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Topological phase transition and detectable edge state in a quasi-three-dimensional circuit quantum
electrodynamic lattice
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We investigate the topological phase transition and the edge states in a quasi-three-dimensional topological
system mapped by a circuit quantum electrodynamic lattice via introducing two periodic spatial parameters. It
is found that with the increasing of the periodically modulated on-site potential strength, the system undergoes
a topological phase transition, corresponding to the change of the number of Weyl points under the periodic
boundary condition. Under the open boundary condition, the phase transition is reflected by the energy band
separation and the appearance of new edge states. Interestingly, the system holds two pairs of crossed edge states
in the energy gaps when the periodic parameters take certain values. Furthermore, we show that, benefiting from
the Bose statistical properties of the circuit quantum electrodynamic, the edge states of the system can be directly
detected by measuring the average photon number of the cavity field in the steady state.
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I. INTRODUCTION

The exploration of novel quantum phases, which is the
central topic in condensed matter physics, has attracted exten-
sive interest in recent decades [1–6]. Especially, topological
insulators have attracted much attention due to the existence
of novel physical phenomena. The electronic band structure of
the topological insulator is similar to the traditional insulator,
in which the Fermi energy level lies between the conduction
and valence band [7–10]. However, the difference is that the
topological insulator possesses a localized conducting sur-
face state or edge state existing in the band gap, which can
support the unidirectional transmission against backscatter
[4,11–13]. This special band structure can be actually deter-
mined by the topological properties of materials [14,15]. For
instance, the Majorana fermions show the non-Abelian statis-
tics, which has potential applications in topological quantum
computing [16,17]. Note that, under natural conditions, the
original static systems with topological properties are aw-
fully limited, which inspires the researchers to artificially
change the structures and properties of materials to realize the
mapping of topological insulators based on various kinds of
physical platforms [18,19].

Recently, with the rapid development of micro- and
nano-processing technology, circuit quantum electrodynamics
(QED) has become one of the important physical platforms for
implementing quantum information processing, topological
quantum computing, and quantum simulation. Compared with
other quantum systems, the circuit QED system composed of
superconducting quantum bits and microwave cavity fields
is easily integrated in space and modulated in time, which
provides structural designability and parameter adjustability
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simultaneously [20–22]. On the other hand, superconducting
qubits possess discrete energy levels which can be modu-
lated through external fields, and their coherence time has
also been improved greatly by using current technology.
Typically, the Xmon superconducting qubit, which can be
regarded as a nonlinear harmonic oscillator, in which the
lowest two energy levels are chosen as qubits [23], can be
coupled with the coplanar waveguide resonator and the trans-
mission line in one-dimensional (1D) space [24]. When the
superconducting qubits as artificial atoms are coupled to the
transmission line resonators, a series of experimental studies
on microwave quantum optics can be realized due to their
convenient coupling modulations [25]. Taking advantage of
the high integration in space and the flexible modulation in
time of the circuit QED, one can design and investigate more
complex multibody quantum effects and quantum simulation
of topological insulators [26–28]. So far, the phase transi-
tion and the edge state of topological insulators have been
widely studied both in theory and in experiments [29–31].
And a scheme has been proposed to study the topological
phases of higher-dimensional systems by using quasicrystals
[32]. It is of great importance to find experimentally feasible
3D materials with observable bulk band gaps to solve the
bottleneck of the development of 3D topological insulators
[33–36]. In view of the advantages of circuit QED systems
in structure designability and parameter adjustability, circuit
QED lattice systems can provide the possibility and feasibility
for mapping high-dimensional topological systems accurately.
Furthermore, due to the property of Bose statistics of circuit
QED, the topological invariant and edge state of the system
can be detected by utilizing the lattice-based cavity input-
output process [21].

