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Coherent many-body Rabi oscillations via superradiance and superabsorption and
the mean-field approach for a superradiant laser
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The experimental success achieved in recent decades in the coherent manipulation of several Rabi cycles
has led to a new stage in the physics of radiation-matter interaction. Motivated by this perspective, we propose
here the engineering of coherent many-body Rabi oscillations (CMBROs) induced from the interactions of a
moderately dense atomic sample with the environment and a high-finesse cavity mode. The CMBRO follows
from the interplay between superradiance and superabsorption: the collective decay and absorption of the
atomic sample inside the cavity. The equations we have derived for this interplay, based on the mean-field
approximation, describe a two-level superradiant laser in an appropriate parameter regime, and its properties
are also discussed. The control of quantum coherence according to the method presented here can be adapted
to the implementation of quantum information processes as well as for the investigation of the fundamentals of
quantum mechanics.
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I. INTRODUCTION

The great experimental advance that has happened in the
physics of radiation-matter interaction since the 1990s is
mainly due to the strong electrical dipole couplings achieved
together with the long lifetimes of the field (confined in
high-finesse cavities) and the atomic Rydberg states. These
ingredients combined together made it possible to manipulate
high-fidelity states over relatively large timescales, especially
in the fields of cavity quantum electrodynamics and trapped
ions [1,2]. Much has been achieved within the possibilities
offered by this time gap where several cycles of Rabi os-
cillations could be observed. We mention in particular the
experimental demonstration of fundamental phenomena of
quantum mechanics, as well as the implementation of quan-
tum information processing, paving the way for the current
status of quantum information theory [3], which essentially
relies on the manipulation of quantum coherence.

In parallel with the development in the manipulation of the
quantum states of a few two-level atoms and photons, there
has also been a no less remarkable advance in the manip-
ulation of many-body cold-atom states, such as the atomic
Bose-Einstein condensates [4]. Here, the manipulation of
quantum coherence has been extended to matter-wave states,
enabling many interesting achievements [5]. More recently,
to complete a chapter opened in 1954 with the theoretical
prediction of superradiance by Dicke [6], in 2014 Higgins
et al. [7] proposed the superabsorption of light, the reciprocal
process to superradiance.

Our goal in this paper concerns the possibility of observing
coherent many-body Rabi oscillations (CMBROs) through
the interplay between superradiance and superabsorption. A
moderately dense atomic excited sample, confined to a high-

finesse cavity, is made to superradiate to a cavity mode and
then to superabsorb the field back, repeating the process for
several cycles. Evidently, we seek for a shorter period of
emission and reabsorption in terms of the collective effects
of both processes, which could, in principle, be used as an
instrument to manipulate quantum coherence.

CMBRO has long been investigated [8] and has been stud-
ied since the early 2000s for a bold proposal to implement
quantum processing in mesoscopic atomic ensembles [9].
These oscillations have been pursued on different experimen-
tal platforms, such as cold atoms [10], where these oscillations
have already been observed [11]. Theoretical investigations
also consider the emergence of CMBROs through interacting
atoms in quantum liquid tubes [12]. In the present proposal we
consider the interaction of an atomic sample with the environ-
ment and a high-finesse cavity mode. Instead of the emergence
of the CMBROs from excitation blockage [9,11] or quantum
quench [12], here, they must result from the interplay between
superradiance and superabsorption phenomena. The equations
derived for this interplay also describe a superradiant laser
whose properties are discussed here.

This paper is organized as follows. In Sec. II we obtain
the nonlinear mean-field Hamiltonian for the representative
atom-field pair describing the process. In Sec. III, we obtain
a system of coupled differential equations for the evolution
of the expected values of the atomic and field operators. The
complementary intensities of the emitted and reabsorbed ra-
diation are also presented in Sec. III. The characterizations of
superradiance and superabsorption are discussed in Sec. IV. In
Sec. V we derive the mean-field equations for a two-level su-
perradiant laser from the equations for the interplay between
superradiant and superabsorption. In Sec. VI we present our
conclusions.
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II. THE NONLINEAR MEAN-FIELD HAMILTONIAN

We start with the Hamiltonian describing the process, H =
H0 + HI , where

H0 = ω0a†a + ω0Sz +
∑

k

ωkb†
kbk, (1a)

HI = g(aS+ + a†S−) +
∑

k

λk (S−b†
k + S+bk ). (1b)

The diagonal operator H0 accounts for the cavity mode ω0,
the atomic sample ω0, and its reservoir ωk . The cavity mode
is assumed to be an ideal system, described by the cre-
ation operator a† and annihilation operator a; the atomic
sample is described by the collective pseudospin operator
Sz = ∑N

n=1 σz
(n)/2, and the reservoir is a sample of harmonic

modes described by the creation operator b†
k and the anni-

hilation operator bk . The nondiagonal HI refers to both the
interactions shared by the atomic sample, with the reservoir
λk and the cavity mode g, the latter being described by the
Tavis-Cummings model, with the collective operators S± =∑N

n=1 σ±(n). Going to the interaction picture where

HI (t ) = g(aS+ + a†S−) +
∑

k

λk (S−b†
kei(ωk−ω0 )t

+ S+bke−i(ωk−ω0 )t ) (2)

and tracing out the reservoir variables, we obtain the master
equation governing the evolution of the atom-field state

ρ̇(t ) = −i[ ω0a†a + ω0Sz + g(aS+ + a†S−), ρ(t )] + Lρ(t ),

(3)

where the Lindbladian form

Lρ(t ) = γ21[2S−ρ(t )S+ − S+S−ρ(t ) − ρ(t )S+S−]

− γ12[2S+ρ(t )S− − S−S+ρ(t ) − ρ(t )S−S+], (4)

with γ21 = γ (n̄ + 1)/2 and γ12 = γ n̄/2, is a signature of the
superradiance phenomena, the collective spontaneous emis-
sion of light of a moderately dense atomic sample in an
initially inverted populated state, with γ being the atomic re-
laxation factor and n̄ being the mean excitation of the reservoir
modes.

In order to apply the mean-field approximation [13,14], we
take advantage of the canonical mapping [15]

a → 1√
N

N∑
i=1

ai, a†a →
N∑

i=1

a†
i ai, (5)

which introduces N mathematical cavity modes in place of
the single physical one, thus helping us to describe the system
through a single representative atom-field pair. Equation (5)
enables us to rewrite the atom-field Hamiltonian, in the von
Neumann term of the master equation (3), as

H = ω0

N∑
i=1

(
a†

i ai + σ (i)
z

2

)
+ g̃

N

N∑
i �= j=1

(aiσ
j

+ + a†
i σ

j
−), (6)

where the atom-field coupling scales to g̃ = g
√

N . Assuming
that the density operators for the atomic sample and the cavity
modes are initially factorized, the mean-field approximation
follows by tracing out all the N − 1 atom-field pairs except
for the representative one, leading, in the limit of an infinite
number of pairs, to [16]

lim
N→∞

Tr2 · · · TrN [H, ρN (t )] =
[
ω0

(
a†a + σz

2

)
, ρAF (t )

]
+ lim

N→∞
N − 1

N
g̃Tr2

[
2∑

i �= j=1

(aiσ
j

+ + a†
i σ

j
−), ρ2(t )

]
, (7)

where ρAF (t ) stands for the representative atom-field pair. Assuming, in addition, the uncorrelated approximation, by which
we disregard the statistical correlations in the two-body operator, factorizing it as the product of two one-body operators, i.e.,
ρ2(t ) = ρAF (t ) ⊗ ρAF (t ) [17], we end up with the nonlinear master equation

ρ̇AF (t ) = −i
[
ω0

(
a†a + σz

2

)
+ g̃(a〈σ+〉 + 〈a〉σ+ +a†〈σ−〉 + 〈

a†
〉
σ−

)
, ρAF (t )

]
+ Tr2 · · · TrN Lρ(t ). (8)

Next, by also tracing out the N − 1 atom-field pairs engaged in the interaction of the atomic sample with the environment, we
finally obtain

ρ̇AF = −i[HAF , ρAF ] + γ21(2σ−ρAF σ+ − σ+σ−ρAF − ρAF σ+σ−) + γ12(2σ+ρAF σ− − σ−σ+ρAF − ρAF σ−σ+), (9)

where the nonlinear mean-field Hamiltonian in the von Neumann term of Eq. (8), which accounts for the representative atom-field
pair, is changed to

HAF = ω0

(
a†a + σz

2

)
+

√
Ng

(〈σ+〉a + 〈σ−〉a†
) + �〈σ−〉σ+ + �∗〈σ+〉σ−, (10)

where

� = N

2

(
2g√

N

〈a〉
〈σ−〉 − iγ

)
= |�| eiφ�, (11a)

|�| =
√

N

[(
gcos(φa − φσ− )

|〈a〉|
|〈σ−〉|

)2

+
(

g sin(φa − φσ− )
|〈a〉|
|〈σ−〉| −

√
N

2
γ

)2]1/2

, (11b)

φ� = tan−1

(
2g sin(φa − φσ− )|〈a〉| − γ

√
N |〈σ−〉|

2gcos(φa − φσ− )|〈a〉|
)

. (11c)
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In what follows we disregard the superoperators in Eq. (9)
taking into account the atomic dissipative and absorptive
terms since we will be interested in much shorter time inter-
vals than the relaxation time γ −1.

III. EXPECTED VALUES

We next present a system of coupled differential equations
for the evolution of the expected values of the atomic and field
operators. After defining the relations 〈a〉 = 〈a†〉∗ = |〈a〉|eiφa

and 〈σ−〉 = 〈σ+〉∗ = |〈σ−〉|eiφσ , we obtain

˙〈σz〉 = −4
√

Ng sin(φσ − φa)|〈a〉||〈σ−〉| − 2Nγ |〈σ−〉|2
= 4|�| sin φ�|〈σ−〉|2 (12a)

˙|〈σ−〉| = −
√

Ng sin(φa − φσ )|〈a〉||〈σz〉| + Nγ

2
|〈σ−〉|,

(12b)
˙〈a†a〉 = 2

√
Ng sin(φσ − φa)|〈a〉||〈σ−〉|, (12c)

˙|〈a〉| =
√

Ng sin(φσ − φa)|〈σ−〉|, (12d)

˙φσ− = −ω0 +
√

Ngcos(φσ − φa)
|〈a〉|
|〈σ−〉| 〈σz〉, (12e)

φ̇a = −ω0 −
√

Ngcos(φσ − φa)
|〈σ−〉|
|〈a〉| . (12f)

Moreover, from the energies of the representative atom and
field mode, given by εA = ω0〈σz〉/2 and εF = ω0〈a†a〉, we
obtain the complementary intensities for the emitted and re-
absorbed radiation:

IA = −N
dεA

dt
= Nω0|〈σ−〉|[Nγ |〈σ−〉|

+2
√

Ng sin(φσ − φa)|〈a〉|], (13a)

IF = −N
dεF

dt
= −2N3/2gω0 sin(φσ − φa)|〈a〉||〈σ−〉|

= N2γω0|〈σ−〉|2 − IA, (13b)

In the above complementary equations, the photons resulting
from the superradiance of the atomic sample (IA > 0) are
stored by the cavity field (IF < 0) and then superabsorbed
back by the sample (IA < 0) when the cavity field is emptied
to restart a new cycle. Equations (13) for the complementary
intensities (the interplay between superradiance and superab-
sorption) have a very distinctive feature when compared to
those in which the processes of superradiance and superab-
sorption are independent of each other, both being described
by the expression N2γω0|〈σ−〉|2. The distinctive feature is the
contribution of the term 2N3/2gω0 sin(φσ − φa)|〈a〉||〈σ−〉|,
which in the interplay causes the intensities IA and IF to
exceed those of the independent processes. In short, in the
interplay between superradiance and superabsorption, one
process strengthens the other, both in terms of the peak of their
intensities and in terms of their frequencies, which, as we will
see below, are greater than those in which the processes occur
separately.

FIG. 1. Mean population 〈σ+σ−〉 against gt for N = 1 (dotted
blue line) and N = 103 (solid orange line). We also have 〈σ+σ−〉 for
an atomic sample undergoing the usual superradiant decay (g = 0;
thick solid green line) and the decay for an engineered reservoir
(thick dashed red line).

IV. CHARACTERIZATIONS OF SUPERRADIANCE
AND SUPERABSORPTION

The superradiance and superabsorption mechanisms fol-
low from the nondiagonal terms of the nonlinear Hamiltonian
(10). When disregarding the interaction of the atomic sample
with the cavity mode (g = 0), leaving only superradiance,
the frequency (11a) reduces to � = iNγ /2 (where γ = γ21 −
γ12), and consequently, ˙〈σz〉 = −2Nγ |〈σ−〉|2. On the other
side, when considering only the superabsorption mechanism,
by which the atomic sample is subjected to the collective
absorption described by the Lindbladian in Eq. (4), with
γ = γ12 − γ21, we get ˙〈σz〉 = 2Nγ |〈σ−〉|2. Therefore, the dif-
ference between superradiance and superabsorption is, as
expected, the signal of ˙〈σz〉; while the atomic population de-
creases in superradiance, it grows in superabsorption. From
Eq. (12a), we verify that the time-dependent sine function
automatically takes into account both signals of ˙〈σz〉, leading
to superradiance when π < φ� < 2π , and superabsorption
when 0 < φ� < π . In our interplay, however, instead of the
usual Lindbladian for collective absorption, the superabsorp-
tion process is triggered by the cavity mode that feeds back
the atomic sample through an effective coupling enhanced by
a factor

√
N .

To illustrate the CMBROs, we start with the field in the
vacuum state and the atom in the superposition cos θ |e〉 +
sin θeiφσ (0)|g〉, with θ = π/2 and φσ (0) = 0, to plot in Fig. 1,
against gt , the mean population of the atomic excited state
〈σ+σ−〉 for N = 1 (dotted blue line) and N = 103 (solid or-
ange line), using, in units of g from here on, ω0 = 102 and γ =
10−3. We also plot in Fig. 1 the mean population 〈σ+σ−〉 for
an atomic sample, with N = 103 and γ = 10−3, undergoing
the usual superradiant decay (g = 0) (thick solid green line)
and for an engineered reservoir [18], where the decay rate is
changed to g2/κ > γ (thick dashed red line), with κ = 102

being the decay rate of a bad cavity into which the atomic
sample is placed.

We thus clearly observe in Fig. 1 the CMBRO, the interplay
between superradiance and superabsorption, one strengthen-
ing the other, with the time of collective decay and absorption
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FIG. 2. Intensities IA/ω0 and IF /ω0 against gt when γ12 < γ21.

being even shorter than that of the superradiant decay for
an engineered reservoir (coming from the thick dashed line).
We have already pointed out that the intensities of super-
radiance and superabsorption when interplaying with each
other can surpass those of the independent processes. To
illustrate this, in Fig. 2 we plot the intensities IA/ω0 and
IF /ω0 against gt , given by the solid and dotted lines, re-
spectively, using N = 103 and the same initial states and
parameter γ as in Fig. 1. The complementary curves show that
there is an average frequency for superradiance and super-
absorption, associated with the time of collective decay and
absorption, around 10−1g for the parameters we have used.
Regarding the maximum height of the curves, they are slightly
above the value N2γ |〈σ−〉|2 = 125, taking into account that
the maximum value of |〈σ−〉| is 1/2.

V. FROM THE INTERPLAY BETWEEN SUPERRADIANCE
AND SUPERABSORPTION TO THE MEAN-FIELD

EQUATIONS FOR A TWO-LEVEL SUPERRADIANT LASER

To derive the mean-field laser theory we next consider the
interplay of superradiance and superabsorption in a modified
version of the mean-field master equation (9). We must intro-
duce in this mean-field equation the Lindbladian for the cavity
decay κ21(2aρAF a† − a†aρAF − ρAF a†a) and also a multi-
modal amplification, the reciprocal of the reservoir [19], that
takes the atoms from the ground to the excited state, making
the absorption rate higher than the emission rate: γ12 > γ21.
We are proposing here a two-level superradiant laser, from
which the usual nonlasing fundamental level is absent. By
defining A(t ) = 〈a(t )〉eiωt , S(t ) = 〈σ−(t )〉eiωt , D(t ) = 〈σz(t )〉,
g̃ = ig, 
 = (γ12 + γ21)/2, and d = (γ12 − γ21)/2
, we end
up with the nonlinear system

dA

dt
= −κA −

√
Ng̃AD, (14a)

dS

dt
= −
[1 + d (N − 1)D]S +

√
Ng̃AD, (14b)

dD

dt
= 2

√
Ng̃[A∗S − AS∗] − 2
[D − d] + 4d (N − 1)
|S|2,

(14c)

FIG. 3. Intensities IA/ω0 and IF /ω0 against gt under the multi-
modal amplification of the atomic sample, such that γ12 > γ21.

which must be analyzed in two different regimes: the interplay
regime for 
 
 √

Ng and the superradiant laser for 
 �√
Ng. In the above equations the transition g → e occurs by

superabsortion (rate dN
) and incoherent excitation (rate 
),
both coming from the multimodal amplification. In turn, the
transition e → g occurs by superradiance (rate

√
Ng). When

considering N = 1, the system (14) reduces exactly to the
mean-field equations of the usual laser theory [15].

Starting with the interplay regime, we consider the field in
the vacuum state and the atom in the superposition cos θ |e〉 +
sin θeiφσ (0)|g〉, now with θ = π/2 − 20/N and φσ (0) = 0. Us-
ing the same parameters as in Fig. 2, except for γ = −10−2,
we then plot in Fig. 3 the intensities IA and IF (solid and dot-
ted lines, respectively), showing again the interplay between
superradiance and superabsorption, but now with both intensi-
ties increasing over time due to the multimodal amplification
of the atomic sample.

Turning now to the laser regime, we first observe that when
considering N = 1, the system (14) reduces exactly to the
mean-field equations of the usual laser theory [15], where the
relation 
 � g � κ enable us to eliminate the fast variables
S and D, leading us to the equation for the field amplitude

dA

dt
= −κA

(
1 − C

1 + |A|2/n0

)
, (15)

where C = dg2/
κ is the laser pump parameter and n0 =

2/2g2. As shown in Fig. 4, where we consider 
 = 10 and
κ = 10−2, at C = 1 we have a threshold between a unique
stationary solution A = 0 (C < 1) and a region (C > 1) where
this vacuum solution becomes unstable (dashed line), thus
enabling us to excite the cavity field to the stationary solutions
|A|2 = n0(C − 1) (solid line).
Considering now our superradiant laser, we observe that by
increasing N the threshold moves to smaller values of C, as
shown in Fig. 5, where we consider N = 5 and the same pa-
rameters used in Fig. 4, indicating that the collective effects of
superradiance demand a smaller pump parameter to establish
the laser phase transition. Remarkably, the collective effects
of our superradiant laser dispense the need for a field pumping
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FIG. 4. Bifurcation diagram for the field amplitude of a usual
laser (N = 1) coming from Eq. (15), with 
 = 10 and κ = 10−2.

rate higher than that of damping for the establishment of the
laser regime.
Another interesting issue coming from the collective effects
of the superradiant laser, again with N = 5, is the double-
threshold transitions shown in Fig. 6, owing to a different
choice of parameters: 
 = 10 and κ = 10−1. Now we have
a threshold towards the laser field for C between 0.2 and 0.3
and a threshold out of the laser field at C = 1. The dashed line
indicates the unstable vacuum solution.
Next, ensuring that the system is above the threshold by
setting the parameters 
 = 10 and κ = 10−1, we then solve
the system (14) to compute the intensity of the cavity field,
IF = NdεF /dt , now taking into account the dissipative terms
in Eq. (9), different from what was done in the derivation
of Eq. (13b), where we were interested in time intervals
much shorter than γ −1. Now we are evidently interested in
the steady-state regime, where the competition between am-
plification and dissipation, mediated by saturation, plays a
fundamental role. In Fig. 7 we plot the intensities for N = 1, 5,

FIG. 5. Bifurcation diagram for the field amplitude of our su-
perradiant laser (N = 5) coming from Eq. (14), with the same
parameters used in Fig. 4.

FIG. 6. Bifurcation diagram for the field amplitude of our su-
perradiant laser (N = 5) coming from Eq. (14), with 
 = 10 and
κ = 10−1.

and 10, using the same parameters as in Fig. 4 with d = 0.8,
showing that their maxima grow as N2, a scale law that is
better the higher N is, similar to the superradiant laser in
Ref. [20], another interesting feature of our laser.
Finally, we analyze the laser linewidth coming from
the second-order correlation function 〈E−(t )E+(t + τ )〉 ≈
〈E+(τ )〉 = |A|2e−iω0τ e−Dτ :

L(ω) = |A|2
π

D

(ω − ω0)2 + D2
,

with both diffusion D and the mean number of photons |A|2
being numerically computed. The linewidth is plotted in Fig. 8
for N = 1, 5, and 20 using the same parameters as in Fig. 7,
showing, interestingly, that it is not much affected by N.

VI. CONCLUSIONS

Considering a moderately dense atomic sample inside a
high-finesse cavity, we demonstrated the possibility of build-
ing an interplay between superradiance and superabsorption

FIG. 7. Intensities against gt for N = 1, 5, and 10.
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FIG. 8. Linewidth against gt for N = 1, 5, and 20.

that leads to CMBROs. While the superradiance is triggered,
as usual, by the atomic sample reservoir, transferring the
atomic excitation to the cavity mode, the superabsorption of
that excitation back to the sample results from a Rabi fre-
quency increased by the factor

√
N . The first notable feature

is that in the interplay, superradiance and superabsorption
cooperate, strengthening each other, shortening their typical
emission and absorption times and increasing their intensities.

In addition to the interplay between superradiance and su-
perabsorption, we also showed a regime leading to a two-level
superradiant laser whose intensity scales as N2 and whose
linewidth is roughly the same as that of the conventional laser
(N = 1).
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