 0011; the table of the cor-
responding function is the fourth column of the above array
of function tables. The two good half-tables are f0011(00) =
0, f0011(01) = 0 and f0011(10) = 1, f0011(11) = 1. If either
half-table contained both zeros and ones, also the other would.
This would determine the solution (that the function is bal-
anced) in a redundant way (and, of course, Alice would know
the solution of the problem without doing anything). The
advanced knowledge rule would be violated.

Then, Alice knows in advance a good half-table, e.g.,
fb(00) = 0, fb(01) = 0. We have omitted the value of the
function suffix because of course she only knows the result
of measuring the content of the left two digits of the problem
setting 0011 contained in register B, she does not know the
suffix of the function. Once she knows in advance a good half-
table, classically, performing a single oracle query for a value
of the argument outside that half-table (here, e.g., for a = 10)
allows her to ascertain whether the function is constant or bal-
anced, in agreement with what the Deutsch-Jozsa algorithm
does.

Let us now go to Simon [27] and the quantum part of Shor
[28] factorization algorithm. Both these algorithms concern
finding the period of a particular set of periodic functions.
Classically, this requires a number of oracle queries expo-
nential in problem size, and quantumly the number becomes
polynomial; there is thus an exponential speedup. Applying
the advanced knowledge rule to these algorithms yields what
follows.

One can choose as problem setting b the table of two
consecutive periods of the function. Naturally, the period of
the function is identified by two consecutive values of the
argument of the function such that the corresponding values
of the function are the same. One can see that the notion of
good half-table still applies and that a pair of good half-tables
are the tables of the two periods.

Since Alice knows in advance a good half-table (i.e., the
table of a period of the function) performing an oracle query
for a value of the argument immediately outside that half-table
necessarily yields a repeated value of the function, which
allows her to find the period of the function. It should be
noted that, according to the advanced knowledge rule, the
algorithms of Simon and Shor would be suboptimal, as they
require a number of oracle queries polynomial in problem size
instead of a single query; see Ref. [4] for further detail.

Summing up, the advanced knowledge rule exactly ac-
counts for the speedups of Grover and Deutsch-Jozsa
algorithms, which are demonstrably optimal, and in good
approximation for those of Simon and Shor algorithms, more
general for those of the Abelian hidden subgroup [29]. As is
well known, these are the major quantum algorithms discov-

ered until now and cover both the quadratic and exponential
speedups.

We note that in all cases the speedup is ensured by a
quantum causal loop. The final measurement of the problem
setting on the part of the problem solver changes backward
in time her initial state of complete ignorance of it (and of
the corresponding solution) into knowledge of half of the
information that specifies it. This knowledge can be used by
the problem solver to reach the solution with fewer oracle
queries, which closes the loop.

IV. TIME SYMMETRIZING THE ORDINARY QUANTUM
DESCRIPTION OF NONLOCALITY

We go now quantum nonlocality. We assume that two pho-
tons B and A at time t0 have been generated by parametric
down-conversion in a state of spatial contiguity and in the
polarization state:

1√
2

(|0〉B|1〉A − |1〉B|0〉A); (7)

0/1 are horizontal/vertical polarizations. Then, in the time
interval (t0, t1), the two photons get spatially separate in a
unitary way. The polarization of photon B is measured at
time t1, and that of photon A is measured in the same basis
at time t2. There is one-to-one correlation between the two
measurement outcomes and, correspondingly, a unitary trans-
formation between them. This transformation can go from t1
to t2 either directly or via t0, first backward in time from t1
to t0 and then forward in time from t0 to t2. We should keep
in mind that the unitary transformation that connects the two
measurement outcomes via t0 is local and thus physical (of
course, at the condition that we consider the present form
of quantum retrocausality physical too). The one that goes
directly from t1 to t2, implying the spooky action at a distance,
is certainly unphysical.

