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Single-photon frequency conversion via a giant �-type atom
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We study single-photon scattering via a giant �-type atom, where both atomic transitions are coupled with
the modes of a single waveguide at two separated points. The giant-atom structure introduces phase-dependent
interference effects to both elastic (frequency-preserving) and inelastic (frequency-converting) scattering pro-
cesses, which modify the corresponding decay rates (as well as the transition frequencies) such that the giant
atom is capable of accessing the various limits of a small one. The condition of the optimal frequency conversion
is also identified and shown to be phase dependent. Moreover, we consider the combination of the giant-atom
interference and the Sagnac quantum interference by further inserting a Sagnac interferometer at each of the
coupling points. It is shown that the two kinds of interference effects are compatible and play independent roles
such that efficient frequency conversion with unit efficiency can be achieved in addition to the phase-dependent
phenomena induced by the giant-atom structure.
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I. INTRODUCTION

Waveguide quantum electrodynamics (QED) is an emerg-
ing field that studies the interactions between atoms and
electromagnetic fields confined in one-dimensional open
waveguides. It provides an alternative platform for enhancing
light-matter interactions, where the electromagnetic modes
can interact strongly with atoms due to the transverse con-
finement of the waveguides [1,2]. Different from cavity QED
systems, waveguides support in general a continuum of modes
such that the bandwidth limitation that is typical for cavities
(due to their finite linewidths) can be greatly relaxed [1].
Moreover, long-range interactions between remote atoms (res-
onators), which are vital for studying many-body physics and
realizing large-scale quantum networks, can be mediated by
the traveling photons in waveguides [3–8]. To date, several
candidates of waveguide QED systems have been developed
such as trapped (natural) atoms coupled with optical fibers
[9–11] or photonic crystal waveguides [12–14] and supercon-
ducting qubits coupled with transmission lines [15–19]. The
technological improvements and growing research interests
have led to progress in waveguide QED, e.g., chiral photon-
atom interactions [20–22], single-photon routers [23–26],
topologically induced unconventional quantum optics [27,28],
and entangled-state preparations [29–31], to name a few. In
particular, frequency conversion at the single-photon level
can be achieved with a three-level atom (either V type or
� type) coupled to a single waveguide, where the nonlinear
optical process can be accomplished with only a single photon
[32–35].

Considering that the sizes of atoms (either natural or artifi-
cial) are in general much smaller than the wavelengths of the
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waveguide modes, dipole approximation is usually adopted to
regard the atoms as single points [36]. Recent experimental
progress revealed that the approximation should be modified
when atoms interact with the waveguide modes at multiple
points that are separated by large distances. For example,
transmons are able to interact with surface acoustic waves via
interdigital transducers [37–39], with the separations between
different transmon-waveguide coupling points comparable to
or even much larger than the typical wavelengths (∼10−6 m)
of the surface acoustic waves therein. Alternatively, one can
couple single atoms with a bent waveguide so that they can
interact many times with the waveguide modes, such as the
Xmon version demonstrated in Refs. [40–42]. Such structures,
which are referred to as giant atoms, demonstrate striking
interference effects that depend on both the atomic size (i.e.,
the separation between different coupling points) and the
photonic frequency [40–49]. Moreover, non-Markovian re-
tardation effects should also be included if the separations
between different coupling points are comparable to or even
larger than the coherence length of the emitted photons,
with which the dynamics can markedly deviate from the
Markovian predictions [43,46,50–52]. Recently, giant-atom
structures have also been extended to higher dimensions by
using optical lattices of cold atoms [53]. Despite the sem-
inal works above, investigations of single-photon frequency
conversions with such giant-atom interferences are still
lacking.