In this paper, motivated by the above, we propose a simple
and feasible method to realize the mapping from a 1D to
a 3D topological system by introducing two periodic spa-
tial dimensions in a circuit QED lattice system. Under the
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FIG. 1. (a) Schematic diagram of the circuit QED lattice. The resonators are labeled as an, bn, cn, and dn and the two adjacent resonators
are connected by qubits Qn,1, Qn,2, Qn,3, and Qn,4. Each resonator an (bn, cn, dn) is coupled to a two-level Xmon qubit Qn,a (Qn,b, Qn,c, Qn,d ),
and the box in the shadow area defines the unit cell of the circuit QED lattice. (b) Circuit structure diagrams. The qubits can be easily read out
via the coplanar waveguide resonators and controlled via the control lines (XY control and Z control), and the coupling between the resonators
and the qubits can be realized by a capacitance.

periodic boundary condition (PBC) and the open boundary
condition (OBC), we explore the effects of periodic on-site
potential strength and periodic parameters on the topological
phase transition and the edge state by calculating the energy
spectrum of the system, respectively. In the case of the PBC,
it is shown that the number of Weyl points at E − �e = 0
changes from zero to four with the increasing of the periodic
potential strength V , which corresponds to a topological phase
transition with critical value V = √

2. While for the OBC, the
system possesses four energy bands and three energy gaps for
a mild potential strength V , and then the upper two energy
bands and the lower two energy bands separate from each
other. Meanwhile, two new edge states appear in the second
energy gap. Interestingly, crossed edge states respectively ap-
pear in the first and third energy gaps of the energy spectrum
when the periodic parameters take certain values. Moreover,
by using the lattice-based cavity input-output process, the
edge states can be directly detected by measuring the average
photon number of the cavity field in the steady state.

The rest of the paper is organized as follows. In Sec. II,
we present the model and the Hamiltonian of the system. In
Sec. III, we analyze the energy spectrum of the system under
the PBC and the OBC. Also, we give the method for detecting
the edge states by using the lattice-based cavity input-output
process. Finally, a conclusion is given in Sec. IV.

II. MODEL AND HAMILTONIAN

We consider a 1D circuit QED lattice system, as shown in
Fig. 1, where each unit cell contains four resonators and eight
two-level superconducting Xmon qubits, respectively. Here
each Xmon qubit has one excited state |e〉 and one ground
state |g〉. In the nth unit cell, the resonators an (bn, cn, dn)
and bn (cn, dn, an+1) are coupled to the Xmon qubit Qn,1

(Qn,2, Qn,3, Qn,4). At the same time, the Xmon qubit labeled

by Qn,a (Qn,b, Qn,c, Qn,d ) is embedded into each resonator an

(bn, cn, dn) to provide additional control on the resonator. The
Hamiltonian of the circuit QED lattice system is written as

H1 =
∑

n

{∑
i

ωi

2
σ z

ni + ωe(a†
nan + b†

nbn + c†
ncn + d†

n dn)

+ [
g1σ

+
n1(an + bn) + g2σ

+
n2(bn + cn) + gaσ

+
naan

+ g3σ
+
n3(cn + dn) + g4σ

+
n4(dn + an+1) + gbσ

+
nbbn

+ gcσ
+
nccn + gdσ

+
nd dn + H.c.

]}
, (1)

where ωi (i = 1, 2, 3, 4, a, b, c, d) is the frequency of the
eight Xmon qubits Qn,i, ωe is the frequency of the four res-
onators, g1 (g2, g3, g4) is the coupling strength between the
Xmon qubit Qn,1 (Qn,2, Qn,3, Qn,4) and the resonators an

(bn, cn, dn) and bn (cn, dn, an+1), and ga (gb, gc, gd ) is the
coupling strength between the resonator an (bn, cn, dn) and
the Xmon qubit Qn,a (Qn,b, Qn,c, Qn,d ). σ z

ni = |e〉〈e| − |g〉〈g|,
σ+

ni = |e〉〈g|, and σ−
ni = |g〉〈e| (i = 1, 2, 3, 4, a, b, c, d) repre-

sent the atomic population operator, the raising operator, and
the lowering operator of the Xmon qubit, respectively.