To explain quantum nonlocality by means of the time-
symmetrization (TS) formalism, we should time symmetrize
the reversible quantum process that goes from t1 to t2 via t0.
We should evenly share between the two measurements the
selection of the single bit that specifies the pair of correlated
outcomes among the two possible pairs 01 and 10. To this end,
we represent the polarization state (7) in the redundant way:

1
2 (|00〉B|00〉A + |01〉B|01〉A + |10〉B|10〉A + |11〉B|11〉A). (8)

One can see that, if we take the XOR (exclusive OR)
between the two bits of each register, we obtain the state

1√
2
(|0〉B|0〉A + |1〉B|1〉A). If, in (8), we changed the two cen-

tral plus signs into minus signs, we would have obtained
1√
2
(|0〉B|0〉A − |1〉B|1〉A), which can trivially be brought to

state (7). However, we will do without these changes that
are irrelevant here since we never rotate any measurement
basis. Now the problem is the same as that of the four-drawer
instance of Grover algorithm: evenly (and nonredundantly)
sharing between the measurements of B̂ and Â the selection
of the two bits that specify the pair of correlated outcomes.

A. Costa de Beauregard’s explanation

First, we provide the ordinary (usual) quantum description
of nonlocality (we always ignore normalization):
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time t1, meas. of B̂ t1 → t2 time t2, meas. of Â

|00〉B|00〉A + |01〉B|01〉A + |10〉B|10〉A + |11〉B|11〉A

⇓
|01〉B|01〉A ⇒ Û1,2 ⇒ |01〉B|01〉A

. (9)

At time t1, the measurement of B̂ (the content of register B) in the maximally entangled state in the top left of the table selects at
random, say, the eigenvalue b = 01, thus projecting the state of the two registers on |01〉B|01〉A (vertical arrow). The fact that this
measurement instantly changes also the state of the space separate register A is of course the “spooky action at a distance.” The
successive unitary transformation Û1,2, between t1 and t2, is the identity for the polarization state of the two photons. By Û1,2,
the measurement outcome |01〉B|01〉A directly (not via t0) propagates to immediately before the measurement of Â (the content
of register A) at time t2 – horizontal arrows. Then this latter measurement deterministically selects the correlated eigenvalue
a = 01.

The following table provides the quantum process corresponding to Costa de Beauregard’s explanation of quantum nonlocal-
ity [9,30]. Formally, it suffices to replace, in Eq. (9), Û1,2 by Û1,0,2, where Û1,0,2 is the unitary transformation that goes from
the first to the second measurement outcome, one-to-one correlated with it, via t0. Of course, we have the mathematical identity
Û1,2 = Û1,0,2. Equation (9) becomes the following:

time t1, meas. of B̂ t1 → t0 → t2 time t2, mes. of Â

|00〉B|00〉A + |01〉B|01〉A + |10〉B|10〉A + |11〉B|11〉A

⇓
|01〉B|01〉A ⇒ Û1,0,2 ⇒ |01〉B|01〉A

. (10)

This time the outcome of measuring B̂ at time t1 unitarily propagates first backward in time to t0 and then forward in time to
t2, becoming the state immediately before and after the measurement of Â.

The point is that Eq. (10) hosts Costa de Beauregard’s explanation of quantum nonlocality. One should assume that, in causal
order, the measurement of B̂ at time t1 only projects the reduced density operator of register B on |01〉B〈01|B, leaving that of
register A unaltered. Then this projection propagates backward in time from t1 to t0. At time t0, it locally projects the original
maximally entangled state on the sharp state |01〉B|01〉A. Eventually the latter state propagates forward in time from t0 to t2 where
it becomes the state immediately before and after the final measurement.

Note that, under this interpretation, the fact that the measurement of B̂ at time t1 instantly changes also the state of the
space separate register A is, so to speak, a coincidence. It does instantly change the state of register A, but by two causally
successive local propagations, one backward in time from t1 to t0 and the other forward in time from t0 to t1. Of course, these
two propagations take the same amount of time, but one with a negative and the other with a positive sign, so that the overall
time taken is zero. This is what emulates action at a distance.

Costa de Beauregard’s explanation received little attention by the majority of physicists [30]. It is difficult to say why, because
one should explain silence. Likely, the notion that causality can go backward in time, even along the objectively ideal reversible
processes of quantum mechanics, is hardly accepted. In the next subsection, we will rebuild a similar explanation by means of
the time-symmetrization formalism, thus replacing usual retrocausaliy by its present unobservable form.

B. Application of the time-symmetrization formalism

First, we apply the time-symmetrization (TS) formalism to the usual description of quantum nonlocality of Eq. (9), where
the outcome of the first measurement directly propagates, by Û1,2, to the second measurement. Note that we are dealing with a
description with respect to any observer. We do not have to hide anything from anyone here. We consider the time-symmetrization
instance where the sorted out value of the two correlated measurement outcomes is 01, the measurement of B̂ at time t1 reduces
to that of B̂l (the left bit of the number contained in register B) and the measurement of Â at time t2 to that of Âr (the right bit of
the number in register A). The corresponding zigzag diagram is as follows:

time t1, meas. of B̂l t1 � t2 time t2, meas. of Âr

|00〉B|00〉A + |01〉B|01〉A + |10〉B|10〉A + |11〉B|11〉A

⇓
|00〉B|00〉A + |01〉B|01〉A ⇒ Û1,2 ⇒ |00〉B|00〉A + |01〉B|01〉A

⇓
|01〉B|01〉A ⇐ Û†

1,2 ⇐ |01〉B|01〉A

. (11)

The measurement of B̂l at time t1 projects the initial-state superposition (top left of the table) on the superposition of the
terms beginning with 0 (vertical arrow on the left of the table). The latter superposition, by Û1,2, propagates to t2 (right-pointing
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horizontal arrows), where the measurement of Âr projects it on the sharp state |01〉B|01〉A ending with 1 (vertical arrow on
the right of the table). This measurement outcome, by Û†

1,2, propagates to t1 (left-pointing horizontal arrows). The propagation
in question, which inherits both selections, is both a time-symmetrization instance and the superposition of all instances for
measurement outcome 01, with the bottom lines of all these instances being identical to each other. They are also identical to the
ordinary quantum description—bottom line of Eq. (9)—since “⇐ Û†

1,2 ⇐” is equivalent to “⇒ Û1,2 ⇒”.
Now we apply the TS formalism to the description of the quantum process that goes from t1 to t2 via t0. It suffices to replace,

in Eq. (11), Û1,2 by the mathematically equivalent Û1,0,2. This yields the following:

time t1, meas. of B̂l t1 � t0 � t2 time t2, meas. of Âr

|00〉B|00〉A + |01〉B|01〉A + |10〉B|10〉A + |11〉B|11〉A

⇓
|00〉B|00〉A + |01〉B|01〉A ⇒ Û1,0,2 ⇒ |00〉B|00〉A + |01〉B|01〉A

⇓
|01〉B|01〉A ⇐ Û†

1,0,2 ⇐ |01〉B|01〉A

. (12)

Of course, also in this case the bottom lines of the time-
symmetrization instances are all identical to each other and to
that of the ordinary quantum description of Eq. (10); we can
replace “⇐ Û†

1,0,2 ⇐” by “⇒ Û1,0,2 ⇒”. The important point
is that the projections of both reduced density operators, that
of register B after the measurement of B̂l and that of register
A after the measurement of Âr , in their propagation toward the
other measurement go via t0. At time t0 they locally project
the state of the entire quantum system. Also the present zigzag
diagram hosts the local explanation of spatial nonlocality.

By the way, one might wonder how the projection of the
reduced density operator of either register “knows” that it
must propagate to the other measurement through t0. Our
answer would be that it propagates in all the possible ways
along the unitary evolutions that connect the two measurement
outcomes.

Eventually, let us note that what explains spatial nonlo-
cality are a couple of quantum causal loops, one for each
measurement. The two measurements, respectively at times
t1 and t2, change back in time the state of the two registers at
time t0. This in turn causes the correlation between the two
future measurement outcomes.

Let us compare now the explanation of nonlocality pro-
vided by the TS formalism and that of Costa de Beauregard.

The latter explanation assumes that the entire outcome
of measuring B̂ at time t1(which only changes the reduced
density operator of register B) goes backward in time to the
time t0 the two subsystems were not spatially separate. This
(i) violates the present requirement that the description of
quantum correlation does not present a preferred time direc-
tion of causality, (ii) changes a past state as described by the
ordinary quantum description, and (iii) can be considered an
arbitrary assumption in the sense that it is only justified by the
explanation it provides.

The TS formalism replaces the ordinary retrocausality of
Costa de Beauregard’s explanation of Eq. (10) by the un-
observable retrocausality of Eq. (12). The latter comes from
time symmetrizing the ordinary quantum description of the
reversible process that physically connects, via t0, the two
measurement outcomes. In present assumptions, more than
being legitimate, this time symmetrization is mandatory to
complete the quantum description. Furthermore, the two not
yet space-separate subsystems are told about how to behave in

the future measurements by hidden variables: the unobserv-
able time directions of the causations that physically ensure
the correlation between the two outcomes. This unobservable
way of sending information backward in time that does not
change the observable past should be acceptable.

V. DISCUSSION

In this section, we discuss the unconventional and unortho-
dox points of the present work. They can be summarized as
follows:

(i) Opening to retrocausality.
(ii) Resuming the apparently forgotten problem of the in-

completeness of the quantum description raised by Einstein,
Podolsky, and Rosen in their famous EPR paper.

(iii) Tackling the same problem in the quantum speedup. Its
ordinary quantum description is a reversible process between
two one-to-one correlated measurement outcomes exactly as
in the case of quantum nonlocality and thus must suffer from
the same incompleteness.

(iv) Deriving a technical result—the rule for computing the
number of oracle queries needed to solve an oracle problem in
an optimal quantum way—in an axiomatic way from physical
principles.

(v) Showing that the quantum capability of performing
tasks that cannot be performed classically essentially relies
on unobservable causal loops.

Any of the above points can be puzzling. We defend them
as follows:

Point (i). The fact that retrocausality can change the
past in the macroscopic world gives rise to well-known
paradoxes. However, the present form of quantum retro-
causality has a justification and a remedy. The justification
is that retrocausality is generated by a mandatory operation:
completing the ordinary quantum description by time sym-
metrizing it. The remedy is that it resides in each unobservable
time-symmetrization instance and vanishes in their quantum
superposition, namely in the ordinary quantum description. In
other words, the quantum form of retrocausality generated by
the time-symmetrization formalism is unobservable and does
not change the past as described by the ordinary quantum
description. It should therefore be immune to the paradoxes
that plague the usual form.
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Points (ii) and (iii). In hindsight, it is clear that the ordinary
description of quantum correlation—hence of nonlocality and
the speedup—is incomplete. Indeed, it cannot describe the
causal loops on which both are based. By completing it, it
does.

Point (iv). The number of oracle queries needed to solve
an oracle problem in an optimal quantum way has been
axiomatically derived from the principle that the quantum
description of a process which is reversible from the initial to
the final measurement outcome must be symmetric in time,
i.e., must not entail a preferred time direction of causality.
This derivation solves in a synthetic way the so-called quan-
tum query complexity problem, which is central to quantum
computer science and still unsolved in the general case [7,8].
The synthetic character of this derivation contrasts with the
analytical (entirely mathematical) character of the derivations
typical of the latter discipline. Our defense is that the two
kinds of derivation should be equivalent if quantum mechanics
is consistent.

In favor of the synthetic approach, we would invoke
Grover’s authority. In 2001 [31], he called for a synthetic
demonstration of the optimality of his quantum search al-
gorithm. He wrote, “It has been proved that the quantum
search algorithm cannot be improved at all, i.e. any quantum
mechanical algorithm will need at least O

√
N steps to carry

out an exhaustive search of N items. Why is it not possible
to search in fewer than O

√
N steps? The argument used to

prove this are very subtle and mathematical. What is lacking
is a simple and convincing two line argument that shows why
one would expect this to be the case.”

Our “two-line” argument would be that time symmetrizing
the ordinary quantum description of the reversible process
of setting and solving Grover’s problem reduces its quan-
tum computational complexity from O(N ) to O

√
N . Further

time symmetrizing the already time-symmetrized description
would leave it unaltered and would not further reduce the
problem complexity.

Point (v). We have shown that, in the two known cases of
the quantum speedup and quantum nonlocality, the quantum
ability to perform tasks that cannot be performed classically
relies on causal loops. Accepting the idea that nonrelativistic
quantum mechanics can host causal loops might be difficult.
However, the fact that such loops reside in the unobservable
time-symmetrization instances and vanish in their quantum
superposition, namely in the ordinary quantum description,
should make it easier.

VI. SUMMARY AND CONCLUSION

As the present work is rather unconventional, it may be
useful to summarize it before concluding.

A. Summary

We have been dealing with the quantum description of
the reversible processes between two one-to-one correlated
measurement outcomes that characterize both the quantum
speedup and quantum nonlocality. We have argued that the
ordinary quantum description of these processes mathemati-

cally describes the correlation between the two outcomes but
leaves the causal structure that physically ensures it free.

We have seen that, consequently, the selection of the infor-
mation that specifies the sorted-out pair of outcomes among
all the possible pairs can share in any way between the initial
and final measurements.

In the present assumptions, the ways where this sharing is
uneven violate the time symmetry required of the description
of a time-reversible process: the fact it should not entail a
preferred time direction of causality. This says that the or-
dinary quantum description, which allows such violations, is
incomplete and is completed by time symmetrizing it. To this
end, the selection of the information that specifies the pair
of correlated measurement outcomes should be evenly (and
nonredundantly) shared between the initial and final measure-
ments. Since this can be done in a plurality of ways, we should
take their quantum superposition.

This time symmetrization of the ordinary quantum de-
scription leaves it unaltered, as it should be, but at the same
time shows that it is a quantum superposition of unobservable
time-symmetrization instances whose causal structure is com-
pletely defined. Each instance is a causal loop. Causality goes
from the initial to the final measurement outcome and then
back from the latter to the initial measurement outcome.

These instances are unobservable since they vanish in the
superposition of all instances. In fact, the latter is the ordi-
nary quantum description, which leaves the causal structure
that physically ensures the correlation between the two mea-
surement outcomes free. Being completed descriptions of the
quantum process, they describe it in a more complete way than
the ordinary quantum description. In particular, they immedi-
ately explain the quantum speedup and quantum nonlocality.

In the case of the quantum speedup, the final measurement
of the problem setting and the corresponding solution on the
part of the problem solver changes backward in time the initial
measurement outcome. The latter represents both the problem
to be solved and the knowledge of the problem setting and
the corresponding solution on the part of the problem solver.
The computational complexity of the problem to be solved
reduces. Correspondingly, the problem solver’s complete ig-
norance of the problem setting and the corresponding solution
changes into knowledge of half of the information that speci-
fies them. The causal loop becomes the fact that all is as if the
problem solver knew in advance half of the information about
the problem setting and the corresponding solution she will
read in the future and could use this knowledge to produce the
solution with fewer oracle queries.

In the case of quantum nonlocality, the measurement on
either subsystem, when the two are space separate, retro-
causally and locally changes the state of both subsystems
when they were not space separate. The causal loop implicit
in the time-symmetrization formalism originates two causal
loops, one for each measurement. Together, they locally cause
the correlation between the two measurement outcomes.

B. Conclusion

In conclusion, the key finding of the present approach
is that the ordinary quantum description of the processes
between two one-to-one correlated measurement outcomes,
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which leaves the causal structure that physically ensures the
correlation free, is the quantum superposition of unobservable
casual loops. Such causal loops, which of course vanish in the
ordinary quantum description, describe the quantum process
in a more complete way. In particular, they immediately ex-
plain the quantum speedup and quantum nonlocality.

Future work, at the fundamental level, could be to look
for causal loops in any task that is quantumly possible and
classically impossible and for the possibility of extending the
present time-symmetrization formalism beyond one-to-one
quantum correlation. Of course, if the probability of finding
the solution is not exactly one, there can still be a quantum
speedup and a causal loop that ensures it. At the technical
level, the advanced knowledge rule could be used in the search
for new quantum algorithms and to arrange oracle problems
into quantum complexity classes. One could also see whether
the present axiomatic derivation of the rule for finding the
number of queries needed to solve an oracle problem in an
optimal quantum way might suggest a corresponding analytic

derivation. About the possibility of cross fertilization between
the foundations of physics and quantum computer science, see
Ref. [32].

We hope that the present work will help to clear up the
notion of retrocausality in physics, in its present form of
unobservable quantum causal loops that vanish in the ordinary
quantum description and thus cannot change the past as de-
scribed by it. This notion could open up to physics a territory
that was previously off limits.
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