In this paper, we study single-photon scattering via a gi-
ant �-type atom, which can be excited by the waveguide
modes via both transitions and is coupled with the waveg-
uide at two separated points. The input photon can either be
transmitted or reflected directly or undergo frequency con-
version, depending on which of the two lower-energy states
of the atom is finally occupied. From a comparison with the
small-atom case [32,33], where the scattering behavior is only
determined by the ratio of the waveguide-induced decay rates
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FIG. 1. (a) Schematic illustration of the single-photon frequency
converter, where both transitions of a �-type three-level atom couple
twice with a waveguide at x1 = −d/2 and x2 = d/2. (b) Sketch of
the Sagnac-interference scheme.

of the two transitions, we reveal that the scattering here also
depends on two phase factors which are related to the two
transition frequencies respectively as well as the separation
between the two coupling points. The presence of two cou-
pling points results in phase-dependent interference effects,
which are in general different for the two atomic transitions.
Such interference effects thus affect the scattering behaviors
via modifying the transition frequencies and decay rates of
the atom. By tuning the phases, the giant atom is able to
demonstrate phenomena that typically occur in various limits
of the small-atom case, such as perfect transmission over
the whole frequency range and total reflection. Moreover,
we insert a Sagnac interferometer at each of the coupling
points, which results in quantum interferences between the
counterpropagating waveguide modes and thereby enables
efficient frequency conversion. On the other hand, all the
aforementioned giant-atom effects can still be observed and
the parametric conditions remain unchanged in this case, im-
plying that the two kinds of interference effects play their roles
in parallel.

II. MODELS AND METHODS

We consider in this paper a giant �-type three-level atom
which couples twice with a single waveguide. As shown in
Fig. 1(a), both transitions |g〉 ↔ |e〉 and | f 〉 ↔ |e〉 of the
atom are coupled with the waveguide modes via two coupling
points located at x1 = −d/2 and x2 = d/2, where |g〉, | f 〉, and
|e〉 are the ground, middle, and excited states, respectively. In
the following, we assume that | f 〉 is a metastable state, which
can be achieved if |g〉 and | f 〉 are two hyperfine levels gener-
ated by, e.g., the Zeeman effects. The real-space Hamiltonian

of the system can be written as (h̄ = 1)

H = Hw + Ha + Hint,

Hw = ivg

∫ +∞

−∞
dx

(
a†

L(x)
∂

∂x
aL(x) − a†

R(x)
∂

∂x
aR(x)

)
,

Ha = ω f | f 〉〈 f | + ωe|e〉〈e|,

Hint =
∫ +∞

−∞
dx P(x){g1[a†

R(x) + a†
L(x)]|g〉〈e|

+ g2[a†
R(x) + a†

L(x)]| f 〉〈e| + H.c.},

(1)

where P(x) = δ(x + d/2) + δ(x − d/2); Hw is the free
Hamiltonian of the waveguide modes with vg the group ve-
locity; a†

R (aR) and a†
L (aL) are the creation (annihilation)

operators of the right-moving and left-moving photons in the
waveguide, respectively; Ha is the free Hamiltonian of the �-
type atom, where ω f and ωe are the energies of states | f 〉 and
|e〉 with respect to the ground state, respectively; and Hint de-
scribes the interactions between the atom and the waveguide,
where g1 and g2 are the coupling strengths of transitions |g〉 ↔
|e〉 and | f 〉 ↔ |e〉 with the waveguide modes, respectively. We
have assumed that the coupling strengths are identical for both
coupling points, i.e., gj (x1) = g j (x2) ( j = 1, 2), with which
some limit phenomena can be achieved, as will be discussed
below. In the single-photon manifold, the eigenstate of the
Hamiltonian (1) can be written as

|ψ〉 =
∑

α=g, f

∫ +∞

−∞
dx[Rα (x)a†

R(x)|0, α〉

+ Lα (x)a†
L(x)|0, α〉] + ue|0, e〉, (2)

where Rα (x) [Lα (x)] is the probability amplitude of creating a
right-moving (left-moving) photon in the waveguide at posi-
tion x and the atom finally in state |α〉. In addition, ue is the
probability amplitude of the atom in the excited state, finding
no photon in the waveguide. By solving the Schrödinger equa-
tion H |ψ〉 = E |ψ〉, one can obtain the following equations of
the probability amplitudes:

ERg(x) = −ivg
∂

∂x
Rg(x) + g1P(x)ue,

ELg(x) = ivg
∂

∂x
Lg(x) + g1P(x)ue,

ER f (x) =
(

ω f − ivg
∂

∂x

)
R f (x) + g2P(x)ue,

EL f (x) =
(

ω f + ivg
∂

∂x

)
L f (x) + g2P(x)ue,

Eue = ωeue + g1P(x)[Rg(x) + Lg(x)]

+ g2P(x)[R f (x) + L f (x)].

(3)

We first assume that a single photon of wave vector k
(k > 0) is incident from the far left of the waveguide and
the atom is initialized in the ground state |g〉. If the atom is
excited by the input photon that is nearly resonant with the
transition |g〉 ↔ |e〉, it can spontaneously decay to the lower-
energy state |g〉 or | f 〉 and emit a photon of frequency vgk or
vgk − ω f [32,33]. In the latter situation, the photon undergoes
an inelastic scattering and the frequency is down-converted.
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Equation (3) can be solved according to the ansatz

Rg(x) =
{
�

(
− x − d

2

)
+ A

[
�

(
x + d

2

)

− �

(
x − d

2

)]
+ t1�

(
x − d

2

)}
eikx,

Lg(x) =
{

r1�

(
− x − d

2

)
+ B

[
�

(
x + d

2

)

− �

(
x − d

2

)]}
e−ikx,

R f (x) =
{

M

[
�

(
x + d

2

)
− �

(
x − d

2

)]

+ t2�

(
x − d

2

)}
eiqx,

L f (x) =
{

r2�

(
− x − d

2

)
+ N

[
�

(
x + d

2

)

− �

(
x − d

2

)]}
e−iqx,

(4)

where q = k − ω f /vg and �(x) is the Heaviside step function.
In addition, A and B (M and N) are the probability amplitudes
of finding a right-moving photon and a left-moving one in the
region of x1 < x < x2, respectively, and the atom finally in
state |g〉 (| f 〉). For the frequency-preserving case (i.e., the final
atomic state is |g〉), we define t1 and r1 as the transmission
and reflection amplitudes of the input photon, respectively,
while for the frequency-converting case (i.e., the final atomic
state is | f 〉) we define t2 and r2 as the conversion amplitudes
of creating an output photon with wave vectors q and −q,
respectively.

Substituting Eq. (4) into Eq. (3), one can obtain

0 = −ivg(A − 1)e−ikd/2 + g1ue,

0 = −ivg(t1 − A)eikd/2 + g1ue,

0 = −ivg(r1 − B)eikd/2 + g1ue,

0 = −ivgBe−ikd/2 + g1ue,

0 = −ivgMe−iqd/2 + g2ue,

0 = −ivg(t2 − M )eiqd/2 + g2ue,

0 = −ivg(r2 − N )eiqd/2 + g2ue,

0 = −ivgNe−iqd/2 + g2ue,

0 = g1

2
[(A + B + 1)e−ikd/2 + (A + B

+ t1 + r1)eikd/2] + g2

2
[(M + N )e−iqd/2

+ (M + N + t2 + r2)eiqd/2] − 	ue,

(5)

where 	 = E − ωe = vgk − ωe is the detuning between the
input photon and the |g〉 ↔ |e〉 transition. Then the transmis-
sion amplitude can be readily obtained as

t1 = 	 − 2
1 sin φ1 + 2i
2(1 + eiφ2 )

	 + 2i
1(1 + eiφ1 ) + 2i
2(1 + eiφ2 )
, (6)

where φ1 = kd and φ2 = qd are the phases accumulated by
photons of wave vectors k and q propagating between the
two coupling points, respectively. Here 
1 = g2

1/vg (
2 =
g2

2/vg) is the radiative decay rate from the excited state |e〉
to the lower-energy state |g〉 (| f 〉) contributed from each
atom-waveguide coupling point. For d = 0, the transmission
amplitude in Eq. (6) can be simplified as

t1 = 	 + 4i
2

	 + 4i
1 + 4i
2
, (7)

which recovers that of a “small” �-type atom [33]. Note that
the radiative decay rates are quadrupled here due to the two
coupling points. Moreover, we point out that the transmission
amplitude becomes

t1 = 	 − 2
1 sin φ1

	 + 2i
1(1 + eiφ1 )
(8)

in the case of 
2 = 0 (i.e., g2 = 0), which is exactly identical
to that of a giant two-level atom [54]. Similarly, one can obtain
the other scattering amplitudes as

r1 = −i
1(1 + eiφ1 )2

	 + 2i
1(1 + eiφ1 ) + 2i
2(1 + eiφ2 )
,

t2 = −i
√


1
2(1 + eiφ1 )(1 + e−iφ2 )

	 + 2i
1(1 + eiφ1 ) + 2i
2(1 + eiφ2 )
,

r2 = −i
√


1
2(1 + eiφ1 )(1 + eiφ2 )

	 + 2i
1(1 + eiφ1 ) + 2i
2(1 + eiφ2 )
.

(9)

Once again, the amplitudes in Eq. (9) can be simplified to
those of a small �-type atom and those of a giant two-level
atom for d = 0 and 
2 = 0, respectively. It is clear that |t1|2 +
|r1|2 + |t2|2 + |r2|2 = 1 due to the energy conservation and
|t2|2 ≡ |r2|2 due to the inherent symmetry. In the following,
we define T1 = |t1|2 and R1 = |r1|2 as the transmission and
reflection rates, respectively (without frequency conversion),
and Tc = |t2|2 + |r2|2 as the conversion efficiency. Note that
the intrinsic dissipation γ of the excited state to the environ-
ment (other than the waveguide) can be taken into account
via 	 → 	 + iγ . In this case the total scattering probability
T1 + R1 + Tc should be smaller than unity. However, we do
not consider such dissipation in this paper, because it only
reduces the scattering probabilities and increases the linewidth
of the spectra rather than introducing any qualitative variation
[32,33].

III. PHASE-CONTROLLED PHOTON SCATTERING

We first study the dependence of the scattering proba-
bilities on φ1 and 	φ = φ1 − φ2, which both can be tuned
experimentally as discussed in detail below. In Fig. 2, the
upper plots of each panel are pseudocolormaps of the scat-
tering probabilities versus detuning 	 and phase difference
	φ, while the lower ones are the two-dimensional profiles for
some specific values of 	φ. It can be found that both the po-
sition and the minimum (maximum) of T1 (R1 and Tc) change
periodically with 	φ. This is reminiscent of the frequency-
dependent Lamb shift and decay rate of a giant two-level atom
[40] or a single-mode self-interference resonator [48,55]. For
the giant �-type atom, the effective detuning and linewidth of
the spectra are given by the real and imaginary parts of the
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FIG. 2. (a) and (d) Transmission rate T1, (b) and (e) reflection rate R1, and (c) and (f) conversion efficiency Tc versus detuning 	 and
phase difference 	φ for (a)–(c) φ1 = 2mπ (e.g., φ1 = 0) and (d)–(f) φ1 = (2m + 1/2)π (e.g., φ1 = π/2). The white dotted curves in the
pseudocolormaps depict the trajectories of min[T1(	)], max[R1(	)], and max[Tc(	)] versus 	φ. Here we assume η = 1.

denominators in Eqs. (6) and (9), respectively, i.e.,

	eff = 	 − 2(
1 sin φ1 + 
2 sin φ2) (10)

and


eff = 
1,eff + 
2,eff, (11)

with 
1,eff = 2
1(1 + cos φ1) [
2,eff = 2
2(1 + cos φ2)] the
effective decay rate from |e〉 to |g〉 (| f 〉) due to the giant-atom
structure. Equations (10) and (11) clearly show that the giant-
atom interference effects affect the scattering probabilities by
modifying the atomic transition frequencies and decay rates.
In Figs. 2(a)–2(c) we find T1(	 = 0) = 0, R1(	 = 0) = 1,
and Tc(	) ≡ 0 for φ1 = 2mπ and 	φ = π , implying that to-
tal reflection is achieved. In this case, the | f 〉 ↔ |e〉 transition
is completely suppressed due to the destructive interference of
two corresponding decay channels, i.e., 
2[1 + exp(iφ2)] =
0; thus the model reduces to a two-level atom where a
resonant incident photon should be perfectly reflected. For
the case of φ1 = (2m + 1

2 )π , as shown in Figs. 2(d)–2(f),
the patterns of the pseudocolormaps are shifted along the
y axis by π/2, while the linewidth is reduced by 2
1 ac-
cording to Eq. (11). In this case, the condition of total
reflection becomes 	φ = 3π/2 and 	 = 2
1. In fact, we
have checked that total reflection can always be observed
as long as φ2 = φ1 − 	φ = (2m + 1)π and 	eff = 0. More

interestingly, frequency-independent perfect transmission
(FIPT), i.e., T1(	) ≡ 1 and R1(	) = Tc(	) ≡ 0, can be
achieved in the case of φ1 = (2m + 1)π , regardless of the
value of 	φ (not shown here). This is because the two ex-
citation paths of the |g〉 ↔ |e〉 transition cancel each other
completely such that this transition is decoupled from the
waveguide. Such a phenomenon has also been revealed with a
self-interference resonator, which is referred to as the optical
dark states [48,56].

It has been shown that the scattering probabilities are deter-
mined solely by the decay ratio η = 
2/
1 in the small-atom
case [32,33] and the optimal frequency conversion occurs
when η = 1. For the giant-atom case, however, such a con-
dition becomes phase dependent and thus should be modified.
We first demonstrate two special situations, i.e., φ1 = 2mπ

and 	φ = 2π in Figs. 3(a)–3(c) and φ1 = 2mπ and 	φ = π

in Figs. 3(d)–3(f). In the former case, the optimal frequency
conversion (Tc = 0.5) occurs at 	 = 0 and η = 1, which is
identical to that of the small-atom case. In the latter case,
however, the frequency conversion is completely suppressed
and the input photon that is resonant with the |g〉 ↔ |e〉
transition can be totally reflected. In this case, all scattering
probabilities are independent of η. For a more general case,
the condition of the optimal conversion can be summarized
as η = (1 + cos φ1)/(1 + cos φ2) (i.e., ηeff = 
2,eff/
1,eff =
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FIG. 3. (a), (d), and (g) Transmission rate T1, (b), (e), and (h) reflection rate R1, and (c), (f), and (i) conversion efficiency Tc versus detuning
	 and decay ratio η for (a)–(c) 	φ = 2π , (d)–(f) 	φ = π , and (g)–(i) 	φ = π/2. Here we assume φ1 = 2mπ (e.g., φ1 = 0).

1) and 	 = −2(
1 sin φ1 + 
2 sin φ2) (i.e., 	eff = 0). For ex-
ample, as shown in Figs. 3(g)–3(i), the optimal frequency
conversion occurs at η = 2 and 	 = −4
1 for φ1 = 2mπ and
	φ = π/2, which is in good agreement with the analytical
condition above.

IV. EFFICIENT FREQUENCY CONVERSION WITH
SAGNAC INTERFEROMETERS

It can be found that the conversion efficiency is still at most
1
2 in the giant-atom case (see Figs. 2 and 3), although the
giant-atom interference effects provide additional tunability
for the scattering behaviors. This can be understood from the
fact that the giant-atom effects modify the atomic transition
frequencies and decay rates such that the giant atom behaves
like a small one with renormalized parameters. In this sec-
tion, we show the feasibility of realizing efficient frequency
conversions in the giant-atom case with the assistance of
the quantum interferences between counterpropagating modes
[32,33,57,58]. In experiments, this can be achieved by cou-
pling the atom with the waveguide through two identical
Sagnac interferometers, each of which is connected with the
waveguide via a 50:50 coupler (beam splitter) [59], as shown
in Fig. 1(b). At each coupler, the input photon is split equally
into two counterpropagating parts (i.e., the clockwise and
counterclockwise fields of the Sagnac interferometer), which
form photonic superposition states in the interferometers and
exhibit quantum interference effects. Moreover, one can also
introduce a phase shifter in each Sagnac loop, which can be
used for tuning the relative phase θ between the counter-

propagating modes and thus changing their superposition.1

For superconducting qubits, one can also introduce only one
Sagnac loop and couple the qubit with it at two different
points [58]. Supposing that the whole system is symmetric
with respect to the spatial inversion, the waveguide modes can
be described in terms of the even and odd modes

ae(x) = 1√
2

[aR(x) ± aL(−x)],

ao(x) = 1√
2

[aR(x) − aL(−x)], (12)

which correspond to θ = 0 and θ = π (in the absence of the
giant atom), respectively. In this way, Hw and Hint in Eq. (1)
can be rewritten as

H ′
w = −ivg

∫ +∞

−∞
dx

(
a†

e (x)
∂

∂x
ae(x) + a†

o(x)
∂

∂x
ao(x)

)
,

H ′
int =

∫ +∞

−∞
dx P(x)(g̃1a†

e |g〉〈e| + g̃2a†
e | f 〉〈e| + H.c.),

(13)

where g̃ j = √
2g j ( j = 1, 2). Clearly, the odd mode ao does

not interact with the atom and thus can be discarded in the

1In this case, the separation d can be tuned by changing the position
of the atom along the Sagnac loops (their centers can be coaxial) and
tuning the phase shifters to recover the symmetric superposition of
the counterpropagating modes [32].
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following calculations. In this way, the single-photon state of
the system can be given by

|ψ〉 =
∫ +∞

−∞
dx[ψ1(x)a†

e (x)|0, g〉

+ψ2(x)a†
e (x)|0, f 〉] + ue|0, e〉, (14)

where ψ1(x) = [Rg(x) + Lg(−x)]/
√

2 and ψ2(x) = [R f (x) +
L f (−x)]/

√
2. Then one can obtain

Eψ1(x) = −ivg
∂

∂x
ψ1(x) + g̃1P(x)ue,

Eψ2(x) =
(

ω f − ivg
∂

∂x

)
ψ2(x) + g̃2P(x)ue,

Eue = ωeue + P(x)[g̃1ψ1(x) + g̃2ψ2(x)]

(15)

by solving the stationary Schrödinger equation. In this case,
the spatial dependence of ψ1(x) and ψ2(x) can be given by

ψ1(x) =
{
�

(
− x − d

2

)
+ Ã

[
�

(
x + d

2

)

− �

(
x − d

2

)]
+ t̃1�

(
x − d

2

)}
eikd ,

ψ2(x) =
{

B̃

[
�

(
x + d

2

)
− �

(
x − d

2

)]

+ t̃2�

(
x − d

2

)}
eiqd .

(16)

Here Ã and B̃ are the wave amplitudes in the region of x1 <

x < x2 for the frequency-preserving and frequency-converting
cases, respectively, while t̃1 and t̃2 denote in this case the
transmission (without frequency conversion) and conversion
amplitudes, respectively. Combining Eqs. (15) and (16), we
have

0 = −ivg(Ã − 1)e−iφ1/2 + g̃1ue,

0 = −ivg(t̃1 − Ã)eiφ1/2 + g̃1ue,

0 = −ivgB̃e−iφ2/2 + g̃2ue,

0 = −ivg(t̃2 − B̃)eiφ2/2 + g̃2ue,

0 = g̃1

2
[(Ã + 1)e−iφ1/2 + (Ã + t̃1)eiφ1/2]

+ g̃2

2
[B̃e−iφ2/2 + (B̃ + t̃2)eiφ2/2] − 	ue,

(17)

which results in

t̃1 = 	 − i
̃1(1 + e−iφ1 ) + i
̃2(1 + eiφ2 )

	 + i
̃1(1 + eiφ1 ) + i
̃2(1 + eiφ2 )
,

t̃2 = −4i
√


̃1
̃2 cos φ1

2 cos φ2

2

	 + i
̃1(1 + eiφ1 ) + i
̃2(1 + eiφ2 )
, (18)

with 
̃ j = g̃2
j/vg. Likewise, |t̃1|2 + |t̃2|2 = 1 in the case of

γ = 0. In the following, we will show that efficient frequency
conversion (i.e., |t̃2|2 = 1) can also be achieved in the giant-
atom case by exploiting the Sagnac quantum interferences.

We plot in Fig. 4 the conversion efficiency T̃c = |t̃2|2 versus
detuning 	 and phase difference 	φ for different values of

FIG. 4. Conversion efficiency T̃c versus detuning 	 and phase
difference 	φ for (a) φ1 = 2mπ (e.g., φ1 = 0) and (b) φ1 = (2m +
1/2)π (e.g., φ1 = π/2). The white dotted curves in the pseudocol-
ormaps depict the trajectories of max[T̃c(	)] versus 	φ. Here we
assume η = 1.

φ1 (similar to Fig. 2, the upper and lower plots are pseu-
docolormaps and two-dimensional profiles, respectively). In
this case, the transmission rate T̃1 = |t̃1|2 includes both the
forward and backward scattering components. It can be sim-
ply calculated according to T̃1 ≡ 1 − T̃c due to the energy
conservation and thus shows inverse patterns with respect to
T̃c. Clearly, it can be seen from Fig. 4 that efficient frequency
conversion with T̃c = 1 can be achieved in this case owing
to the quantum interference between the counterpropagating
modes in the Sagnac loops. Once again, both the position and
the maximum of T̃c are 	φ dependent with the period of 2π .
For φ1 = 2mπ , as shown in Fig. 4(a), the maximum of T̃c de-
creases gradually with 	φ until T̃c(	) ≡ 0 [i.e., T̃1(	) ≡ 1]
at 	φ = π (this phenomenon is in fact the total reflection
shown in Fig. 2, which is frequency dependent if we divide
T̃1 into the forward and backward components). The largest
frequency shift with a value of 
̃2 is achieved when 	 = π/2.
In this case, the effective detuning and linewidth can be given
by 	 − (
̃1 sin φ1 + 
̃2 sin φ2) and 
̃1(1 + cos φ1) + 
̃2(1 +
cos φ2), respectively, which are in fact identical to those in
Eqs. (10) and (11) due to 
̃ j = 2
 j . As shown in Fig. 4(b),
the patterns (see the pseudocolormaps) are shifted along the y
axis by π/2 and the linewidth is reduced by 
̃1 by changing
φ1 from 2mπ to (2m + 1/2)π , which is similar to the case
without the Sagnac interferences (see Fig. 2). Note that FIPT
is also achievable in this case as long as φ1 = (2m + 1)π , with
which T̃c(	φ, η) ≡ 0 and T̃1(	φ, η) ≡ 1 are independent of
all other parameters and input photons that are off-resonance
with the | f 〉 ↔ |e〉 transition undergo no scattering.

Moreover, we demonstrate in Fig. 5 that the condition of
the optimal frequency conversion obtained in Sec. III still
holds in the presence of the Sagnac interferences. Once again,
the optimal conversion (T̃c = 1 in this case) occurs at η = 1
and 	 = 0 if both φ1 and 	φ are integer multiples of 2π ,
as shown in Fig. 5(a), while the frequency conversion is
completely suppressed over the whole frequency range if
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FIG. 5. Conversion efficiency T̃c versus detuning 	 and decay
ratio η for (a) 	φ = 2π , (b) 	φ = π , and (c) 	φ = π/2. Here we
assume φ1 = 2mπ (e.g., φ1 = 0).

φ2 = φ1 − 	φ = (2m + 1)π , as shown in Fig. 5(b). In addi-
tion, the optimal frequency conversion occurs at η = 2 and
	 = −2
̃1 in a more general case of φ1 = 2mπ and 	φ =
π/2, as shown in Fig. 5(c), which is in fact the same condition
as that in Figs. 2(g)–2(i) due to 
̃1 = 2
1.

Finally, we summarize in Table I the analytical conditions
of some aforementioned scattering phenomena. We point out
that these conditions are in fact identical for the cases with
and without the Sagnac interferences, which implies that the
interference effects induced by the giant-atom structure and
the Sagnac interferometers are compatible and play their roles
independently. We conclude that FIPT or total reflection can
be achieved if φ1 or φ2 is an odd multiple of π , while the
optimal frequency conversion demands an appropriate decay
ratio η for given phases. As a side note, we point out that
the intrinsic dissipation γ does not change the conditions
in Table I. In other words, such dissipation does not affect
the scattering phenomena qualitatively. The only influence is
that the scattering probabilities (linewidth) decrease overall
(increases) as γ increases in the total reflection and optimal

TABLE I. Conditions of some scattering phenomena.

Phenomena Conditions

Total reflection φ1 − 	φ = (2m + 1)π
[i.e., φ2 = (2m + 1)π ],

	 = 2
1 sin φ1

FIPT φ1 = (2m + 1)π
Optimal frequency η = (1 + cos φ1)/(1 + cos φ2),
conversion 	 = −(
̃1 sin φ1 + 
̃2 sin φ2)

frequency conversion cases, whereas the transmission rate
remains unity over the whole frequency range in the FIPT
case.

V. EXPERIMENTAL IMPLEMENTATION OF A GIANT
�-TYPE ATOM

In this section, we briefly discuss the feasibility of the
giant �-type atom considered in this paper. Experimentally,
such a model can be achieved by coupling a GaAs quantum
dot (which can be confined in a fiber-coupled semiconductor
channel waveguide [60]) to a U-type bent waveguide (e.g.,
optical fiber). In this case, ωe/2π and ω f /2π can be tuned
at the order of 1014 and 109 Hz, respectively, depending on
the strength of the external magnetic field. For example,
one has ωe/2π = 3.7 × 1014 Hz and ω f /2π = 6 GHz for the
D0-DX 0 transition where the g factor is measured as 0.44
[32,61]. By tuning the separation d between the two coupling
points (i.e., the relative position of the channel waveguide
and the fiber) and the strength of the external magnetic field,
one can tune the phase difference 	φ within [0, 2π ] and the
phase φ1 within [2m, 2m + 2]π (m is an integer, which is
of the order of 105 in this case).2 One can also implement
the model with an artificial �-type atom coupled twice with
a transmission line, where both φ1 and 	φ can be tuned
within [0, 2π ] readily by adjusting the external parameters
such as the voltages and currents, or the electric and magnetic
fields (such that the energy levels can be reconfigured) [2].
Note that the non-Markovian retardation effect can be safely
neglected in both implementations due to d/vg ∼ 10−10 s �
1/(
1 + 
2) ∼ 10−7 s [8].

VI. CONCLUSION

In summary, we have considered a giant �-type atom
which is coupled with a waveguide at two separated points
and studied the single-photon scattering at it. A single input
photon can either be transmitted or reflected directly without
frequency conversion or undergo an inelastic scattering pro-
cess with converted frequency, depending on which of the two
lower-energy states is finally occupied. For the small-atom
case, it is known that the scattering behavior is determined
only by the ratio of the two waveguide-induced radiative de-
cay rates. For the giant-atom case, however, both elastic and
inelastic scattering processes are also dependent on the phase
factors which are related to the two transition frequencies as
well as the separation between the two coupling points. Simi-
lar to a giant two-level atom or a single-mode self-interference
resonator, the scattering processes (both elastic and inelastic)
of the �-type atom exhibit a phase-dependent frequency shift
and linewidth. In particular, each of the two transitions can
be completely suppressed when the corresponding coupling

2For φ1 = kd = w and 	φ = qd = v (w and v are arbitrarily
chosen values), the separation d and the difference of the wave
vector 	k = k − q (which is controlled by the external magnetic
field) can be determined by simultaneously solving the equations
(k0 + 	k/2)d = w and 	kd = v, where k0 = (k + q)/2 is always
constant.
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channels interfere destructively with each other. The under-
lying physics can be simply interpreted with the effective
frequency shift and linewidth induced by the giant-atom in-
terference effects. In this way, the giant atom is capable of
accessing various limits of a small one and thus exhibits a
series of limit phenomena such as FIPT and total reflection.
To further increase the efficiency of the frequency conversion,
we have also introduced quantum interferences between coun-
terpropagating modes by inserting Sagnac interferometers at
both coupling points. It was shown that efficient frequency
conversion with unity efficiency can be achieved with the
assistance of the Sagnac interferences and all the phenom-
ena that arise from the giant-atom interferences can still be
observed, which implies that the two kinds of interference
effects can play their roles independently. Finally, we have
summarized the analytical conditions of some limit phenom-
ena, which have been shown to be identical for the cases with
and without the Sagnac interferences.

It is known that a V-type three-level atom with one tran-
sition coupled with the waveguide modes and the other one

driven by an external field can be effectively described by a
�-type energy-level structure in terms of the dressed states
[34,35]. This implies that our proposal in this paper can be
naturally extended to the V-type giant atom, where the decay
ratio can be tuned flexibly. Moreover, one can implement a
	-type giant atom by driving the magnetic dipole transition
between the two lower-energy states via a microwave field
[62,63], where phase-dependent nonreciprocal frequency con-
version can be expected due to the closed cyclic energy level.
We believe that the results in this paper have potential appli-
cations in quantum communication and quantum information
processing with single photons.
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