In the rotating frame, with respect to the external
driving frequency ω f and the qubit frequency ωi (i =
1, 2, 3, 4, a, b, c, d) where all the Xmon qubits are prepared
in the ground states, the effective Hamiltonian of the system
can be written as

H2 =
∑

n

[(
�e − g2

4

�4
− g2

1

�1
− g2

a

�a

)
a†

nan − g2
1

�1
a†

nbn

+
(

�e − g2
1

�1
− g2

2

�2
− g2

b

�b

)
b†

nbn − g2
4

�4
dna†

n+1
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+
(

�e − g2
2

�2
− g2

3

�3
− g2

c

�c

)
c†

ncn − g2
4

�4
d†

n an+1

+
(

�e − g2
3

�3
− g2

4

�4
− g2

d

�d

)
d†

n dn − g2
1

�1
anb†

n

− g2
2

�2
bnc†

n − g2
2

�2
b†

ncn − g2
3

�3
c†

ndn − g2
3

�3
cnd†

n

]
, (2)

where �i = ωi − ωe (i = 1, 2, 3, 4, a, b, c, d ) is the detuning
of the qubits Qn,i, �e = ωe − ω f is the detuning of the res-
onators, g1 (g2, g3, g4) is the coupling strength between the
Xmon qubit Qn,1 (Qn,2, Qn,3, Qn,4) and the resonators an (bn,
cn, dn) and bn (cn, dn, an+1), and ga (gb, gc, gd ) is the coupling
strength between the resonator an (bn, cn, dn) and the Xmon
qubit Qn,a (Qn,b, Qn,c, Qn,d ). Equation (2) contains the on-site
energy and the nearest-neighboring interaction. The detailed
derivation of Eq. (2) is shown in Appendix A.

Here, we set the photon hopping strengths between the

resonators as − g2
1

�1
= − g2

3
�3

= cos ϕ and − g2
2

�2
= − g2

4
�4

= sin ϕ,
and we set the coupling strengths between the resonators

and the Xmon qubits as g2
a = �a(− g2

4
�4

− g2
1

�1
+ V sin θ ), g2

b =
�b(− g2

1
�1

− g2
2

�2
+ V cos θ ), g2

c = �c(− g2
2

�2
− g2

3
�3

− V sin θ ),

and g2
d = �d (− g2

3
�3

− g2
4

�4
− V cos θ ). Then, the Hamiltonian

in Eq. (2) can be rewritten as

H =
∑

n

[(�e − V sin θ )a†
nan + (�e − V cos θ )b†

nbn

+ (�e + V sin θ )c†
ncn + (�e + V cos θ )d†

n dn

+ (cos ϕa†
nbn + sin ϕb†

ncn + cos ϕc†
ndn

+ sin ϕd†
n an+1 + H.c.)]. (3)

Obviously, the above Hamiltonian is equivalent to a four-
band topological model with both the on-site modulation and
nearest-neighboring hopping modulation.

To further explore the topological properties of the circuit
QED lattice model, we introduce the Fourier transform β̂n =

1√
Lx

∑
kx

eitnkx β̂kx (β̂n = an, bn, cn, dn), with t = 1 being the
lattice constant and kx being the wave vector defined in the
Brillouin region. Then the Hamiltonian in momentum space
can be expressed as

H (k) =
∑

k

[(�e − V sin θ )â†
kâk + (�e − V cos θ )b̂†

kb̂k

+ (�e + V sin θ )ĉ†
kĉk + (�e + V cos θ )d̂†

k d̂k

+ (eikx cos ϕâ†
kb̂k + eikx sin ϕb̂†

kĉk

+ eikx cos ϕĉ†
kd̂k + eikx sin ϕd̂†

k âk + H.c.)]. (4)

For convenience, we rewrite the above Hamiltonian as

H (k) = ψ̂
†
kh(k)ψ̂k, (5)

where ψ̂k = (âk, b̂k, ĉk, d̂k )T and h(k) is the Hamiltonian
density, with⎡
⎢⎢⎣

�e − V sin θ eikx cos ϕ 0 e−ikx sin ϕ

e−ikx cos ϕ �e − V cos θ eikx sin ϕ 0
0 e−ikx sin ϕ �e + V sin θ eikx cos ϕ

eikx sin ϕ 0 e−ikx cos ϕ �e + V cos θ

⎤
⎥⎥⎦.

(6)

The Hamiltonian is a number of symmetry class AIII in the
Altland-Zirnbauer symmetry classes, it does not satisfy the
time-inversion symmetry or particle-hole symmetry, but only
satisfies the chiral symmetry Sh(k)S−1 = −h(k), with

S =

⎡
⎢⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤
⎥⎦. (7)

The chiral symmetry ensures that the energy eigenvalues ap-
pear in pairs, which can be examined by diagonalizing Eq. (6),
in which the energy dispersion spectrum can be easily ob-
tained, with

E − �e = ±
[

1 + V 2

2
±

(
cos2 2kx sin2 2ϕ + V 2

+V 2 cos 2ϕ sin 2θ + V 4

4
cos2 2θ

) 1
2
] 1

2

. (8)

Obviously, the energy dispersion spectrum indicates that the
present system indeed contains two pairs of energy eigenval-
ues, which is consistent with the symmetry analysis. Besides,
we find that the energy eigenvalue is closely related to the po-
tential strength V . In the following, we investigate the effects
of the potential strength V on the phase transition and the edge
states of the system.

III. PHASE TRANSITION OF THE SYSTEM AND THE
DETECTION OF EDGE STATES

To explore the phase transition of the system [37], we first
consider the closing condition of energy gaps, i.e., E − �e =
0. The zero points of the dispersion are determined by

V 2 = 2(cos 2ϕ ± i sin 2ϕ sin 2kx )

sin 2θ
. (9)

From Eq. (9), equation V 2 sin(2θ ) = 2( cos 2ϕ ± i sin 2ϕ) can
be obtained when kx = pπ/4, with p ∈ Z. If the poten-
tial strength is purely real, we can get the new equation
V 2 sin 2θ = ±2 when ϕ = pπ/2, with p ∈ Z. The closing
condition of energy gaps satisfies V 2 sin 2θ ∈ [−2, 2]. We can
see that V 2 has a minimum critical value when sin 2θ = ±1,
with θ = (p + 1

4 )π , p ∈ Z. So the critical point of energy gap
closing and reopening is V 2 = 2. When V 2 < 2, there is no
energy gap closing in the system. In the following we choose
kx = π/4 in the first Brillouin zone.

To further investigate the topological phase transition, we
plot the energy spectrum as a function of the periodic param-
eters ϕ and θ under the PBC for fixing kx = π/4 with V = 1,√

2, and 2, respectively, as shown in Fig. 2. For V <
√

2,
there are no Weyl points existing in the system at E − �e = 0,
as shown in Figs. 2(a) and 2(b). Figures 2(c) and 2(d) show
that the system holds two Weyl points at E − �e = 0 with
V = √

2. For V >
√

2, two original Weyl points separate into
four Weyl points at E − �e = 0, as shown in Figs. 2(e) and
2(f). The energy spectrum of the system changes obviously
with the increasing of the potential strength V , which indicates
that the system undergoes a topological phase transition at the
critical point V = √

2.
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FIG. 2. Energy spectrum of the system as a function of the
periodic parameters ϕ and θ with kx = π/4 under the PBC, with
the potential strengths (a) V = 1, (c) V = √

2, and (e) V = 2. Here
panels (b), (d), and (f) correspond to the main views of panels (a),
(c), and (e), respectively.

As we all know, there are no edge states existing in the
energy gap for a topologically trivial insulator [38,39]. When
the energy gap closes and reopens, the system is accompanied
with a topological phase transition, i.e., from the topologi-
cally trivial phase to the topologically nontrivial phase. In the
following, we adopt an open boundary condition along the x
direction and plot the energy spectrum as a function of the
periodic parameter ϕ with V = 1,

√
2, and 2, respectively, as

shown in Fig. 3.
In Figs. 3(a), 3(c), and 3(e), the energy spectrum has four

energy bands and three energy gaps, which are named in order
from top to bottom, for example, the first energy gap, the first
energy band, etc. The left and right edge states are represented
by the red solid and dashed lines and the blue dotted and dash
dotted lines, respectively. For V = 1 in Fig. 3(a), the first and
third energy gaps of the system hold one edge state marked by
the blue dash dotted and red solid lines, respectively, and the
second energy gap holds two edge states marked by the red
dashed and blue dash dotted lines, respectively. For V = √

2
in Fig. 3(c), in comparison with Fig. 3(a), one can see that
the second energy gap of the system closes. For V = 2 in
Fig. 3(e), in comparison with Fig. 3(c), one can see that the
second energy gap of the system reopens, and the second
and third energy bands become two separated energy bands.
Besides, comparing Figs. 3(a), 3(c), and 3(e), we note that the
increasing of the potential strength V has a slight effect on the
two edge states in the first and third energy gaps, respectively.
We also plot the state distribution to present the localization of
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FIG. 3. The energy spectrum as a function of the periodic param-
eters ϕ under the OBC, and the distribution of the edge state. The
size of the lattice is N = 40, the periodic parameter is θ = π/4, and
the potential strengths are (a) V = 1, (c) V = √

2, and (e) V = 2,
respectively. The red solid and dashed lines represent the left edge
states and the blue dotted and dash dotted lines represent the right
edge states. (b), (d), and (f) are the state distributions of the left edge
states marked by the red dashed line in (a), (c), and (e), respectively.

the edge states in Figs. 3(b), 3(d), and 3(f). Since the energy
spectrum is symmetric with respect to E − �e = 0, we only
draw one of the two edge states in the second energy gap.
Figures 3(b), 3(d), and 3(f) are the state distributions of the
left edge states which are marked by the red dashed line in
Figs. 3(a), 3(c), and 3(e), respectively. Comparing Figs. 3(b),
3(d), and 3(f), one can see that the edge states in the second
energy gap become more localized at both the ends of the
lattice with the increasing of the potential strength V .

Then, we investigate the effect of the periodic parameter θ

and the potential strength V on the edge states of the system.
We plot the energy spectrum as a function of θ under the open
boundary condition of the x direction, as shown in Fig. 4. In
Figs. 4(a), 4(b), and 4(c), the system always has four edge
states for different potential strengths V . When θ = −π/4,
two edge states cross in the first energy gap, which correspond
to the left and right edge states marked by the red and blue
lines, respectively. When θ = 3π/4, another two edge states
cross in the third energy gap, which correspond to the left and
right edge states marked by the red solid and blue dotted lines,
respectively. We find that no matter how the potential strength
V changes, the edge states crossing are always at θ = −π/4
and θ = 3π/4. Comparing Figs. 4(a), 4(b), and 4(c), one can
see that the crossing of edge states is robust to the variation
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FIG. 4. The energy spectrum as a function of the periodic spatial
parameter θ under the OBC with the different potential strength (a)
V = 1, (b) V = √

2, and (c) V = 2. In both cases, the size of the
lattice N = 40, the other periodic spatial parameter ϕ = π/4, the
red solid and dashed lines and the blue dotted and dash dotted lines
represent the left edge states and the right edge states, respectively.

of the potential strength V , and the bulk energy bands become
more compact with the increasing of the potential strength V .

On the basis of the above analysis, in Fig. 5, we further
plot the state distributions of the four edge states of Fig. 4(c).
The physical significance of the maximum state distribution
at the lattice site is the position of the edge states in the
whole system. Without loss of generality, the 1st lattice site
is called the leftmost lattice site and the 40th lattice site is
called the rightmost lattice site. For Fig. 5(a), in the regime of
θ ∈ [−π, 0], one can see that the maximal state distribution
appears at the leftmost lattice site, which corresponds to the
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FIG. 5. The distribution of the edge states versus the periodic
spatial parameter θ and the lattice site. The size of the latitce is
N = 40, the periodic spatial parameter is ϕ = π/4, and the potential
strength is V = 2. Panels (a) and (c) represent the distributions of the
left edge states, and panels (b) and (d) represent the distributions of
the right edge states.

left edge state marked by red dashed line in Fig. 4(c). In the
regime of θ ∈ [−π/2, π/2] of Fig. 5(b), it is obvious that
the maximal state distribution appears at the rightmost lattice
site, which corresponds to the right edge state marked by blue
dash dotted line in Fig. 4(c). For Figs. 5(c) and 5(d), we also
show the state distributions of the left and right edge states
marked by the red solid and blue dotted lines in Fig. 4(c).
The maximal state distributions appear at the leftmost and
rightmost lattice sites, which correspond to the regimes of
θ ∈ [0, π ] and θ ∈ [−π,−π/2] ∪ [π/2, π ], respectively.

It is known that the circuit QED lattice belongs to the
boson system, in which the corresponding Bose photons in the
resonators can occupy particular eigenstates simultaneously
with different weights. Utilized by the lattice-based cavity
input-output process, we can detect the edge states of the
system directly [21]. Adjusting the frequency of the externally
driven field to occupy the eigenenergy of the lattice, the driven
Hamiltonian in the rotating frame with respect to the driv-
ing frequency ω f is described as Hd = ∑

n{
naa†
n + 
nbb†

n +

ncc†

n + 
nd d†
n + H.c.}, where 
na, 
nb, 
nc, and 
nd are the

driven amplitudes of the resonators an, bn, cn, and dn in the
nth unit cell. We solve the Lindblad master equation 〈ρ̇ j〉 =
−i〈[H + Hd , ρ j]〉 + κ〈L[ρn]ρ j〉, in which the Lindblad term
is L[ρn]ρ j = ρnρ jρ

†
n − {ρ†

nρn, ρ j}/2 and κ is the cavity decay
rate. By taking the cavity dissipation into account, under the
steady-state solution 〈ρ̇ j〉 = 0, we can get the expectation
value of the cavity fields,

�ρ = −
(

�e + �T4n,4n − i
κ

2

)−1

�
, (9)

where �ρ = (〈a1〉, 〈b1〉, 〈c1〉, 〈d1〉, . . . , 〈an〉, 〈bn〉, 〈cn〉, 〈dn〉)
T

is the final steady cavity field and �
 =
(
1a,
1b,
1c,
1d , . . . , 
na,
nb, (
nc,
nd )T describes
the driving amplitude, with T representing the transpose of
the matrix. More details about the matrix �T4n,4n can be found
in Appendix B.

In the following, we show how to detect the edge states.
We first adjust the driving frequency ω f that makes the �e

equal to the in-gap energy E , and then we select the (4n × 1)
driven microwave pulses as �
 = (
1, 0, 0, 0, . . . , 0, 0, 0, 0)T

to drive the leftmost resonator; after that the left edge state
will be excited. In Fig. 6(a), we plot the average photon
number of the cavity field in the steady state with E =
1.82, θ = −0.3066π , and ϕ = π

4 . We find that most of the
photons are located on the leftmost resonator, which corre-
sponds to the left edge state occupying the 1st resonator. Due
to the nonresonance interaction, when the similarly driven
microwave pulse with [ �
 = (0, 0, . . . , 0,
21, 0, . . . , 0, 0)T ]
([ �
 = (0, 0, . . . , 0, 0, 0, . . . , 0,
40)T ]) is used to drive the
resonators, the photon distribution in the middle(rightmost)
resonator is much smaller than that in the leftmost resonator.
In Fig. 6(b), we detect the right edge state by using the same
measurement method. It is shown that the maximal average
photon number of the cavity field is at the 40th resonator, i.e.,
most of the photons are located on the rightmost resonator,
which corresponds to the right edge state occupying the 40th
resonator. In this way, we realize the detection of the edge
states by measuring the average photon number based on the
cavity input-output process in the steady state.
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FIG. 6. Average photon number in the steady state when the left
edge state and the right edge state are driven to be occupied by
tuning (a) �e = 1.82 and (b) �e = 1.323. In both panels (a) and (b),
the red circle, black diamond, and blue five-pointed star lines rep-
resent the leftmost, the middle, and the rightmost driven resonators,
respectively. The size of the lattice is N = 40, the periodic spatial
parameters are ϕ = π/4 and θ = −0.30663π , the cavity dissipation
rate is κ = 0.2, and the driving amplitudes are 
1 = 
20 = 
21 =

40 = 0.2.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have proposed a simple and feasible
scheme to realize the mapping from a 1D to a 3D topological
system by introducing two periodic spatial parameters in a 1D
circuit QED lattice. We investigate the effects of these spatial
parameters on the topological phase transition and edge states
of the system. It is shown that the system undergoes a topolog-
ical phase transition induced by the increasing of the potential
strength under the PBC. When the potential strength exceeds
the critical value, we find that the number of Weyl points of the
energy spectrum changes from zero to four. From the perspec-
tive of the OBC, with the increasing of the potential strength,
the upper two energy bands and the lower two energy bands
of the energy spectrum gradually separate from each other,
and then the system holds two new edge states existing in the
second energy gap. What is more interesting is that two pairs
of the crossed edge states can be obtained by choosing certain
periodic parameters, which are located in the first and third
energy gaps, respectively. Moreover, taking advantage of the
Bose statistical properties of the circuit QED, we realize the
detection of the topological edge states via the lattice-based
cavity input-output process in the steady state.

Our scheme provides a different and promising mecha-
nism for exploring the topological properties by resorting to
the quantum optical platform. The adjustability of the pa-
rameters for the circuit QED system ensures that we can
introduce two or even much more additional periodic pa-
rameters and design the corresponding coupling coefficients
to realize the mapping between the 1D circuit QED model
and other high-dimensional topological models. The concept
of synthetic dimension provides a pathway toward exploring
higher-dimension physics.
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APPENDIX A: THE EFFECTIVE HAMILTONIAN OF THE
SYSTEM

Here we show the detailed derivation of Eq. (2). The
Hamiltonian of the circuit QED lattice system is shown in
Eq. (1), and then we define the following rotating transfor-
mation:

U = exp

{
− i

[∑
i

ωi

2
σ z

ni + ω f (a†
nan + b†

nbn

+ c†
ncn + d†

n dn)

]
t

}
. (A1)

In the rotating frame of Eq. (A1), the transformed Hamiltonian
is given by

HI
1 =

∑
n

{�e(a†
nan + b†

nbn + c†
ncn + d†

n dn)

+ [g1σ
†
n1ei�1t (an + bn) + gaσ

†
naei�at an

+ g2σ
†
n2ei�2t (bn + cn) + gbσ

†
nbei�bt bn

+ g3σ
†
n3ei�3t (cn + dn) + gcσ

†
ncei�ct cn

+ g4σ
†
n4ei�4t (dn + an+1) + gdσ

†
nd ei�d t dn + H.c.]},

(A3)

where �e = ωe − ω f and �i = ωi − ω f are the detunings of
the resonators and Xmon qubits with respect to the external
driving laser frequency, respectively.

In the case of the large detuning regime, the effective
Hamiltonian of the system can be obtained as

Heff =
∑

n

[�e(a†
nan + b†

nbn + c†
ncn + d†

n dn)

+ g2
1

�1
|e〉n1〈e|(ana†

n + anb†
n + bna†

n + bnb†
n)

− g2
1

�1
|g〉n1〈g|(a†

nan + b†
nan + a†

nbn + b†
nbn)

+ g2
2

�2
|e〉n2〈e|(bnb†

n + bnc†
n + cnb†

n + cnc†
n )

− g2
2

�2
|g〉n2〈g|(b†

nbn + c†
nbn + b†

ncn + c†
ncn)

+ g2
3

�3
|e〉n3〈e|(cnc†

n + cnd†
n + dnc†

n + dnd†
n )

− g2
3

�3
|g〉n3〈g|(c†

ndn + c†
ncn + d†

n cn + d†
n dn)

+ g2
4

�4
|e〉n4〈e|(dnd†

n + dna†
n+1 + an+1d†

n + an+1a†
n+1)

− g2
4

�4
|g〉n4〈g|(d†

n dn + a†
n+1dn + d†

n an+1 + a†
n+1an+1)

+ g2
a

�a
(|e〉na〈e|ana†

n − |g〉na〈g|a†
nan)

+ g2
b

�b
(|e〉nb〈e|bnb†

n − |g〉nb〈g|b†
nbn)
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+ g2
c

�c
(|e〉nc〈e|cnc†

n − |g〉nc〈g|c†
ncn)

+ g2
d

�d
(|e〉nd 〈e|dnd†

n − |g〉nd 〈g|d†
n dn)]. (A4)

Assume that all the Xmon qubits are prepared in their ground
states, and further combine the similar terms, then we can get
Eq. (2).

APPENDIX B: THE DETECTING MATRIX

In the following, we show how to obtain the detecting ma-
trix of the edge states. We solve the Lindblad master equation

〈ρ̇ j〉 = −i〈[H + Hd , ρ j]〉 + κ〈L[ρn]ρ j〉, (B1)

where L[ρn]ρ j = ρnρ jρ
†
n − {ρ†

nρn, ρ j}/2 is the Lindblad term
and κ is the cavity decay rate. Then we can obtain

〈ȧ1〉 = −i〈[H + Hd, a1]〉 + κ

〈
ana1a†

n − {a†
nan, a1}

2

〉

= −i〈[(�e − V sin θ )a†
1a1 + cos ϕa†

1b1 + cos ϕa1b†
1

+ 
1,aa†
1 + 
1,aa1, a1]〉 + κ

2
〈a1〉

= −i〈[(�e − V sin θ )a†
1a1 + cos ϕa†

1b1 + 
1,aa†
1, a1]〉

+ κ

2
〈a1〉

= i

(
�e − V sin θ − iκ

2

)
〈a1〉 + i cos ϕ〈b1〉 + i
1,a.

(B2)

Similarly, we also can get

〈ḃ1〉 = i cos ϕ〈a1〉 + i

(
�e − V cos θ − iκ

2

)
〈b1〉

+ i sin ϕ〈c1〉 + i
1,b,

〈ċ1〉 = i sin ϕ〈b1〉 + i

(
�e + V sin θ − iκ

2

)
〈c1〉

+ i cos ϕ〈d1〉 + i
1,c,

〈ḋ1〉 = i cos ϕ〈c1〉 + i

(
�e + V cos θ − iκ

2

)
〈d1〉

+ i sin ϕ〈a2〉 + i
1,d ,

· · ·

〈ȧn〉 = i sin ϕ〈dn−1〉 + i

(
�e − V sin θ − iκ

2

)
〈an〉

+ i cos ϕ〈bn〉 + i
n,a,

〈ḃn〉 = i cos ϕ〈an〉 + i

(
�e − V cos θ − iκ

2

)
〈bn〉

+ i sin ϕ〈cn〉 + i
n,b,

〈ċn〉 = i sin ϕ〈bn〉 + i

(
�e + V sin θ − iκ

2

)
〈cn〉

+ i cos ϕ〈dn〉 + i
n,c,

〈ḋn〉 = i cos ϕ〈cn〉 + i

(
�e + V cos θ − iκ

2

)
〈dn〉 + i
n,d .

(B3)

Under the steady-state solution 〈ρ̇ j〉 = 0, the expectation
value of the cavity fields can be written as Eq. (10), and the
matrix �T4n,4n satisfies

�T4n,4n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−V sin θ cos ϕ 0 0 0 0 0 0
cos ϕ −V cos θ sin ϕ 0 0 0 0 0

0 sin ϕ V sin θ cos ϕ 0 0 0 0
0 0 cos ϕ V cos θ sin ϕ 0 0 0
0 0 0 sin ϕ −V sin θ cos ϕ 0 0
0 0 0 0 cos ϕ −V cos θ sin ϕ 0
0 0 0 0 0 sin ϕ V sin θ cos ϕ

0 0 0 0 0 0 cos ϕ V cos θ
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B4)
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in a spin-1 antiferromagnetic chain with long-range interactions
and modulated single-ion anisotropy, Phys. Rev. B 102, 024425
(2020).

[4] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[5] X. L. Qi and S. C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[6] L. Qi, G. L. Wang, S. Liu, S. Zhang, and H. F. Wang,
Dissipation-induced topological phase transition and periodic-
driving-induced photonic topological state transfer in a small
optomechanical lattice, Front. Phys. 16, 12503 (2021).

[7] H. J. Zhang, C. X. Liu, X. L. