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Driven-dissipative many-body systems are difficult to analyze analytically due to their nonequilibrium dy-
namics, dissipation, and many-body interactions. In this paper, we consider a driven-dissipative infinite-range
Ising model with local spontaneous emission, which naturally emerges from the open Dicke model in the
large-detuning limit. Utilizing an adaptation of the Suzuki-Trotter quantum-to-classical mapping, we develop
an exact field-theoretical analysis and a diagrammatic representation of the spin model that can be understood
from a simple scattering picture. With this representation, we are able to analyze critical behavior, finite-size
scaling, and the effective temperature near the respective phase transition. Our formalism further allows a
detailed study of the ordered phase where we find a “heating” region within which the effective temperature
becomes negative, thereby exhibiting a truly nonequilibrium behavior. At the phase transition, we find two
distinct critical behaviors with overdamped and underdamped critical dynamics at generic and weakly dissipative
critical points, respectively. We further show that the underdamped critical behavior is robust against short-range
perturbations and is not an artifact of the mean-field nature of the model. To treat such perturbations, we extend
our diagrammatic representation to include the coupling to spin waves due to the short-range interactions. The
field-theoretical approach and the diagrammatics developed in this work should prove useful in applications to
generic short-range driven-dissipative spin systems.
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I. INTRODUCTION

Open quantum systems that are coherently driven, widely
known as driven-dissipative systems, have received a great
deal of attention in recent years. The interplay between drive,
dissipation, and many-body interactions gives rise to rich
physics of both fundamental interest and practical importance.
Various driven-dissipative systems have been experimentally
realized in numerous platforms such as cavity QED and cold
atoms [1–3], circuit QED [4], and trapped ions [5,6], due
to the rapid advancement of experimental techniques in the
past 20 years. In addition, they are prominent platforms for
quantum simulation and quantum computation [7], especially
relevant to quantum computing systems in the NISQ era [8].
However, driven-dissipative systems remain difficult to treat
numerically due to their exponentially large Hilbert space, and
analytically due to the presence of many-body interactions
and nonequilibrium dynamics. Any physically relevant model
that is amenable to theoretical treatment is therefore of vital
importance to better understand the physics behind driven-
dissipative systems.

We present here a thorough investigation of a minimal
many-body driven-dissipative system, the driven-dissipative
Ising model (DDIM) with infinite-range interactions [9], a
many-body model that admits analytical solutions and is
numerically tractable. This model describes a system of
coherently driven atoms interacting via an infinite-ranged
Ising-type interaction and in the presence of a transverse
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magnetic field. Each atom is also weakly coupled to a zero-
temperature Markovian bath giving rise to individual atomic
spontaneous emission. The DDIM can be directly realized
in experiments [10] and is closely related to the open Dicke
model [1,3,11,12] that itself is one of the most well-studied
driven-dissipative systems. In fact, in the limit of large laser-
cavity detuning, the infinite-range DDIM can be derived from
the open Dicke model through adiabatic elimination of the
cavity mode [3,13]. In this paper, we present a comprehensive
study of the DDIM in various regimes: deep in the ordered
phase as well as the phase transition, at weak or strong dis-
sipation, and with or without short-range perturbations that
spoil the mean-field character of the model.

The model being infinite-ranged means a mean-field anal-
ysis is exact in the thermodynamic limit, providing access to
the exact phase diagram. To investigate fluctuations, however,
we must go beyond mean field. To this end, we introduce
a nonequilibrium quantum-to-classical mapping formalism
which allows for an exact mapping of the driven-dissipative
model to a Keldysh field theory [12,14], a nontrivial task due
to the local nature of the dissipation. Representing the model
as a field theory allows for the study of fluctuations, as well
as the ability to go beyond the quadratic level and study the
finite-size scaling near the phase transition. From this analy-
sis, the static and dynamical critical exponents characterizing
the phase transition are extracted. Interestingly, the phase
transition in the limit of weak dissipation yields a different set
of exponents from anywhere else along the phase boundary,
representing the fundamentally distinct underdamped criti-
cal dynamics in contrast with the relaxational dynamics at a
generic critical point.
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The distinct critical behavior at the weakly dissipative
point might be viewed as an artifact of the infinite-range
interactions, hence the mean-field nature of the model. To an-
alytically test the robustness of the weakly dissipative critical
behavior, we set out on a detailed study of the DDIM model
perturbed by short-range interactions. We develop a power-
ful diagrammatic representation that captures the interactions
with spin waves due to the short-range perturbation. This dia-
grammatic technique allows us to incorporate the effects of the
spin waves beyond the quadratic level. With this technology,
we show that the underdamped critical behavior persists even
in the presence of short-range interactions. We believe that our
field-theoretical techniques will prove useful in the analytical
study of more generic driven-dissipative spin systems with
local dissipation.

This paper is structured as follows: In Sec. II we briefly
review the DDIM, derive it from the open Dicke model
and provide mean-field solutions. Next, we provide an in-
troduction to a general nonequilibrium quantum-to-classical
mapping and derive the nonequilibrium Keldysh field theory
in Sec. III. Section IV covers the field-theoretical analysis of
the DDIM including its critical properties, exponents, finite-
size scaling, effective temperature, and the emergence of
distinct stochastic Langevin equations at generic and weakly
dissipative critical points. In Sec. VI we introduce perturbative
short-range interactions and study its effect on the critical
behavior using the diagrammatic techniques. Finally, we sum-
marize our main results and discuss future extensions and
applications in Sec. VII.

II. MODEL

The infinite-range DDIM is recovered from a natural
limit of the open Dicke model. The latter model is one of
the quintessential many-body nonequilibrium models, having
been experimentally realized in multiple contexts [1–3,15–17]
and extensively studied theoretically [12,13,18–24]. The
Hamiltonian describes a collection of atoms interacting with
a single cavity mode. In this driven-dissipative variant, the
interaction is mediated by an external drive to boost the
achievable interaction strength compared to the single-atom
detuning. A balanced Raman driving scheme can be utilized
to generate the atom-cavity interaction in the rotating
frame of the drive; see [11] for more details. Besides the
coherent dynamics due to the Hamiltonian, the cavity itself
is lossy, leading to dissipative dynamics. Furthermore, atomic
spontaneous emission may not be neglected as it can change
the onset of the phase transition [2,18]. The ensuing dynamics
is governed by a quantum master equation that incorporates
the effects of loss alongside the coherent dynamics. For the
open Dicke model with cavity loss and atomic spontaneous
emission, the Liouvillian, in the rotating frame of the drive
[11,12], takes the form

ρ̇ = L[ρ] = −i[HDicke, ρ] + κDa[ρ] + �
∑

i

Dσ−
i

[ρ]. (1)

Here the operator L denotes the Liouvillian and the (curly)
brackets denote the (anti-)commutator. On top of cavity
loss typically considered in the open Dicke model, we have
also included individual atomic loss, which is comparatively

less investigated [18,25,26], while it cannot be neglected
in experimental settings [2], which calls for a systematic
analysis. We also emphasize that the dynamics in the above
equation is given in the rotating frame of the drive within
the rotating-wave approximation, hence there is no explicit
time-dependent drive term. Nevertheless, detailed balance
is explicitly broken and thus the dynamics gives rise to a
nonequilibrium steady state. The derivation of Eq. (1) from
the microscopic time-dependent model—in the laboratory
frame—is beyond the scope of this work and can be found, for
example, in Ref. [11]. The Dicke model’s Hamiltonian HDicke

in this effective driven-dissipative Liouvillian is given by

HDicke = ω0a†a + �Sz + 2g√
N

(a + a†)Sx. (2)

The quantity a denotes the cavity mode operator, and
the atoms are represented by Pauli operators. Given the
collective nature of the model, we have introduced the total
spin Sα =∑i σ

α
i with α = x, y, z. The parameter ω0 is

the cavity detuning, � is the transverse field, and g is the
effective (drive-mediated) spin-cavity interaction. Finally, the
dissipative dynamics is described by

DL[ρ] = LρL† − 1
2 {L†L, ρ}, (3)

with the Lindblad operator L. Dissipation comprises photon
loss of the leaky cavity at the rate κ , corresponding to
the Lindblad operator L = a, and spontaneous emission of
individual atoms via L = σ−

i at the rate �.
Since Eq. (1) is quadratic in the photon field, one can

naively “integrate out” the photon field, which in turn gen-
erates an Ising-type interaction. More rigorously, the cavity
mode can be adiabatically eliminated in the large-detuning
limit and with large κ (ω0, κ � g), giving rise to a driven-
dissipative infinite-ranged Ising model with spontaneous
emission as well as dephasing [13]:

ρ̇S = LS[ρS] = −i[HS, ρS] + �
∑

i

Dσ−
i

[ρS] + �x

N
DSx [ρS],

(4)
with the system Hamiltonian

HS = − J

N
S2

x + �Sz. (5)

The subscript S denotes the system of atoms upon integrating
out photons, and the parameters in the above equations are re-
lated to those in the Dicke model as J = 16g2ω0/(κ2 + 4ω2

0 ),
and �x = Jκ/ω0. Note that the factor 1/N in front of the
Ising term makes the Hamiltonian extensive in the system
size. This Hamiltonian is also known as the Lipkin-Meshkov-
Gorkov (or -Glick) model and has been studied extensively
in a variety of contexts [3,27–31]. An important consequence
of integrating out the cavity mode is the introduction of x-
dephasing via L = Sx due to the microscopic photon loss. If
one takes the additional limit where ω0 � κ � g, we have
�x � J and the contribution from the dephasing becomes
negligible. The transverse field � and the decay rate � are
microscopic parameters and are unaffected by this limit, and
can be chosen to be of the same order as J . The resulting
model is the driven-dissipative infinite-ranged Ising model
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with spontaneous emission:

LS [ρ] = −i[HS, ρS] + �
∑

i

(σ−
i ρSσ

+
i − 1

2
{σ+

i σ−
i , ρS}). (6)

For a rigorous derivation, see Appendix A. For notational
convenience, we shall drop the subscript S in the rest of the
paper.

Equation (6) defines a minimal model of driven-dissipative
spin systems, also directly relevant to experiments realiz-
ing the Dicke model. The infinite-range interaction makes a
myriad of analytical and numerical techniques available, and
makes this model an ideal setting to explore questions which
are otherwise difficult or rather intractable in more complex
models. This model has a Z2 symmetry upon changing σx,y →
−σx,y and exhibits a phase transition from a normal phase
(〈Sx〉 = 0) to an ordered phase (〈Sx〉 �= 0) where the symmetry
is broken. The presence of drive and dissipation means that
the long-time state is not a thermal state, but is instead a
nonequilibrium steady state.

Before introducing an exact treatment of the DDIM, we be-
gin with a simple mean-field analysis of Eq. (6). The standard
mean-field equations of motion are obtained by calculating the
expectation values 〈σα

i 〉 and assuming that the density matrix
is factorized in space and is uniform:

ρ =
⊗

i

ρi = ρ⊗N
MF , (7)

where ρMF is the mean-field density matrix, uniform across
all sites. Using this approximation, we find the mean-field
Heisenberg equations of motion (in the N → ∞ limit)

∂t 〈σ x〉 = −2�〈σ y〉 − �

2
〈σ x〉, (8a)

∂t 〈σ y〉 = (4J〈σ z〉 + 2�)〈σ x〉 − �

2
〈σ y〉, (8b)

∂t 〈σ z〉 = −4J〈σ y〉〈σ x〉 − �(1 + 〈σ z〉), (8c)

where we have dropped the spatial index due to the uniform
ansatz. By setting the LHS to zero, we can solve for the
nonequilibrium steady-state values of the three observables. In
the normal phase, the only solution is the trivial one: 〈σ x〉ss =
0, 〈σ y〉ss = 0, 〈σ z〉ss = −1 with the subscript indicating the
steady state. In the ordered phase, we identify two stable
solutions as

〈σ x〉ss = ±
√

32J� − 16�2 − �2

4
√

2J
, (9a)

〈σ y〉ss = ∓�
√

32J� − 16�2 − �2

16
√

2J�
, (9b)

〈σ z〉ss = −�2 + 16�2

32J�
, (9c)

from which the phase boundary follows as

�2 + 16�2 − 32J� = 0. (10)

The phase diagram of this model is given in Fig. 13(a) below
and is contrasted against that of equilibrium. The mean-field
solution is exact in the thermodynamic limit due to the col-
lective interactions; however, to characterize fluctuations and

to identify the critical behavior of the model, we need to go
beyond mean field. Using a quantum-to-classical mapping, we
shall provide an exact field-theoretical description, allowing
us to make a systematic study of fluctuations beyond mean
field.

III. MAPPING TO KELDYSH FIELD THEORY

A natural framework to describe the critical behavior is
through a field-theoretical analysis. An immediate challenge,
however, is to describe the driven-dissipative spin model in a
terms of a field theory. Previous works [12,29,32,33] utilized
the Holstein-Primakoff transformation to bosons to much suc-
cess; however, local spontaneous emission in Eq. (6) breaks
the total-spin conservation, in which case this transformation
is no longer applicable. More recently, a mapping of spins
to composite fermions [18] was used to tackle local spon-
taneous emission; however, the fermionic model becomes
rather complex. Here we seek a alternative route to tackle the
dynamics in the presence of local spontaneous emission. We
develop a nonequilibrium quantum-to-classical mapping that
takes inspiration from the equilibrium quantum-to-classical
mapping, also known as the Suzuki-Trotter mapping [34]. The
Suzuki-Trotter decomposition involves mapping the partition
function of a quantum system in d dimensions to that of a
classical model in one higher dimension. To set up a similar
mapping, our starting point is the nonequilibrium partition
function

Z = Tr(ρ(t )) = 1. (11)

It is important to note that Z = 1 at all times, representing
the conservation of probability from the Liouvillian dynamics
governed by Eq. (6). The first step will be a nonequilibrium
extension of the Suzuki-Trotter decomposition. In equilib-
rium, the decomposition is performed by decomposing the
thermal state into many “imaginary-time” slices and insert-
ing a resolution of the identity at each time slice. In our
nonequilibrium setting, the evolution operator exp(tL) is a
superoperator, as can be seen from the fact that the Liouvillian
takes the form L[•] =∑i Ai • Bi for some matrices Ai, Bi. To
adapt the Suzuki-Trotter decomposition to Liouvillian dynam-
ics, we must first “vectorize” the density matrix ρ → |ρ〉〉,
such that the Liouvillian superoperator L is transformed into
a non-Hermitian matrix L. More explicitly, we vectorize the
density matrix by performing the transformation

A|i〉〈 j|B → A|i〉 ⊗ BT | j〉, (12)

where the element |i〉〈 j| of the density matrix is mapped to
the superket |i〉 ⊗ | j〉 = |i〉 | j〉 ≡ |i, j〉〉. Inner products in this
vectorized form are equivalent to the Hilbert-Schmidt norm in
the original operator space,

〈〈A|B〉〉 = Tr(A†B). (13)

The nonequilibrium partition function upon vectorization take
the form

Z = Tr(etLρ0) → 〈〈I| etL |ρ0〉〉, (14)
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where the matrix L is given by

L = − i(H ⊗ I − I ⊗ H ) (15)

+ �
∑

i

[
σ−

i ⊗ σ−
i − 1

2
(σ+

i σ−
i ⊗ I + I ⊗ σ+

i σ−
i )

]
.

The process of vectorization can be interpreted as the
purification of the density matrix, which is achieved by dou-
bling the system of spins. In this picture, the Liouvillian
is a non-Hermitian Hamiltonian governing the dynamics of
the doubled spin system. As an example, consider a chain
of quantum spins evolving under Liouvillian dynamics. In
the process of vectorization, this chain is mapped to a
one-dimensional ladder of quantum spins governed by the
non-Hermitian Hamiltonian L where dissipation couples the
two legs of the ladder.

The vectorized partition function is now in a form
amenable to the Suzuki-Trotter decomposition. We first apply
the decomposition to the evolution operator, choosing to split
the exponential into two parts:

etL = lim
M→∞

(
eδtL0 eδtL1

)M
. (16)

Here the time step is δt = t/M, the matrix L0 contains the
Ising interaction, and the matrix L1 contains all the other
terms in Eq. (15). This will be a convenient choice for the
next step, where we insert a resolution of the identity in the
basis that diagonalizes the Ising interaction,

In =
∑
{σ }

⊗
i

∣∣σ (u)
i,n , σ

(l )
i,n

〉〈
σ

(u)
i,n , σ

(l )
i,n

∣∣, (17)

at each time step n, with σ x|σ 〉 = σ |σ 〉, σ ∈ {1,−1} and {σ }
a shorthand for a spin configuration. We have introduced the
upper and lower notation to denote spins on the upper and
lower legs of the ladder, i.e., σ x(u) = σ x ⊗ I . For a single time
step, the corresponding matrix element is〈{

σ (u)
n

}∣∣ 〈{σ (l )
n

}∣∣eδtL0 eδtL1
∣∣{σ (u)

n−1

}〉∣∣{σ (l )
n−1

}〉
, (18)

where the collection {σ (u/l )
n } denotes the set of all “classical

spins” at time step n. Now, L0 is diagonal in our basis resulting
in an action S0 in terms of the classical spins:

S0 = δtJ

N

∑
n

[(
S(u)

n

)2 − (S(l )
n

)2] =
∑

n

S0,n, (19)

with S(u/l )
n =∑i σ

(u/l )
i,n the collective classical spin. On the

other hand, L1 is not diagonal and acts nontrivially in this

basis; however, it will not be necessary to calculate the matrix
elements of exp(δtL1), as we shall see shortly.

A. The DDIM action

With the Ising interaction becoming a c-number, we can
utilize the standard techniques to obtain a field-theoretical
description of the DDIM. First, we perform a Hubbard-
Stratonovich transformation to decouple the Ising interaction
and introduce real scalar fields m(u/l )

n , one for each leg of the
ladder. This is given by (up to a normalization constant)

eiS0,n ∼
∫

D(M )[m] exp

{
−iJδtN

[(
m(u)

n

)2 − (m(l )
n

)2]
+ i2Jδt

(
m(u)

n S(u)
n − m(l )

n S(l )
n

)}
. (20)

For compactness, we have defined the measure (up to a
normalization constant) D(M ) ∼∏M

n=1 dm(u)
n dm(l )

n . Since the
spins are decoupled, they can be traced out. This procedure
gives the partition function in terms of the scalar fields m(u/l )

n ,

Z = lim
M→∞

∫
D(M )[m] e−i2JδtN[(m(u)

n )2−(m(l )
n )2]

×
(

〈〈I|
M∏

n′=0

eδtTn′ |ρ0〉〉
)N

. (21)

The matrix T (m(u/l )
n ) ≡ Tn results from tracing out a single

spin and will be defined shortly. For convenience, we have
assumed that all spins are in the same initial state; this will
not affect the properties of the unique nonequilibrium steady
state. Notice that the contribution from all sites gives rise to
the power of N in the first exponential. Finally, the matrix Tn

captures the effects of dissipation, transverse field, as well as
the order parameter via m, and it is obtained by taking advan-
tage of the M → ∞ limit to combine all single-site operators.
In terms of the (single-site) spin operators, this matrix takes
the form

Tn = i2J
(
m(u)

n σ x(u) − m(l )
n σ x(l )

)− i�(σ z(u) − σ z(l ) )

+ �σ−(u)σ−(l ) − �

2

(
σ+(u)σ−(u) + σ+(l )σ−(l )

)
. (22)

The object exp(δtTn) is akin to a transfer matrix for a
single rung of the spin ladder. More explicitly, the matrix
T (mu/l (t )) ≡ T (t ) in the |σ (u)〉 |σ (l )〉 basis is given by

T =

⎛⎜⎜⎝
−�

4 + i2
√

2Jmq i� −i� �
4

i� − �
2 − 3�

4 + i2
√

2Jmc −�
4 −i� − �

2
−i� − �

2 −�
4 − 3�

4 − i2
√

2Jmc i� − �
2

�
4 −i� i� −�

4 − i2
√

2Jmq

⎞⎟⎟⎠.

Finally, we take the continuum limit (δt → 0) with the initial state given at t → −∞. This leads to a path-integral formulation
of the nonequilibrium partition function:

Z =
∫

D[mc(t ), mq(t )]eiS[mc/q (t )], (23)
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with the Keldysh action

S = −2JN
∫

t
mc(t )mq(t ) − iN ln Tr[T e

∫
t T (mc/q (t ))]. (24)

In obtaining Eq. (24), we have performed the Keldysh rotation
mc/q = (m(u) ± m(l ) )/

√
2 to bring the action into the conven-

tional Keldysh form, and have absorbed all prefactors into
the measure D[m]. The trace in the last term is chosen for
convenience as we are interested in only the nonequilibrium
steady state at late times with no memory of the initial state.
The time-ordering operator T also makes its appearance in the
continuum limit to properly treat the time dependence of the
fields.

B. Field-spin relationship

The quantum-to-classical mapping utilizes the Hubbard-
Stratonovich transformation to introduce a real field m in place
of the classical total spin S. Therefore, expectation values of
m should be naturally related to those of the original spin
operator Sx. To derive this relationship, we introduce time-
dependent source fields α(u/l )(t ) coupled to Sx on both the
upper and lower legs, i(α(u)S(u)

x − α(l )S(l )
x ), where we can have

α(u) �= α(l ) so that the nonequilibrium partition function Z �=
1 [14]. The source fields do not alter the quantum-to-classical
mapping derivation; they simply introduce new elements to
the matrix T as

T ′(t ) = T (mc/q(t )) + i
√

2

⎛⎜⎝αq 0 0 0
0 αc 0 0
0 0 −αc 0
0 0 0 −αq

⎞⎟⎠, (25)

where we have performed the Keldysh rotation αc/q = (α(u) ±
α(l ) )/

√
2 on the source fields. The fields mc/q are dummy

variables under the path integral. Making the change of
variables mc/q(t ) → mc/q(t ) + αc/q(t )/2J , we can move the
source terms out into the quadratic portion of the action to
find (using the same field variables)

S = N
∫

t

[
mc(t )αq(t ) + mq(t )αc(t ) − αq(t )αc(t )

2J

]
+ S0[mc/q], (26)

where S0 is the original action without the source fields
in Eq. (24). Taking derivatives of the generating functional
Z[α(t )] with respect to the source fields generates correlation
functions [14]. Specifically, taking a derivative with respect to
αq yields

√
2

N
〈Sx(t )〉 = −i

∂Z

∂αq(t )

∣∣∣∣
αc/q=0

= 〈mc(t )〉, (27)

which provides a clear translation between the two descrip-
tions (the factor of

√
2 arises due to the Keldysh rotation).

Next, we consider the two-point correlation function and re-
sponse function, respectively:

1

N2
〈{Sx(t ), Sx(t ′)}〉 = − δZ

δαq(t )δαq(t ′)

∣∣∣∣
αc/q=0

= 〈mc(t )mc(t ′)〉, (28)

and
1

N2
〈[Sx(t ), Sx(t ′)]〉

= −
[

δZ

δαq(t )δαc(t ′)
− δZ

δαc(t )δαq(t ′)

]∣∣∣∣
αc/q=0

= 〈mc(t )mq(t ′)〉 − 〈mq(t )mc(t ′)〉. (29)

This establishes the relationships between the spin operator
and the fields. It is straightforward to find the analogs of these
relations at higher orders by taking appropriate derivatives
with respect to the source fields.

IV. FIELD-THEORETICAL ANALYSIS

Having mapped a driven-dissipative spin model to a
nonequilibrium Keldysh action, we can now take advantage
of the field-theoretical toolbox available to us. Equation (24)
appears formidable due to the log-trace term; however, the
overall factor of N in the action (residual of the collective
nature of the DDIM) means that the saddle-point approx-
imation becomes exact in the thermodynamic limit. Using
this approximation, we find the steady-state expectation value
of the order parameter and expand the action in powers of
fluctuations around the order parameter, in both the ordered
and normal phases.

A. Saddle-point solution

The natural first step in a field theory is to solve the classi-
cal equations of motion. In other words, we seek the solutions
to the saddle-point equations

δS
δmc(t )

= 0,
δS

δmq(t )
= 0, (30)

with mc(t ) = m ≡ const and mq(t ) = 0. Equations (30) are
essentially a semiclassical approximation to the problem,
neglecting statistical and quantum fluctuations, but they con-
stitute a first step before considering critical properties.
Carrying out the explicit calculations for the order parameter
m, we find

δS
δmq(t )

∣∣∣∣mc = m
mq = 0

= −2JNm − iN
Tr
(
e(t f −t )T0Tqe(t−ti )T0

)
Tr
(
e(t f −ti )T0

)
= −2JNm − iN〈〈I|Tq|ρss〉〉 = 0, (31)

where ti/ f denote the initial and final times, respectively. Here
we introduce the notation

T0 = T (mc = m, mq = 0), (32a)

Tc = ∂T

∂mc(t )

∣∣∣mc = m
mq = 0

= i2
√

2J diag{0, 1,−1, 0}, (32b)

Tq = ∂T

∂mq(t )

∣∣∣mc = m
mq = 0

= i2
√

2J diag{1, 0, 0,−1}, (32c)

with all the matrices evaluated at the saddle-point stationary
values. To obtain the second line of Eq. (31), we have con-
veniently taken ti → −∞, and used the fact that the only
the non-negative eigenvalue of T0 is zero (corresponding to
the nonequilibrium steady state), leaving us with an inner
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product of the corresponding left and right eigenvectors 〈〈I|
(representing the identity) and |ρss〉〉 (denoting the steady

state). The identity vector is simply 〈〈I| = (1, 0, 0, 1), while
the steady-state vector is given by

|ρss〉〉 =
(

8
√

2�Jm

�2 + 16�2 + 16J2m2
+ 1

2
,−�2 + 16�2 + 4i

√
2�Jm

2�2 + 32�2 + 32J2m2
,− �2 + 16�2 − 4i

√
2�Jm

2(�2 + 16�2 + 16J2m2)
,

1

2
− 8

√
2�Jm

�2 + 16�2 + 16J2m2

)T

.

(33)

These two vectors are normalized such that 〈〈I|ρss〉〉 = 1.
Evaluating the second line of Eq. (31), we find that m = 0
in the normal phase and

m = ±
√

−�2 − 16�2 + 32�J/4J (34)

in the ordered phase. The phase boundary is located where the
latter solutions are trivial (i.e., zero), and coincides with that
of mean field. In a sense, our analysis here is the mean-field
treatment at the level of the field theory. As we show explicitly
later, these solutions and the phase boundary are exact in the
thermodynamic limit, as expected due to the infinite-ranged
nature of the model.

B. Quadratic expansion

Equipped with the saddle-point solutions, we can now
investigate Gaussian fluctuations, i.e., the quadratic terms in
the expansion of the action around the saddle-point solution.
Expanding Eq. (24) to second order around the saddle-point
solutions in the normal phase (m = 0), we have

S (2) = 1

2

∫
t,t ′

(mc, mq)t

(
0 PA

PR PK

)
t−t ′

(
mc

mq

)
t ′
, (35)

where a factor of
√

N has been absorbed into the fields for
convenience. Note that the kernel is a function of the time dif-
ference only, reflecting the fact that time translation symmetry
is restored in the nonequilibrium steady state. The kernel
also exhibits the Keldysh structure [12,14,35], therefore the
elements PR/A can be interpreted as the retarded or advanced
inverse Green’s functions and PK as the Keldysh component.
These terms are given by

PR(t ) = PA(−t ) = δS
δmq(t )δmc(0)

∣∣∣∣mc = 0
mq = 0

= −2Jδ(t ) − i�(t )〈〈I|Tqet T0Tc |ρss〉〉
= −2Jδ(t ) + �(t )8J2e− �

2 t sin (2�t ) (36a)

and

PK (t ) = δS
δmq(t )δmq(0)

∣∣∣∣mc = 0
mq = 0

= −i〈〈I|Tqe|t |T0Tq |ρss〉〉

= i8J2e− �
2 |t | cos (2�t ). (36b)

The above elements take a relatively simple form, with the
dissipation leading to the exponential decay and the trans-
verse field to oscillations. In addition, a δ function emerges in
Eq. (36a) as a remnant of the Hubbard-Stratonovich transfor-
mation and ensures the proper normalization of the partition
function. The step function in the second term stems from
〈〈I|Tc exp(tT0)Tq |ρss〉〉 = 0 and enforces the proper time

ordering of the matrices. Because we absorbed a factor of√
N into the fields, higher-order terms in the expansion are

at least of the order O(1/N ), rendering Eq. (35) exact in the
thermodynamic limit.

It will be convenient to recast these expressions in
frequency space. With the Fourier transform mc/q(t ) =∫

dω
2π

mc/q(ω)e−iωt , the kernel elements are

PR(ω) = −2J − 4iJ2

[
1

−�/2 − i(2� − ω)

− 1

−�/2 + i(2� + ω)

]
(37a)

and

PK (ω) = 4iJ2�

[
1

�2/4 + (ω − 2�)2
+ 1

�2/4 + (ω + 2�)2

]
.

(37b)

These analytic expressions follow from the simple form
of the steady-state vector in the normal phase, |ρss〉〉 =
(1,−1,−1, 1)T /2.

An advantage of our quantum-to-classical mapping and
resultant exact action is that we are not limited to the normal
phase, we can instead explore the entire phase diagram. In
the ordered phase, evaluating expressions like the second line
in Eqs. (36a) and (36b) become difficult as they require the
nontrivial form of |ρss〉〉 shown in Eq. (33), as well as the
fact that the T matrix is now evaluated at finite m. We nev-
ertheless derive formal expressions for the above functions
as follows. We first decompose the exponential matrix etTm ,
where Tm = T (mc(t ) = m, mq(t ) = 0), into its spectral form

etTm =
3∑

i=0

e|δt |λi
∣∣λR

i

〉〉〈〈
λL

i

∣∣
= |ρss〉〉〈〈I| +

3∑
i=1

e|δt |λi
∣∣λR

i

〉〉〈〈
λL

i

∣∣. (38)

The vectors 〈〈λL
i | and |λR

i 〉〉 denote the ith left and right
eigenvectors of Tm with eigenvalue λi, respectively, and are
normalized as 〈〈λL

i |λR
j 〉〉 = δi j ; the biorthogonal structure is

due to Tm being non-Hermitian. The expressions for the
inverse response and Keldysh components in the frequency
domain are then

PR(ω) = −2J − i
3∑

i=1

Ci

∫
δt

eiωδt�(δt )e|δt |λi

= −2J + i
3∑

i=1

Ci
1

λi + iω
(39a)
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and

PK (ω) = −i
3∑

i=1

C̃i

∫
δt

eiωδt e|δt |λi = 2i
3∑

i=1

C̃i
λi

λ2
i + ω2

. (39b)

The accompanying coefficients are given by

Ci = 〈〈I|Tq

∣∣λR
i

〉〉〈〈
λL

i

∣∣Tc|ρss〉〉, (40a)

C̃i = 〈〈I|Tq

∣∣λR
i

〉〉〈〈
λL

i

∣∣Tq|ρss〉〉. (40b)

PR(ω) and PK (ω) can be obtained by numerically solving for
the eigenvalues and the eigenvectors of Tm.

C. Correlation and response functions

The physical observables of interest in terms of the kernel
elements describing the field m are the symmetrized correla-
tion function

C(ω) = 1

N
Fω〈{Sx(t ), Sx(0)}〉 = 〈mc(ω)mc(−ω)〉

= −iPK (ω)

PR(ω)PA(ω)
(41a)

and the response function

χ (ω) = 1

iN
Fω〈[Sx(t ), Sx(0)]〉

= 1

i
〈mq(ω)mc(−ω) − mc(ω)mq(−ω)〉

= 1

PR(ω)
− 1

PA(ω)
. (41b)

Their explicit forms can be obtained from Eqs. (37a) and (37b)
as

C(ω) = �(�2 + 4(4�2 + ω2))

2(ω − ω1)(ω − ω2)(ω − ω∗
1 )(ω − ω∗

2 )
(42a)

and

χ (ω) = 4�

[
(ω − ω∗

1 )(ω − ω∗
2 ) − (ω − ω1)(ω − ω2)

(ω − ω1)(ω − ω2)(ω − ω∗
1 )(ω − ω∗

2 )

]
. (42b)

The poles in these equations are given by

ω1 = − i

2
(� − �c), ω2 = − i

2
(� + �c), (43)

where �c = 4
√

(2J − �)�. We thus observe that ω1 is the
“soft mode” which vanishes at the phase transition, while we
can identify ω2 as the “fast mode” that remains finite. The
soft mode is responsible for critical dynamics and signifies
the critical slowdown as we approach the phase transition.
The limit �c → 0, where both poles become soft, gives rise
to qualitatively different behavior as we shall discuss later.

In the time domain, the correlation and response function
are given by

C(t ) = e−�|t |/2

�c

[
��c + 16(J − �)�

� + �c
e−�c|t |/2

+ ��c − 16(J − �)�

� − �c
e�c|t |/2

]
(44a)

FIG. 1. The response function (a) and correlation function (b) in
the ordered phase (J = 1, � = 1) for different values of �. (a) As
we move away from the phase boundary, χ (ω) at low frequencies
plateaus before changing sign, indicating a gainy rather than lossy
behavior. (b) The peak at ω = 0, signifying the dominant soft mode
near the phase boundary, splits into two as � is decreased. For
sufficiently small � (� 2.3), another peak appears at ω = 0.

and

χ (t ) = sgn(t )
4�

�c
e−�|t |/2

(
e−�c|t |/2 − e�c|t |/2

)
. (44b)

We can identify two distinct regimes in the disordered phase.
For � < 2J , we see that �c is real, and that both C(t ) and
χ (t ) are purely relaxational. On the other hand, �c becomes
imaginary for � > 2J , hence complex-valued poles, and the
dynamics becomes underdamped. In this regime, the overall
decay rate is controlled by �, and the oscillation timescale is
set by �c. This behavior arises due to the competition between
the interaction J and the transverse field �. For sufficiently
large �, the transverse field is dominant and causes the large
spin to precess about the z-axis; while on average the longi-
tudinal spin components are zero, their temporal correlations
expose the oscillations.

In the ordered phase, the correlation and response func-
tion can be evaluated numerically starting with the inverse
response and Keldysh elements in Eqs. (39a) and (39b). In
Fig. 1 we plot χ (ω) and C(ω) within the ordered phase and
for different values of �. As � is decreased, the low-frequency
region of χ (ω) changes sign, indicating that the system is no
longer lossy and is rather “gainy” at low frequencies. This
behavior is of course related to the driven nature of the sys-
tem. Similarly, the correlation function shows a single peak
at ω = 0 for larger � close to the phase boundary (within
the ordered phase); this behavior can be attributed to the soft
mode. As we move away from the phase boundary, this peak
splits into two and eventually gives rise to a smaller peak at
ω = 0. Indeed, this appears at the same point where the low-
frequency behavior of χ changes qualitatively. In Sec. IV E we
show that this behavior can be interpreted as the emergence of
a negative effective temperature.

D. Diagrammatics

To go beyond the quadratic action, we introduce here a
diagrammatic representation of the interaction terms in the
expansion of the action. These terms can be found by first
expanding the argument of the logarithm in Eq. (85) in powers
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FIG. 2. Diagrammatic representation. (a) The solid and dashed
legs in (a) represent classical (mc) and quantum (mq) fields, re-
spectively. (b) The wavy line represents the time evolution where
time ordering is understood from right to left. (c) Connected legs
correspond to Green’s functions with GR the response function and
GK the Keldysh correlation function.

of the fields as

S = −2J
∫

t
mc(t )mq(t ) − iN ln

(
1 +

∑
i,α

Di,α

)
, (45)

where, as stated before, a factor of
√

N has been absorbed into
mc/q, and Di,α is the ith-order connected diagram:

Di,α = 1

N
i
2

∫
t

uα(t )mα1 (t1) · · · mαi−1 (ti−1)mαi (ti ). (46)

Here we have used t as a shorthand for {t1, . . . , ti−1, ti} and
similarly for α. The latter indices take the values c and q
representing classical and quantum fields, respectively, and
the sum over α in Eq. (45) is only over distinct orderings
of c and q to avoid overcounting. The rules for constructing
these diagrams can be found in Fig. 2. Connected diagrams
are time ordered from right to left, therefore the interaction
coefficient uα j is time ordered too with t1 � · · · � ti−1 � ti.
These coefficients are given by

uα = Tr
[
Tα1U (t1, t2)Tα2 · · ·U (ti−1, ti )Tαi

]
, (47)

where we have defined the “trace” operation Tr(•) = 〈〈I| •
|ρss〉〉, have utilized the matrices Tc/q defined earlier, and have
introduced the propagators U (t − t ′) = exp[(t − t ′)T0] with
T0 = T (m = 0). The latter propagators are depicted as wavy
lines in our diagrammatic notation; see Fig. 2. This time-
ordered representation of the interaction coefficients (and
diagrams) is best understood in a scattering picture. The su-
perket |ρss〉〉 describes the nonequilibrium steady state of a
pair of spins on the upper and lower leg of the spin ladder,
and is taken as the “in” state. This state propagates freely
(via U ) while scattering off the mean-field (mc/q) intermit-
tently. In other words, the interaction coefficients follow from
the time-dependent perturbation theory in the expansion of
the evolution operator T e

∫
t T (t ), with T (t ) = T0 + mc(t )Tc +

mq(t )Tq, in powers of the scattering potentials mc/qTc/q.
The scattering interpretation becomes manifest in Fourier

space. Let’s first consider the free propagator in Fourier space:

U (ω) =
∫

t>0
e−iωt etT0 = − 1

T0 − iω
. (48)

Here we have used the fact that the matrix T0 is diagonaliz-
able, and that the real part of its eigenvalues λ is nonpositive.
For an eigenvalue with a zero real part, we substitute ω →
ω − iε due to causality with the understanding that the limit
ε → 0 is taken at the end of the calculation. The above expres-
sion is reminiscent of the Lippmann-Schwinger equation with
T0 taking the role of the Hamiltonian, though we must recall

FIG. 3. A representative (classical) vertex. The interaction coef-
ficient uqccc(t ) is time ordered such that t1 � t2 � t3 � t4, and is given
explicitly by Eq. (47).

that T0 is non-Hermitian and acts on two copies of a spin. It is
often convenient to compute the interaction coefficient in the
Fourier space. Some algebra yields

u(ω) = Tr
[
Tα1U (ω̃1)Tα2 · · ·U (ω̃i)Tαi

]
, (49)

where ω̃ j = ω1 + · · · + ω j − ω j+1 − · · · − ωi.
So far, we have considered the connected diagrams that

arise inside the logarithm in Eq. (45). However, the full di-
agrammatic expansion of the action requires an expansion
of the logarithm too. Expanding Eq. (45) in powers of the
connected diagrams, we obtain all interaction vertices com-
prising connected as well as disconnected diagrams. Formally,
a multilegged diagram with M =∑p

i=1 li disconnected parts is
given by

i
(M − 1)!(−1)M

N−1
∏p

j l j!

(
Di1,α1

)l1(Di2,α2

)l2 · · · (Dip,αp

)lp
, (50)

where each Di,α, integrated over the corresponding time
coordinates, represents one of the p unique connected
diagrams with multiplicity l j . The combinatorial factor
1
M

M!∏p
j l j !

= (M−1)∏p
j l j !

is included, where the factor of 1
M is due to

the expansion of the logarithm, and M!∏p
j l j !

accounts for each

set of identical disconnected diagrams with multiplicity l j . As
an example, Fig. 3 depicts the diagrammatic representation of
the “classical vertex” −i

N

∫
t uqccc(t )mq(t1)mc(t2)mc(t3)mc(t4)

with the time integral constrained as t1 � t2 � t3 � t4.
We remark that the disconnected diagrams discussed here
emerge at the level of the action, before expanding the
exponential factor in the partition function. Expanding the
latter exponential factor will further generate disconnected
diagrams whose coefficients should be properly determined
from the combinatorial factors reported above. In this sense,
we must keep track of the origin of various disconnected
diagrams (whether they appear in the action itself or result
from the expansion of the exponential factor). This pattern is
in contrast with the standard diagrammatic representation and
is a unique feature of our nonequilibrium setting.

The diagrams discussed here have certain causal proper-
ties. First, each diagram must come with at least one quantum
leg (dashed line), reflecting the property of the Keldysh ac-
tion that S(mc, mq = 0) = 0. Furthermore, the last leg of all
connected diagrams is always a quantum field which enforces
causality and ensures that the partition function retains its
normalization (Z = 1). Curiously, only certain orderings of
classical and quantum legs are allowed. The diagrammatic no-
tation developed here will prove very useful when calculating
quantities such as self-energy corrections as well as expanding
the action in the ordered phase. The former can be determined
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systematically by contracting quantum and classical fields in
these diagrams.

E. Effective thermalization

Driven-dissipative systems are inherently nonequilibrium,
and therefore there is no intrinsic notion of temperature.
However, a standard procedure is to define an effective
temperature by imposing a fluctuation-dissipation relation
(FDR)[12,14,36–39],

PK (ω) = F (ω)[PR(ω) − PA(ω)], (51)

where F (ω) is a distribution function defined by this equa-
tion. In equilibrium and at finite temperature, the distribution
function depends only on temperature and takes the form
F (ω) = coth(ω/2T ). Specifically, the low-frequency limit of
the distribution function yields the classical FDR with F (ω) =
2T/ω. While there is no intrinsic temperature in our driven-
dissipative system, we can still impose the classical form of
the FDR (to be justified later) to identify the effective temper-
ature; in the normal phase, we find

Teff = lim
ω→0

ω

2

PK

PR − PA
= �2 + 16�2

32�
. (52)

The effective temperature diverges as � → 0 in harmony with
the observation in Ref. [40] that, in the absence of a transverse
field, the population (in the Sx basis) is that of a fully mixed
state, hence infinite temperature. We must note, however, that
an effective temperature defined at low frequencies is sensible
only near a critical point where a slow mode dominates the dy-
namics. In contrast, various modes contribute to the effective
temperature away from criticality, i.e., away from the phase
boundary, which further complicates the interpretation of the
low-frequency effective temperature. Exactly at the phase
transition [see Eq. (34)], we find that the effective tempera-
ture is simply given by Teff = J everywhere along the phase
boundary. Equation (52) can also be expressed in the time
domain, χ (t ) = ∂tC(t )/2Teff, which provides another form of
the classical FDR [41]. This relationship holds analytically for
the correlation and response functions in Eqs. (44a) and (44b)
with Teff = J . The latter analytical functions describe points
close to, but away from, the critical point. We can further
inspect the classical FDR at criticality using exact numerics:
in Fig. 4 we show that, with the exception of short times
differences, this relation holds at criticality. We further inspect
the behavior at the weakly dissipative critical point � → 0
in Fig. 5 and find that the classical FDR holds remarkably
well at all times. The agreement between Teff in the time and
frequency domains at the phase boundary further cements the
applicability of the fluctuation-dissipation relation near phase
transitions.

In the ordered phase, we can numerically evaluate the
effective temperature by combining the expressions given in
Eqs. (39a) and (39b) together with the definition of the effec-
tive temperature in Eq. (51). Interestingly, as � is lowered,
the effective temperature diverges deep in the ordered phase
and then flips sign; see the inset of Fig. 6. This behavior
occurs due to the change in sign of the low-frequency be-
havior of χ (ω) as was pointed out in Fig. 1(a). The curve
corresponding to infinite temperature ends at the weakly

FIG. 4. Numerical plot of the correlation and response functions
with a system size of N = 100 near a generic critical point (J =
1, � = 1, � = 4). The classical FDR χ (t ) = ∂tC(t )/2Teff holds at
long times (t � �−1) with Teff = J .

dissipative critical point � → 0 and � = 2J . We can thus
employ our field-theoretical toolbox to analytically investigate
the origin of this behavior. At a technical level, we want
to characterize the fluctuations around the ordered field, m,
within the ordered phase. To this end, we consider the ac-
tion describing the fluctuations around the ordered field as
S = ∫

ω
mqPR

ord(ω)δmc + · · · where δmc(t ) = mc(t ) − m and
PR

ord(ω) is given exactly by Eq. (39a). To probe the effective
temperature Teff, we must expand PR

ord(ω) at low frequen-
cies as PR

ord(ω) ∼ −r + iγordω + · · · . Now, γord > 0 indicates
dissipation, while γord < 0 implies gain as this coefficient
characterizes friction in the low-frequency dynamics. Due to
the definition of the low-frequency effective temperature in
Eq. (52), there is no straightforward analogy with the equilib-
rium notion of population inversion. While the full expression
for PR in the ordered phase is not analytically tractable, we
can utilize the diagrammatics developed in the previous sec-
tion: the diagrams that contribute to PR

ord in the ordered phase
can be found in Fig. 7. The explicit forms of the interaction
coefficients are reported in Appendix B. It turns out that to
capture the negative temperature, we must also include the
sixth-order terms in the diagrammatic expansion. We find

PR
ord(ω) = PR(ω) + m2PR

1 (ω) + m4PR
2 (ω) + · · · , (53)

FIG. 5. Numerical plot of the correlation and response func-
tions with a system size of N = 100 near the weakly dissipative
critical point (J = 1, � = 2, � = 0.1). The classical FDR χ (t ) =
∂tC(t )/2Teff holds for exact numerics with Teff = J holding almost
perfectly at all times.
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FIG. 6. Density plot of |Teff| in the ordered phase as a function of
� and �, with J = 1. The thick curve indicates the phase boundary,
and the highlighted region indicates the region with negative effective
temperature. (Inset) The effective temperature in the ordered phase
(J = 1, � = 0.5) as a function of �, taken along the dashed line in
the main figure. As � decreases, the effective temperature diverges
and then flips sign.

where m is given by Eq. (34), PR(ω) by Eq. (37a), PR
1 (ω) is

given by

iPR
1 (ω) = uqccc(−ω,ω, 0, 0) + uqccc(−ω, 0, ω, 0)

+ uqccc(−ω, 0, 0, ω), (54)

and PR
2 (ω) is given by

iPR
2 (ω) = uqccccc(−ω,ω, 0, 0, 0, 0)

+ uqccccc(−ω, 0, ω, 0, 0, 0)

+ uqccccc(−ω, 0, 0, ω, 0, 0)

+ uqccccc(−ω, 0, 0, 0, ω, 0)

+ uqccccc(−ω, 0, 0, 0, 0, ω). (55)

FIG. 7. Diagrams contributing to (a) PR
1 and (b) PR

2 in calculating
γord. A cross (x) at the end of a leg corresponds to evaluating the
corresponding classical field at its saddle-point value.

Expanding Eq. (53) to first order in ω, we find the friction
coefficient

γord = 127J2�

�(�2 + 16�2)4
[26�6 − 4096�4(� − 2J )2

+ 16�4�(53� − 84J )

+ 256�2�2(68J2 − 80J� + 25�2)], (56)

which indeed captures the negative effective temperature
in the ordered phase near the phase boundary at � = 2J
and � → 0; see Fig. 6. Indeed, we find that the infinite-
temperature curve near the weakly dissipative critical point is
given by the line � = 2

√
2(2J − �), in harmony with Fig. 6.

We finally remark that, for � < 2J , the effective temperature
Teff → 0− in the limit � → 0.

Before closing this subsection, a remark about the effective
temperature is in order. The latter temperature characterizes
fluctuations and dissipation of the system at low frequencies.
However, it does not imply that the steady state is a thermal
state, exp(−H/Teff ). This can be seen by comparing the equi-
librium phase diagram versus the equilibrium phase diagram
[29] in Fig. 13 below. Specifically, the infinite-range Ising
model in a transverse field undergoes a phase transition at a
critical value of the transverse field that is �c(T ) < 2J at any
finite temperature, a behavior that should be contrasted with
our driven-dissipative model whose phase transition extends
all the way to � = 2J .

V. CRITICAL BEHAVIOR

Just like their equilibrium counterparts, nonequilibrium
steady states may undergo phase transitions and exhibit crit-
ical phenomena. A characteristic feature of criticality is a
diverging correlation length, the dynamical analog of which
is manifested as a diverging timescale and the associated crit-
ical slowdown [41]. While there is no intrinsic length scale
in an infinite-ranged model, we will identify the dynamical
critical behavior of the model considered here and investigate
the finite-size scaling with the system size N [30,42] using
standard scaling techniques. Interestingly, we shall see that
two distinct dynamical critical behaviors emerge depending
on the strength of dissipation.

A. Criticality at finite �

Before investigating the finite-size scaling, we first deter-
mine the scaling dimensions of the fields at the quadratic level
of the action. A low-frequency expansion of Eq. (35) yields
the quadratic action

S ∼
∫

t
mq(−γ ∂t − r)mc + 1

2
Dm2

q, (57)

with r the distance from the critical point, γ a damping pa-
rameter, and D the strength of the noise:

r = −PR(ω = 0) = 2J[�2 − 16�(2J − �)]

�2 + 16�2
, (58a)

γ = −i∂ωPR(ω)|ω=0 = 256J2��

(�2 + 16�2)2
, (58b)
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D = PK (ω = 0) = 32iJ2�

�2 + 16�2
. (58c)

To find the scaling dimensions of the fields, we demand
that the action be scale invariant at the critical point (r =
0). One can see that the action is invariant upon rescaling
[43]

t → λt, mc →
√

λmc, mq → 1√
λ

mq, (59)

which determines the scaling dimensions of the fields as
[mc] = 1

2 , [mq] = − 1
2 . These scaling dimensions in turn de-

termine the scaling behavior of the correlation and response
functions, and are consistent with Eqs. (44a) and (44b) in the
limit � → �c; see also [9].

To determine the finite-size scaling behavior of the model,
we must include finite-size corrections to the quadratic ac-
tion in Eq. (35). To lowest order in O(N−1), the finite-size
corrections are given by the four-legged diagrams derived
in Sec. IV D. Furthermore, it follows from the above scal-
ing dimensions that the most relevant correction (in a
renormalization-group sense) is the classical vertex which has
a low-frequency limit of [12]

Sint = −u

2N

∫
t
m3

cmq + · · · (60)

with

u = 2iucccq(ω = 0) = 2048J4�

(�2 + 16�2)2
. (61)

We now demand that the full low-frequency expansion of the
action, with the inclusion of the classical vertex and at a finite
distance from the critical point (r �= 0), remain scale invariant.
This is achieved upon rescaling

t → λt, mc →
√

λmc, mq → 1√
λ

mq,

r → 1

λ
r, N → λ2N, (62)

where the first line, also given by Eq. (59), is included for
completeness. Equipped with these scaling dimensions, the
correlation function takes on the scaling form

C(t ) = 〈mc(t )mc(0)〉 = λ−1Ĉ(λ|t |, λ−1r, λ−2N−1), (63)

with Ĉ a scaling function and λ an arbitrary scaling parameter
which can be chosen freely. Setting λ = r at equal times,
t = 0, and in the thermodynamic limit N → ∞, we obtain the
“photon-flux” exponent as

C(0) = 1

r
Ĉ(0, 1, 0), (64)

which establishes the exponent ν = 1 [12]. Next we determine
the finite-size scaling at criticality (r = 0). Here we set λ =
N−1/2 in Eq. (63), which leads to the scaling form

C(t ) =
√

NĈ(t/
√

N, 0, 1). (65)

This equation identifies both static and dynamic finite-size
critical exponents: the amplitude of correlations (i.e., fluctu-
ations) scale as C ∼ Nα with the exponent α = 1/2, while
a critical timescale emerges as t ∼ Nζ with the dynamical

FIG. 8. Exact numerics of the finite-size scaling behavior of the
correlation function at a generic critical point (J = 1, � = 1, � =
4). The critical dynamics is overdamped and is governed by a
characteristic timescale that scales as t ∼ N1/2, typical of critical
driven-dissipative systems.

exponent ζ = 1/2. A similar analysis yields the scaling form
of the response function:

χ (t ) = χ̂ (t/
√

N, 0, 1). (66)

We thus see that the amplitude of the response function does
not scale with N . We confirm the (static as well as dynamic)
scaling behavior of both the correlation and response func-
tions in Figs. 8 and 9, respectively. Additionally, we see that
the critical dynamics observed here is purely relaxational. In
the next section, we show that a distinct dynamical critical
behavior emerges at low dissipation.

B. Criticality at � → 0

The effective classical behavior at a generic critical point
is due to the competition of drive and dissipation. It is then
interesting to consider the limit � → 0 where dissipation is
small compared to the energy scales in the system. Interest-
ingly, the phase transition persists in this limit and occurs at

FIG. 9. Finite-size scaling behavior of the response function at
a generic critical point (J = 1, � = 1, � = 4) from exact numerics.
The amplitude of the response function does not scale with N , while
the characteristic timescale of the dynamics scales as t ∼ N1/2, iden-
tifying the dynamical exponent ζ = 1/2.
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� = 2J as � → 0; see Fig. 13 below. One must be careful
when considering this point as setting � to zero would make
the problem unphysical since dissipation is required to find a
unique nonequilibrium steady state. Rather, we shall consider
the asymptotic behavior in the limit � → 0 at the level of
the low-frequency expansion of Eq. (35). The resulting action
then becomes

S ∼
∫

t
mq
(−a∂2

t − γ ∂t − r
)
mc + 1

2
Dm2

q, (67)

where the parameters γ , r, and D are provided in Eq. (58)
upon taking the appropriate limit; the new parameter a is given
by

a = lim
�→0

∂2
ωPR(ω)|ω=0 = J2

�3
. (68)

Indeed the inertial term in the action (proportional to a) is
required in the limit of vanishing dissipation. This is because
the damping parameter γ ∼ � and the noise D ∼ � both
vanish with �. To determine the new scaling dimensions of the
fields, we once again seek a scaling transformation that keeps
the action scale invariant, but this time we also should include
the scaling of � itself. We find that the quadratic action at the
critical point is invariant under

t → λt, � → 1

λ
�, mc → λmc, mq → mq, (69)

establishing the new scaling dimensions [mc] = 1, [mq] = 0.
The new scaling dimensions alter the original scaling di-
mensions of the correlation and response functions, again in
harmony with their behavior in the limit � → 0; see also
Ref. [9].

To obtain the finite-size scaling behavior, we once again
include the classical vertex, which remains the most relevant
interaction term. The full action (including the mass term)
remains invariant if we impose the rescaling

r → 1

λ2
r, N → λ4N, (70)

in addition to those in Eq. (69). From this, we find the scaling
form for the correlation function as

C(t ) = 1

λ2
Ĉ0(λ|t |, λ−1�, λ−2r, λ−4N−1), (71)

where the subscript 0 denotes the scaling function near the
weakly dissipative critical point. Also, notice the dependence
of the nontrivial scaling of � in contrast with a generic critical
point; cf. Eq. (63).

First, we consider the point � = 2J at finite yet small �.
Setting λ = � and t = 0 in the thermodynamic limit, we find

C(0) = 1

�2
Ĉ0(0, 1, const, 0) ∝ 1

r
, (72)

where the scaling behavior in the last step follows from the
fact that r ∼ �2, rendering the same photon-flux exponent
ν = 1.

Next, we shall focus on finite-size scaling. To this end, we
consider a weakly dissipative critical point at finite yet small
�; we shall choose � � 2J to ensure criticality. Now, we set
λ4 = N−1 together with r = 0 to find

C(t ) =
√

NĈ0(|t |N− 1
4 , �N

1
4 , 0, 1). (73)

FIG. 10. Finite-size scaling of the correlation function near the
weakly dissipative critical point (J = 1, � = 2, � = 0.1). The dy-
namics is underdamped in contrast with the purely relaxational
behavior at a generic driven-dissipative phase transition and exhibits
the critical scaling t ∼ N1/4 to be contrasted with t ∼ N1/2 of relax-
ational dynamics; cf. Fig. 8.

From this equation, we find that the weakly dissipative limit
does not affect the static scaling exponent, α = 1

2 , but it does
change the dynamical exponent to ζ = 1

4 . We thus conclude
that a weakly dissipative point changes the dynamical critical
behavior. Repeating the above analysis for the response func-
tion, we find the finite-size scaling form

χ (t ) = N
1
4 χ̂0(tN− 1

4 , �N
1
4 , 0, 1). (74)

In contrast with a generic critical point [Eq. (66)], the am-
plitude of the response function in the above equation grows
with the system size as χ ∼ N

1
4 . Figs. 10 and 11 show the

finite-size critical behavior of the correlation and response
function, respectively, and confirm the prediction of the scal-
ing analysis. In conclusion, while the static exponent α and
the flux exponent ν remain the same everywhere on the phase
boundary, the dynamical exponent ζ takes a different value in
the weakly dissipative limit.

What further distinguishes the weakly dissipative criti-
cal point is the fact that the dynamics is underdamped (see
Figs. 10 and 11) in contrast with the typical relaxational

FIG. 11. Finite-size scaling of the response function near the
weakly dissipative critical point from exact numerics (J = 1, � =
2, � = 0.1). The dynamics is distinguished from a generic critical
point in that the dynamical critical exponent is different, ζ = 1/4,
and that it is underdamped; cf. Fig. 9.
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FIG. 12. The first zero of the correlation function, τ , as a func-
tion of the dissipation rate � and at different system sizes (J = 1).
Transverse field values � are chosen to lie along the right side
of the phase boundary, �c(�) = J +√J2 − �2/16. Both τ and �

are scaled with system size to make the scaling behavior manifest.
The timescale τ diverges at sufficiently large � approximately when
�N1/4 ≈ 6. The inset shows the unscaled plots for comparison.

and overdamped dynamics seen at a generic critical point,
and generally in driven-dissipative systems. As � is further
increased along the phase boundary, one should expect a
crossover to overdamped critical dynamics. This is somewhat
analogous to the quantum critical region and the crossover to
thermal critical behavior [44]. In the context of the infinite-
range model that we have considered in this work, the
crossover behavior becomes manifest as a function of system
size. Indeed, we can determine the crossover behavior from
Eq. (73): for �t � 1 and � � N− 1

4 , the critical dynamics is
underdamped, while for large times and/or large � the system
experiences a dynamical crossover where we recover the usual
relaxational behavior (while remaining on the phase bound-
ary). To quantitatively investigate the crossover, we define
the first zero of the correlation function, denoted by τ , as
a measure of the oscillatory behavior of the underdamped
dynamics. In Fig. 12 we plot τ as a function of � and for
different system sizes. Indeed, we find that for sufficiently
large values of �, this timescale diverges where the dynamics
becomes overdamped. Furthermore, this figure shows that
this timescales as τ ∼ N

1
4 τ̂ (�N

1
4 ) with τ̂ a universal scaling

function, hence it confirms the scaling of the crossover value,
�cr ∼ N−1/4.

One can gain some intuition for the underdamped criti-
cal behavior near the weakly dissipative critical point from
several different angles. First, the point � = 2J is exactly
where �c switches from real to imaginary, as a result of
which Eq. (44a) shows underdamped dynamics even away
from the phase boundary (when � > 2J). Second, one can
imagine that the underlying coherent dynamics generated by
the first term in Eq. (6) could have a stronger effect in the
limit � → 0. Additionally, the the infinite-range Ising model
is integrable in the absence of dissipation; while dissipation
generically spoils integrability, the dynamics is approximately
integrable in the limit � → 0, which could lead to nontrivial
dynamics [45–48]. Nevertheless, in Sec. VI, we show that the
underdamped dynamics survives to the first nontrivial order of
integrability-breaking perturbations.

TABLE I. Driven-Dissipative vs equilibrium classical and quan-
tum Ising models. A generic (finite-�) critical point exhibits the same
critical behavior as the classical stochastic Ising model, while the
weakly dissipative (� → 0) critical point can be identified with the
quantum Ising model at finite temperature.

C. Comparison with equilibrium

From the scaling dimensions and critical exponents, we
can place each phase transition in its respective universality
class. Remarkably, both finite-� and � → 0 phase transitions
are in equilibrium universality classes, albeit with a classical
and quantum flavor, respectively. For a generic critical point at
finite �, the scaling dimensions are [mc] = 1

2 , [mq] = − 1
2 with

the critical exponents α = 1/2, ζ = 1/2. These quantities
place this phase transition in the same universality class as the
classical infinite-ranged Ising model at finite temperature with
Glauber-type dynamics (i.e., nonconserving dynamics) [49],
which itself belongs to the “model A” class of Hohenberg and
Halperin [50]. Despite the microscopic quantum dynamics,
the combination of drive and dissipation render the critical
behavior effectively classical and equilibrium-like. This ap-
pears to be the generic behavior in driven-dissipative phase
transitions [12,14,51–60]. However, there are exceptions such
as classical yet truly nonequilibrium critical behavior [61], as
well as the emergence of quantum criticality in the limit of
weak dissipation and drive [62,63].

In the weakly dissipative limit, we have found the scal-
ing dimensions [mc] = 1, [mq] = 0, which are distinct from
both classical ([mc] = 1

2 , [mq] = − 1
2 ) and quantum ([mc] =

1
2 , [mq] = 1

2 ) cases [12,39]. These scaling dimensions lead
to the new set of critical exponents α = 1/2, ζ = 1/4, as
opposed to the quantum critical exponents α = 1/3, ζ = 1/3
[39]. The former exponents place this phase transition in the
same universality class as the finite-temperature transverse-
field infinite-range Ising model, i.e., the Hamiltonian in
Eq. (5). Therefore, while the phase transition is equilibrium-
like, it resembles the quantum Ising model at finite
temperature rather than the classical stochastic Ising model.
For comparison; see Fig. 18 in Appendix D. Various ex-
ponents and the comparison against classical and quantum
equilibrium settings can be found in Table I.

The comparison between the driven-dissipative and equi-
librium behaviors can be taken one step further due to
the existence of a dynamical crossover in both cases. As
shown previously, the weakly dissipative point is an unstable
fixed point with respect to dissipation, where upon renor-
malization the critical dynamics undergoes a crossover from
underdamped to overdamped dynamics; see Fig. 13(a). This
crossover can be understood due to � scaling inversely as time
upon rescaling at the weakly dissipative critical point, which
then sets a crossover time scaling as ∼N1/4. The equilibrium
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FIG. 13. Schematic phase diagrams of the infinite-range
(a) driven-dissipative Ising model (DDIM), and (b) equilibrium
Ising model in a transverse field. The shaded regions denote the
ordered phase. The weakly dissipative critical point of the DDIM,
� → 0 in (a), exhibits underdamped dynamics in contrast with the
relaxational dynamics at a generic critical point. Analogously, the
equilibrium model in (b) exhibits distinct (quantum and thermal)
dynamics at zero and finite temperature. Both � → 0 and T → 0
define unstable fixed points but with respect to dissipation and
thermal fluctuations, respectively. The weakly dissipative dynamics
in (a) exhibits identical critical scaling to a finite-temperature critical
point in (b).

analog of a dynamical crossover occurs at finite tempera-
ture; see Fig. 13(b). Upon renormalization, the (perfectly
oscillatory) coherent quantum critical dynamics undergoes a
crossover to underdamped dynamics. Similarly to our driven-
dissipative system, the temperature T scales inversely as that
of time; one can see this from the equilibrium fluctuation-
dissipation relation C = i coth(ω/2T )χ where ω and T scale
in the same way [12,41]. A similar line of reasoning indicates
a crossover time ∼N1/3. In short, the dynamical crossover of
the driven-dissipative Ising model is distinguished from its
equilibrium analog not only by the critical exponents but also
by the nature of the crossover (underdamped-to-overdamped
vs coherent-to-underdamped crossover, respectively).

D. Langevin description

An alternative, and established, way of understanding the
critical behavior of a driven-dissipative system is through
the lens of the Langevin equation, a stochastic differential
equation used to describe noisy systems [64]. Near a critical
point, where we have shown the classical vertex is the most
relevant finite-size correction, we can map the low-frequency
limit of the Keldysh action to a Langevin equation [12,14,35].
Putting together the quadratic action from Eq. (35) with the
interaction in Eq. (60), the action reads

S ∼
∫

t

[− (γ ∂t + r)mc(t ) − u

2N
m3

c (t ) + 1

2
Dmq(t )

]
mq(t ),

(75)
with the action parameters given by Eqs. (58), (61) and (68).
The first step in mapping to the Langevin equation is a
Hubbard-Stratonovich transformation of the quantum field mq

to introduce a noise field f (t ) as

S =
∫

t

[
−(γ ∂t + r)mc(t ) − u

2N
m3

c (t ) +
√

2 f (t )
]
mq(t )

−
∫

t

1

D
f (t )2. (76)

Now, integrating over mq yields a δ function which is nothing
but the Langevin equation (m = mc/

√
2):

γ ∂t m(t ) = −rm(t ) − 1

N
um3(t ) + f (t ). (77)

The term f (t ) characterizes a white noise with a Gaus-
sian distribution, mean 〈 f (t )〉 = 0, and variance 〈 f (t ) f (t ′)〉 =
−i 1

2 Dδ(t − t ′) = 2γ Teffδ(t − t ′). It is now clear that Eq. (75)
near criticality is equivalent to an overdamped Langevin equa-
tion, with an effective temperature Teff and in an effective
potential given by

H = 1

2
rm2 + 1

4N
um4. (78)

Indeed, Eq. (77) reproduces the overdamped critical dynam-
ics discussed in Sec.V A. The stochastic Langevin equation
can be turned to a Fokker-Planck equation that describes
the evolution of the probability distribution [35,41]; with the
effective equilibrium dynamics, the steady-state probability
distribution of m takes the form

Peq(m) ∼ e−H/Teff . (79)

The nature of the dynamics changes in the limit � → 0.
In this case, dissipation is vanishingly small, γ ∼ � → 0,
therefore we should also include the term proportional to ω2

in the low-frequency expansion of PR(ω). Following a similar
procedure in this limit, we arrive at the Langevin equation

a∂2
t m(t ) + γ ∂t m(t ) = −rm(t ) − u

N
m3(t ) + f (t ), (80)

with the parameters taken from Eqs. (58) and (68) in the same
limit. Incidentally, we have identified underdamped dynamics
and persistent oscillations in Sec. V B. Now, we can see that
these oscillations are due to the inertial term that can be of the
same order as dissipation (since γ → 0). Again, one can iden-
tify the corresponding Fokker-Planck equation, also known
as the Kramers-Chandrasekhar equation, whose steady-state
solution is just the Maxwell-Boltzmann distribution [65]:

P(m, ṁ) ∼ e−(H+ 1
2 aṁ2 )/Teff . (81)

This distribution differs from Eq. (79) only in the multiplica-
tive Gaussian distribution of ṁ. The probability distribution
of m in Eq. (81) is identical to that of Eq. (79) upon integrat-
ing out ṁ. In other words, the static properties are identical
irrespective of dissipation. In contrast, the critical dynamics
is markedly different as we have seen in the previous subsec-
tions.

Before closing this section, we emphasize that the
Langevin equations derived here are valid only near the phase
boundary and outside the heated region, since they are based
on the dynamics of the slow mode.

VI. BEYOND THE INFINITE-RANGE MODEL

The infinite-range Ising model is rather special as the dy-
namics of the order parameter is exactly determined by mean
field, although fluctuations at, or close to, criticality require
a separate treatment as discussed in previous sections. In this
section, we utilize the diagrammatical technology developed
in this work to investigate the effects of non-mean-field per-
turbations, and specifically short-range interactions, on the
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dynamics. Most importantly, we show that the underdamped
dynamical critical behavior in the limit � → 0 persists even
in the presence of the short-range interactions.

To investigate the role of integrability at the weakly dissi-
pative critical point, we add a nearest-neighbor interaction to
the Hamiltonian in Eq. (5):

H → H − λ
∑

i

σ x
i σ x

i+1. (82)

We shall consider the perturbative limit λ � J,� and assume
periodic boundary conditions. The short-range interaction al-
ters the mean-field structure of the infinite-range Ising model,
breaks its integrability [32], and could modify the phase
boundary. A standard way to study such perturbations is to
view them as spin-wave fluctuations, which have been in-
vestigated in other nonequilibrium settings such as quantum
quenches [32,66,67]. While our model is distinct due to its
driven-dissipative dynamics, we can still resort to a similar
picture in terms of spin waves

σ̃ α
k =

N∑
j=1

e−ik jσα
j ,

where k = 2πn/N with n ∈ {0, 1, . . . , N − 1}. We shall iden-
tify the collective spin as the k = 0 mode; without short-range
interactions, there is no coupling between this and other
modes with k �= 0, however, the short-range interaction cou-
ples them and thus spoils the mean-field nature of the model.
Naively, one might expect that spin waves act as an effective
bath for the “large spin” corresponding to the k = 0 mode,
which would lead to an effective dissipation (even in the limit
� → 0). However, we will show using the diagrammatic tech-
niques that this is not the case, and therefore the underdamped
critical dynamics at the weakly dissipative critical point is
robust against short-range interactions.

A. Short-range perturbation via field theory

The quantum-to-classical mapping process is not altered
much by the inclusion of short-range interactions. The
steps leading to the Hubbard-Stratonovich transformation in
Eq. (20) are identical, except now we must also perform
a multidimensional Hubbard-Stratonovich transformation on
the short-range interaction terms in the vectorized Liouvillian.
The short-range Ising perturbation is diagonalized in the same
basis as Eq. (17). The Hubbard-Stratonovich transformation
reads as

± i

2
λδt (σ (u/l ) )T D−1σ (u/l )

→ ∓ i

2λδt
(m(u/l ) )T D m(u/l ) ± i (m(u/l ) )T σ (u/l ), (83)

where σ = (σ1, . . . , σN ) represents the spins, while m(u/l ) =
(m(u/l )

1 , . . . , m(u/l )
N ) denotes the scalar fields on the upper

and lower leg of the ladder, respectively. The kernel D−1,

representing the nearest-neighbor interaction, is given by

(84)

with 1 next to the diagonal (note the periodic boundary con-
ditions) and 0 everywhere else. This kernel is invertible for
odd N or even N not divisible by 4; for simplicity, we take
N to be odd. After tracing out the spins, redefining the local
fields m(u/l )/(2λδt ) → m(u/l ), rotating to the Keldysh basis
mc/q = (m(u) ± m(l ) )/

√
2, and taking the continuum limit, we

find the exact Keldysh action including the short-range inter-
action:

S = −2JN
∫

t
mcmq − 2λ

∫
t
mT P̃ m

− i
∑

i

ln Tr
(
T e

∫
t T+T ′

i
)
. (85)

Here m denotes a column vector with mc stacked on top of
mq. The kernel for the local fields is given by

P̃ =
(

0 D
D 0

)
. (86)

Furthermore, the short-range interaction leads to an additional
matrix added to the matrix T in the exponential

T ′
i = i2

√
2λ diag(mi,q, mi,c,−mi,c,−mi,q ). (87)

Ideally, we must integrate out the local fields to obtain an
effective action in terms of only the original collective field
m. In order to switch to a picture in terms of spin waves, we
introduce the Fourier transform of the local fields as

mj = 1

N

∑
k

eik jmk, (88)

where k = 2πn/N with n ∈ {0, 1, . . . , N − 1}. The action too
can be recast in the Fourier space. In this basis, the matrix
D = diag{Dk} takes a diagonal form with the matrix elements
(recalling that N is odd)

Dk =
N−1∑
j=0

e−ik jD j = 1

2
sec k, (89)

where j = l − m with l and m the row and column labels of
the matrix D, respectively; here we have used the translational
invariance due to periodic boundary condition.

Finally, we remark that mk=0 too represents the collective
field m that is originally introduced through the Hubbard-
Stratonovich transformation of the infinite-rang Ising inter-
action. Indeed, it can be shown by introducing source fields
that m and mk=0 are redundant (see Sec. III B). Therefore, to
simplify the subsequent treatment, we introduce the new fields
m = √

Nm + λ

J
√

N
m0, m̃ = √

Nm − 1√
N

m0, where m serves as
the new order parameter, while m̃ is entirely decoupled from
all other fields and appears quadratically, and can be simply
integrated out. Absorbing a factor of

√
λ/JN into mk , we find

023713-15



DANIEL A. PAZ AND MOHAMMAD F. MAGHREBI PHYSICAL REVIEW A 104, 023713 (2021)

the total action

S = −2J2

J + λ

∫
t
mc(t )mq(t ) − i

∑
j

ln Tr
(
T e

∫
t T+T ′

j
)

− 2J
∑
k �=0

(m−k,c, m−k,q )

(
0 Dk

Dk 0

)(
mk,c

mk,q

)
, (90)

where the matrices in the log-trace are given by

T = T0 + i2
√

2
J√
N

diag(mq, mc,−mc,−mq), (91)

with T0 defined in Eq. (32a), and

T ′
j = i

√
8Jλ

N

∑
k �=0

eik j diag(mq,k, mc,k,−mc,k,−mq,k ). (92)

Notice that mk=0 does not appear in the action, and the collec-
tive field is completely characterized through mc/q(t ).

B. Quadratic action

We now follow a similar procedure as before and expand
Eq. (90) to quadratic order in both m and mk:

S = 1

2

∫
t,t ′

(mc, mq)t

(
0 PA

PR PK

)
t−t ′

(
mc

mq

)
t ′

+ 1

2

∑
k �=0

∫
t,t ′

(m−k,c, m−k,q )t

(
0 PA

k
PR

k PK
k

)
t−t ′

(
mk,c

mk,q

)
t ′
.

(93)

The quadratic action takes the Keldysh structure with the
elements [recalling that PR(t ) = PA(−t )]

PR(t ) = −2J2

J + λ
δ(t ) + �(t )8J2e− �

2 |t | sin (2�t ),

PK (t ) = i8J2e− �
2 |t | cos (2�t ) (94)

and

PR
k (t ) = −4JDkδ(t ) + �(t )8Jλe− �

2 |t | sin (2�t ),

PK
k (t ) = i8Jλe− �

2 |t | cos (2�t ). (95)

One can immediately see that the collective field m is de-
coupled from spin waves mk at the level of Eq. (93). This is
because any (bi)linear coupling between m and mk is forbid-
den by momentum conservation. To investigate the effect of
spin waves, we need to go to higher-order terms that charac-
terize the interaction between these fields. As we shall see, the
nonlinear coupling will dramatically change the effect of spin
waves on the collective mode: while linear coupling of the
two fields will mimic a thermal bath (of spin waves) at finite
temperature [68], the nonlinear coupling will have no such
effect. For another setting where nonlinear coupling changes
the nature of dissipation, see Ref. [69].

Next, we take advantage of the perturbative nature of
spin waves and calculate their contribution to the self-energy
whose low-frequency behavior determines how spin waves
impact the dynamics of the order parameter m. To this end,
we first list the free Green’s functions describing spin waves

in the time domain:

GR
k (t ) = − 1

4JDk
δ(t ) − 2λ�

JD2
k�k

�(t )e−�t/2 sin

(
�kt

2

)
(96)

and

GK
k (t ) = −iλe−�|t |/2

4JD2
k�k
(
�2 + �2

k

)[�k
(
2�2 + �2

k + 16�2
)

× cos
�kt

2
− �

(
�2

k − 16�2) sin
�k|t |

2

]
, (97)

where �k = 4
√

�(� − λ/Dk ). It is also useful to cast the
Green’s functions in frequency space:

GR
k (ω) = 1

PR
k (ω)

= −1

4JDk

(ω + ω+)(ω + ω−)

(ω − ωa)(ω − ωb)
(98)

and

GK
k (ω) = −PK

k (ω)|GR
k (ω)|2

= −iλ�

4JD2
k

(ω + ω+)(ω + ω+∗) + (ω + ω−)(ω + ω−∗)

(ω − ωa)(ω − ωb)(ω − ω∗
a )(ω − ω∗

b )
,

(99)

with ω+/− = i�/2 ± 2� and ωa/b = (−i� ± �k )/2.
Finally, we identify the low-frequency effective tempera-

ture of spin waves:

Teff,k = lim
ω→0

ω

2

GK
k (ω)

GR
k (ω) − GA

k (ω)
= �2 + 16�2

32�
. (100)

Interestingly, this effective temperature is k-independent and
is in fact equal to the effective temperature of the collective
mode; cf. Eq. (52). This provides an interesting picture where
the collective mode is in effective equilibrium with a thermal
bath of spin waves.

C. Self-energy

In this section, we compute the correction to the self-
energy due to spin waves and investigate their effect on the
phase diagram and the dynamics, particularly at the weakly
dissipative point. Our starting point is the Keldysh form of the
familiar Dyson equation [35],

G−1 = G−1 − �, (101)

where G is the exact Green’s function for the collective field,
and G−1 is given by the kernel in the first term in Eq. (93).
The self-energy � has the typical Keldysh structure and takes
the form

� =
(

0 �A

�R �K

)
. (102)

The low-frequency expansion of the retarded and Keldysh
elements of the self-energy will renormalize the parameters
describing the dynamics of the collective field as �R(ω) ∼
−δr + iδγω and �K (ω = 0) = δD. At any generic critical
point, the spin waves will simply provide a correction δγ and
δD to the otherwise finite values of dissipation and fluctu-
ations, respectively. However, the weakly dissipative critical
point where � → 0 is particularly susceptible to the coupling
to the spin waves. This is because spin waves provide an
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FIG. 14. (a) A representative diagram involving spin waves,
mk,c/q. An additional prefactor of

√
λ/J arises for each appearance

of spin wave compared to that of the collective field; cf. Fig. 2.
The Kronecker δ enforces momentum conservation. (b) Contracted
arrowed legs represent spin-wave Green’s functions.

effective thermal bath for the collective mode [see Eq. (100)],
which could very well generate dissipation (even when � →
0).

To calculate the self-energy, we utilize the diagrammatic
representation developed in Sec. IV D; we also include lines
with an arrow to denote spin waves with a nonzero momentum
in addition to those without an arrow which refer to the col-
lective field. The connected diagrams inside the logarithm in
Eq. (46) are modified accordingly: we include an additional
prefactor of

√
λ/J for each appearance of the mk fields, and

keep track of momentum indices. The diagrams resultant from
expanding the logarithm in Eq. (50) should be summed over
all momenta, with an overall Kronecker δ enforcing momen-
tum conservation. An example of the classical vertex for the
spin waves can be found in Fig. 14. The lowest nontrivial
correction to the self-energy arises at the order O(λ2) due to a
combination of momentum conservation and the fact that D−1

is traceless. The one-loop diagrams contributing to �K to the
order O(λ2) are depicted in Fig. 15, while those contributing
to �R are given in Fig. 16. All other diagrams are either
higher order in λ or are suppressed as O(1/N ). Note that only
diagrams with two external quantum legs contribute to �K ,
while those with one external quantum and another classical
leg contribute to �R, in harmony with the Keldysh structure
of the action at the quadratic level. As an example calculation,

FIG. 15. Diagrams contributing to the Keldysh component of the
self-energy, �K , to the order ∼λ2.

FIG. 16. Diagrams contributing to the retarded component of the
self-energy, �R, to the order ∼λ2.

the self-energy contribution to �K due to the uqccq one-loop
diagram is given by

�K
(qccq)(ω) = −λ

JN

∑
k �=0

∫
ω′

[uqccq(−ω,ω′,−ω′, ω)

+ uqccq(ω,ω′,−ω′,−ω)]GK
k,0(ω′). (103)

The overall minus follows from a factor of −i from the
perturbative expansion of the path integral multiplied by an-
other factor of −i from the connected four-legged diagrams
in Eq. (50). The above expression must be symmetrized with
respect to the external frequency due to the same symmetry
of the Keldysh component PK . The interaction coefficient in
frequency space is then given by

uqccq(ω) = i256�2J4

ω1 + ω2 − i�
f (ω1, ω4), (104)

where f (x, y) = 1/[(x − ω+)(x − ω−)(y − ω+∗)(y − ω−∗)].
Setting ω1 = ω4 = 0 and expanding to lowest nonzero order
in λ, we find the correction

�K
(qccq)(0) = −i49152J2�2�λ2

(�2 + 16�2)2(9�2 + 16�2)
, (105)

where we have used the fact that
∑

k �=0 1/D2
k = 2N − 1/2

and neglected terms of O(1/N ). Repeating this calculation
for all of the diagrams in Fig. 15, we find that the Keldysh
component of the self-energy at low frequencies is given by

�K (0) = δD = i16 384J2�2�

(�2 + 16�2)3
λ2. (106)

Similarly, the retarded component of the self-energy is deter-
mined by considering the diagrams in Fig. 16; we find

�R(ω) ∼ +δr + δγ iω

= 1536λ2J2�

(�2 + 16�2)2
+ 8192λ2J2��

(�2 + 16�2)3
iω. (107)

The above equations produce the first nontrivial correction to
the self-energy due to the coupling to spin waves. At a generic
critical point, these corrections remain finite and simply act as
shifts to the noise and dissipation, as expected. Interestingly,
we find from Eqs. (106) and (107) that δγ and δD vanish in
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FIG. 17. Phase boundary in the presence and absence of short-
range interactions; here J = 1 and an exaggerated value of λ = 0.1
is chosen for better visualization. The feature around � ∼ λ could
be an artifact of our perturbation scheme, which requires λ � �.

the limit � → 0. In other words, while spin waves renormal-
ize the low-frequency parameters, they do not qualitatively
change the nature of the dynamics even in the limit � → 0.
We thus conclude that the underdamped critical dynamics at
the weakly dissipative point is robust against generic pertur-
bations exemplified by short-range interactions in Eq. (5), at
least to the lowest nontrivial order (∼λ2).

Finally, we can inspect the effect of spin waves on the
phase boundary of the model. These effects can be seen by
setting the renormalized mass rren ≡ r + δr to zero, where r
is the bare mass defined in Eq. (58):

[�2 + 16�(� − 2J )](J − λ)2 + 768J
3
�

(�2 + 16�2)
λ2 = 0, (108)

where we have defined J = J + λ and dropped terms of O(λ3)
or higher. We have redefined J to include the contribution
of the short-range interaction to the collective mode, and to
solely separate out the effect of spin waves. In Fig. 17 one
can see that ordered region shrinks due to the coupling to
spin waves. This is expected as spin waves introduce more
fluctuations and thus disfavor ordering. Finally, we remark
that Eq. (108) should not be trusted near � → 0 since it was
implicitly assumed that � � λ in our perturbative calculation
(to expand �k in powers of λ); however, it is possible that
short-range interactions dramatically alter the phase bound-
ary near the origin, in a fashion that could be related to
the predicted first-order phase transition in the DDIM in d
dimensions [51,58].

VII. CONCLUSION

In this work, we have performed a thorough field-
theoretical and numerical analysis of the driven-dissipative
Ising model with infinite-range interactions using a nonequi-
librium variant of the quantum-to-classical mapping. This
mapping has allowed a tractable field-theoretical frame-
work even in the presence of local spontaneous emission.
While other techniques for dealing with local dissipation ex-
ist [18,70], our formalism is a powerful alternative which
naturally reflects the underlying Ising symmetry of the driven-

dissipative spin model. With this technology, we have shown
that the DDIM exhibits qualitatively different critical dynam-
ics in the weakly dissipative limit. While one might naively
expect that weak dissipation could give rise to quantum criti-
cality, we have seen that the critical exponents characterizing
the phase transition remain classical; see, however, Ref. [63]
for quantum behavior in the weakly dissipative limit of a
short-range model. Using the diagrammatic language, we
have also shown that the underdamped critical behavior per-
sists in the presence of short-range perturbations.

Our results can be observed in experimental platforms
where the open Dicke model is realized [1]. Alternatively,
this model can be realized directly using ion-trap platforms
with sufficiently long-range interactions between atoms [10].
While weak dissipation may be hard to access experimentally,
we have shown that the phenomena discussed in this paper
emerge at a moderate value of dissipation rate for experimen-
tally accessible system sizes.

In a sequel paper, we will extend this work to the full open
Dicke model with local spontaneous emission, and perform a
comprehensive analysis of the critical properties and effec-
tive temperature using similar techniques to what we have
developed here. In another future paper, we will examine the
entanglement properties of the driven-dissipative Ising model
to fully characterize its many-body characteristics. Calculat-
ing entanglement in nonequilibrium many-body systems is
highly nontrivial, but it is possible analytically in the context
of the model presented here. A possible future direction is
using the quantum-to-classical mapping and the diagrammat-
ics developed in this work to study the short-ranged DDIM,
a model that has been previously treated using approximate
schemes or small-size numerics [51,58,71–73] and, if tweaked
properly, also Rydberg systems where the Ising interaction is
along the z direction [74] in which case a natural basis for the
quantum-to-classical mapping would be σ z instead.

ACKNOWLEDGMENTS

This material is based upon work supported by the NSF
under Grant No. DMR-1912799. M.M. also acknowledges
support from the Air Force Office of Scientific Research
(AFOSR) under award number FA9550-20-1-0073 as well as
the start-up funding from Michigan State University. We are
also indebted to Alireza Seif and Paraj Titum for valuable
discussions

APPENDIX A: LARGE-DETUNING LIMIT OF THE OPEN
DICKE MODEL

Here we show that the model in Eq. (6) exactly follows
from the open Dicke model in the limit of large cavity detun-
ing. We emphasize that this procedure is exact and does not
rely on any assumptions about the cavity mode. Beginning
with Eq. (1), the full quantum master equation takes the form

dρ

dt
= −i[HDicke, ρ] + κ

(
aρa† − 1

2
{a†a, ρ}

)
+ �

∑
i

(
σ−

i ρσ+
i − 1

2
{σ+

i σ−
i , ρ}

)
. (A1)
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Following the same steps as outlined in Sec. III (combined
with a coherent-state representation for the cavity field), we
obtain an action that consists of cavity, atomic, and interaction
terms:

SD = Scav + Sint + Sspin. (A2)

The cavity term in the action is given by

Scav =
∫

ω

(
ac

aq

)†(
0 ω − ω0 − i κ

2
ω − ω0 + i κ

2 iκ

)(
ac

aq

)
. (A3)

Defining a = (x − ip)/2, we can integrate out the imaginary
component of the cavity field, p, exactly as Sint does not
depend on p. Tracing out the spins (see Sec. III), we then find

an exact expression for the action

SD =
∫

ω

xT (−ω)D(ω)x(ω) − iN ln Tr
(
T e

∫
t TD (xc/q (t )

)
, (A4)

where x(ω) = (xc(ω), xq(ω))T and the kernel D(ω) is given
by

D(ω) ≡
(

0 DA(ω)
DR(ω) DK (ω)

)

=
(

0 1
4

(− (κ+2iω)2

4ω0
− ω0

)
1
4

(− (κ−2iω)2

4ω0
− ω0

) iκ (κ2+4(ω2+ω2
0 ))

16ω2
0

)
. (A5)

The matrix TD is rather similar to that in Eq. (24):

TD(xc(t ), xq(t )) =

⎛⎜⎜⎜⎜⎜⎝
−�

4 − i 2
√

2g√
N

xq(t ) i� −i� �
4

i� − �
2 − 3�

4 − i 2
√

2g√
N

xc(t ) −�
4 −i� − �

2

−i� − �
2 −�

4 − 3�
4 + i 2

√
2g√
N

xc(t ) i� − �
2

�
4 −i� i� −�

4 + i 2
√

2g√
N

xq(t )

⎞⎟⎟⎟⎟⎟⎠. (A6)

We then make the transformation mc ≡ DR
0 xc/

√
Ng and mq ≡

DR
0 xq/

√
Ng with D0 ≡ D(ω = 0), and further define J ≡

−g2/DR
0 = 16g2ω0/(κ2 + 4ω2

0 ) and �x ≡ Jκ/ω0. The action
is then cast as

SD =
∫

ω

mT (−ω)P(ω)m(ω) − iN ln Tr
(
T e

∫
t T (mc/q (t ))

)
, (A7)

where m(ω) = (mc(ω), mq(ω))T , the kernel P is given by

P(ω) = N

(
0 −J

(
1 + 4iκω−4ω2

κ2+ω2
0

)
−J
(
1 − 4iκω+4ω2

κ2+ω2
0

)
i�x
(
1 + 4ω2

κ2+4ω2
0

) ), (A8)

and the matrix T (mc(t ), mq(t )) is identical to that in Eq. (24).
Now we consider the limit of large ω0 and κ , in which case

we can ignore those terms in Eq. (A8) that are suppressed
by a factor of 1/(κ2 + ω2

0 ). This eliminates the frequency-
dependent terms and yields the kernel

P(ω) ≈ N

(
0 −J

−J i�x

)
. (A9)

Using the quantum-to-classical mapping, one can show that
the diagonal term (∼i�x) can be identified with dephas-
ing in the form of the Lindblad operator Lx = √

�x/NSx.
Indeed, this agrees with the large-detuning limit discussed
in Ref. [13]. Our model is different, however, due to the
atomic spontaneous emission, which allows for a nontrivial
nonequilibrium steady state. Finally, to obtain the DDIM, we
consider the detuning ω0 to be the largest frequency frequency
scale, even compared to κ . In this limit, we can neglect
the dephasing term, since �x = Jκ/ω0 � J , and recover the
driven-dissipative Ising model introduced in Eq. (85). The
advantage of this process compared to the usual adiabatic
elimination procedure, is that we have not discarded any in-
formation about the cavity. We are simply showing that the
action of the open Dicke model in the large detuning limit is
exactly identical to the DDIM action.

APPENDIX B: INTERACTION COEFFICIENTS

There are many relevant interaction coefficients necessary
to compute the diagrams in Sec. IV D. They are defined by
Eq. (47) in the time domain and in Eq. (49) in the frequency
domain. Here we list the relevant interaction coefficients for
the four-legged one-loop diagrams in Figs. 15 and 16 in the
frequency domain:

uqccc(ω) = −128�J4(�/2 − iω4)

ω1 + ω2 − i�
f (ω1, ω4), (B1)

uqcqq(ω) = i128�J4(�/2 − iω4)

(ω1 + ω2 − iε)(ω1 + ω2 − i�)
f (ω1, ω4), (B2)

uqcqc(ω) = 256�2J4�

(ω1 + ω2 − iε)(ω1 + ω2 − i�)
f (ω1, ω4), (B3)

uqccq(ω) = i256�2λJ3

ω1 + ω2 − i�
f (ω1, ω4), (B4)

uqc(ω1, ω2)uqc(ω3, ω4)

= −256�2J4 × 2πδ(ω1 + ω2) f (ω1, ω4), (B5)

uqq(ω1, ω2)uqc(ω3, ω4)

= −i128�J4(iω1 + �/2) × 2πδ(ω1 + ω2) f (ω1, ω4).
(B6)

We also list here the interaction coefficient for the six-legged
classical vertex used to calculate the damping parameter in the
ordered phase in Sec. IV E,

uqcccccc(ω) = −256J6�(� + 2i(ω1 + ω2 + ω3)(� − 2iω6)

(ω1 + ω2 + ω3 − ω+)(ω1 + ω2 + ω3 − ω−)

× f (ω1, ω6)

(ω1 + ω2 − i�)(ω5 + ω6 + i�)
, (B7)

where ω = (ω1, . . . , ωn) (for an n-legged diagram),
f (x, y) = 1/[(x − ω+)(x − ω−)(y − ω+∗)(y − ω−∗)],
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and ω+/− = i�/2 ± 2�. For self-energy calculations,
it is useful to recall that

∑
k �=0 1/Dk = −1/2 and∑

k �=0 1/D2
k = 2N − 1/2, where Dk is defined in Eq. (89).

APPENDIX C: NUMERICAL METHODS

Quantum many-body systems are difficult to simulate nu-
merically due to exponential growth of the Hilbert space with
the system size. This growth is even worse when dissipation

is considered, making an exact simulation beyond a few spins
almost impossible. However, Eq. (6) exhibits a permutation
symmetry which can be taken advantage of to reduce the
size of the relevant Hilbert space to O(N3). This symmetry
breaks the Liouvillian matrix L into a block-diagonal struc-
ture, where each block corresponds to a different symmetry
sector. The nonequilibrium steady state resides in the fully
symmetric sector, therefore we introduce a permutation sym-
metric basis as [25,75]

ρNx,Ny,Nz = 1

N
∑
P

PP

(
σ x

1 ⊗ · · · ⊗ σ x
Nx

⊗ σ
y
Nx+1 ⊗ · · · ⊗ σ

y
Nx+Ny

⊗ σ z
Nx+Ny+1 ⊗ · · · ⊗ σ z

Nx+Ny+Nz
⊗ INx+Ny+Nz+1 ⊗ · · · ⊗ IN

)
, (C1)

with the normalization factor N = √N!Nx!Ny!Nz!NI !. The
sum is over all permutations P of the indices, where the oper-
ator PP permutes the indices according to P . These basis
elements are normalized as Tr(ρμρν )/2N = δμ,ν where μ =
(Nx, Ny, Nz ), and the Liouvillian matrix elements are given by

Lμ,ν = 1

2N
Tr(ρμL[ρν]). (C2)

In this basis, the dimensionality grows polynomially with
the system size as N (N + 1)(N + 2)/6 ∼ O(N3) in contrast
with the exponential growth in a generic many-body system.
This scaling can also be contrasted with the O(N4) growth
of the usual Dicke (angular-momentum) basis. Because the
Liouvillian is permutation symmetric, action of L on this basis
will keep us in the fully symmetric subspace. To efficiently
construct the matrix Lμν from the permutation symmetric
basis given by Eq. (C1), we should identify how the basis
itself is transformed by L defined in Eq. (6). The action of
the Liouvillian on a state can be determined analytically by
inspecting how the total-spin operators act on one of our basis
elements:

SxρNx,Ny,Nz =
√

Nx(NI + 1) ρNx−1,Ny,Nz

+ i
√

Ny(Nz + 1) ρNx,Ny−1,Nz+1

− i
√

(Ny + 1)Nz ρNx,Ny+1,Nz−1

+
√

(Nx + 1)NI ρNx+1,Ny,Nz , (C3)

SyρNx,Ny,Nz =√Ny(NI + 1) ρNx,Ny−1,Nz

+ i
√

Nz(Nx + 1) ρNx+1,Ny,Nz−1

− i
√

(Nz + 1)Nx ρNx−1,Ny,Nz+1

+√(Ny + 1)NI ρNx,Ny+1,Nz , (C4)

SzρNx,Ny,Nz =
√

Nz(NI + 1) ρNx,Ny,Nz−1

+ i
√

Nx(Ny + 1) ρNx−1,Ny+1,Nz

− i
√

(Nx + 1)Ny ρNx+1,Ny−1,Nz

+
√

(Nz + 1)NI ρNx,Ny,Nz+1, (C5)

where NI = N − Nx − Ny − Nz, and the action from the right
can be found by taking the adjoint of the RHS. The only other
nontrivial term is the dissipative term

∑
i σ

−
i ρσ+

i , whose ac-
tion on the basis elements is given by∑

i

σ−
i ρNx,Ny,Nzσ

+
i = 1

2

[
(NI − Nz )ρNx,Ny,Nz

+
√

Nz(NI + 1)ρNx,Ny,Nz−1

−
√

NI (Nz + 1)ρNx,Ny,Nz+1
]
. (C6)

Using the above relations, we find the action of the Liouvillian
on our basis as

L[ρNx,Ny,Nz ] = 4J

N

[√
(Nx + 1)(Ny + 1)NzNI ρNx+1,Ny+1,Nz−1 +√Nx(Ny + 1)Nz(NI + 1)ρNx−1,Ny+1,Nz−1

−√NxNy(Nz + 1)(NI + 1) ρNx−1,Ny−1,Nz+1 −√(Nx + 1)Ny(Nz + 1)NI ρNx+1,Ny−1,Nz+1
]

+ 2�
[√

Nx(Ny + 1) ρNx−1,Ny+1,Nz −√Ny(Nx + 1) ρNx+1,Ny−1,Nz

]
+ �

2

[
(NI − Nz − N )ρNx,Ny,Nz − 2

√
(Nz + 1)NIρNx,Ny,Nz+1

]
. (C7)

From here, it is possible to construct the Liouvillian matrix as
defined in Eq. (C2).

Equipped with Eq. (C1), we can efficiently construct the
Liouvillian matrix, and the nonequilibrium steady state can

be then obtained through the shifted-inverse-power method
[76]. However, for larger system sizes (N � 90) finding
the steady state by direct LU decomposition becomes in-
efficient. At that point, it is more efficient to use linear
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solvers such as BICGSTAB to approximate the steady
state.

To characterize the dynamics, we investigate the correla-
tion function C(t ) = 〈{Sx(t ), Sx(0)}〉/N and response function
χ (t ) = −i〈[Sx(t ), Sx(0)]〉/N . The two-time expectation val-
ues can be calculated as [64]

〈{Sx(t ), Sx(0)}〉 = Tr(SxetL[Sxρss] + SxetL[ρssSx])

= 2ReTr(SxetL[Sxρss]), (C8)

1

i
〈[Sx(t )Sx(0)]〉 = 1

i
Tr(SxetL[Sxρss] − SxetL[ρssSx])

= 2ImTr(SxetL[Sxρss]), (C9)

with ρss being the steady-state density matrix. We can instead
represent the above equations in a vectorized form using our
permutation symmetric basis:

C(t ) = 2

N
ReTr(SxetL[Sxρss]) = 2

N
Re

〈〈Sx| etL |Sxρss〉〉
〈〈I|ρss〉〉 ,

(C10)

χ (t ) = 2

N
ImTr(SxetL[Sxρss]) = 2

N
Im

〈〈Sx| etL |Sxρss〉〉
〈〈I|ρss〉〉 ,

(C11)

where we have defined the vectorized state

|ρ(t )〉〉 =
∑

μ

cμ(t ) |ρμ〉〉. (C12)

The denominator in Eq. (C10) is due to the normalization
of the steady state (this is equivalent to dividing the state by
c0,0,0). In the case of static correlations, one can see that the
autocorrelation function takes the simple form

C(0) = 2

Nc0,0,0
[
√

2N (N − 1)c2,0,0 + Nc0,0,0]. (C13)

Using these techniques, we are able to numerically investigate
dynamical correlations with system sizes up to N = 200.

APPENDIX D: EQUILIBRIUM QUANTUM ISING MODEL

In this section, we report the dynamics of the equilibrium
infinite-range Ising model at finite temperature (in the absence
of dissipation). Specifically, we demonstrate via exact numer-
ical simulation that the thermal critical point of this model
belongs to the same (static and dynamic) universality class as
the driven-dissipative Ising model in the weakly dissipative
regime. We start with the same Hamiltonian

H = − J

N
S2

x + �Sz. (D1)

This Hamiltonian features a thermal phase transition to an
ordered phase where the Ising Z2 symmetry is broken at the
critical temperature [29]

Tc = 2�

ln
( 1+�/2J

1−�/2J

) . (D2)

The Hamiltonian conserves the total spin (i.e., [H, �S] = 0)
which thus defines a good quantum number. In the angular-

FIG. 18. Finite-size scaling behavior of the infinite-range Ising
model at a thermal critical point (J = 1, � = 1, T = 1.82048). At
this critical point, fluctuations scale as N1/2, while the critical dynam-
ics is underdamped and is governed by a characteristic timescale t ∼
N1/4. These exponents are identical to those of the driven-dissipative
Ising model in the weakly dissipative regime (see Fig. 3).

momentum basis defined by |S, m〉, the Hamiltonian becomes
block diagonal with each block corresponding to a total spin S.
However, each sector is highly degenerate with a multiplicity
of D(S). The multiplicity is given by D(N/2) = 1, D(N/2 −
1) = N − 1, D(N/2 − 2) = N (N − 3)/2, and

D(N/2 − p) = N (N − 1) · · · (N − p + 2)

p!
(N − 2p + 1),

(D3)
for 3 � p � N/2 [29]. The thermal state is then given by

ρ(β ) = e−βH =
N/2⊕
S=0

(
D(S)⊕
i=1

e−βHS

)
, (D4)

which is to be understood as the direct sum over each unique
spin sector with the corresponding multiplicity D(S). We then
numerically calculate the correlation function

C(t ) = 1

N
〈{Sx(t ), Sx (0)}〉 = 2

N
Re〈Sx(t )Sx(0)〉

= 2

N
ReTr

[
e−iHt SxeiHt Sxρ(β )

]
.

(D5)

A plot of the correlation function and its finite-size scaling
behavior can be found in Fig. 18. There, we see that the
dynamical exponent, defined via t ∼ Nζ , is given by ζ = 1/4
and that the dynamics is underdamped just like at the weakly
dissipative critical point of the driven-dissipative Ising model
discussed in Sec. V B.

APPENDIX E: CLASSICAL (STOCHASTIC) ISING MODEL

For completeness, here we introduce the classical stochas-
tic Ising model [49]. The infinite-range (classical) Ising
Hamiltonian is given by

H = − J

N
S2, (E1)
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where S =∑N
i si with the Ising spin variable si = ±1. While

the Hamiltonian (being a c number and commuting with
all observables) does not impose any intrinsic dynamics, a
stochastic, Glauber-type dynamics can be imposed via the
(classical) master equation

d

dt
P({s}; t ) = −

N∑
i=1

W (si → −si, t )P(s1, . . . , si, . . . , sN ; t )

+
N∑

i=1

W (−si → si, t )P(s1, . . . ,−si, . . . , sN ; t ).

(E2)

Here P({s}; t ) denotes the probability that the system is in a
spin configuration {s} at time t , and W (si → −si, t ) represents
the transition probability rate of a spin flip at site i and at time

t . Under equilibrium conditions, the probability and transition
rates satisfy detailed balance [77],

W (si → −si )

W (−si → si )
= P(s1, . . . ,−si, . . . , sN )

P(s1, . . . , si, . . . , sN )
, (E3)

with the transition rate being of the Glauber type (characteriz-
ing a nonconserved order parameter),

W (si → −si ) = 1

2τ0
[1 − si tanh (βE )]. (E4)

Here τ0 defines the characteristic timescale of Glauber dynam-
ics, and E = −(2J/N )

∑N
i s j . From here, one can simulate

the relaxation of the system from a near-equilibrium state
using Monte Carlo methods combined with the transition rate
given above. Monte Carlo simulations of the this model at crit-
icality are consistent with a critical dynamical scaling where
t ∼ N1/2 [49].
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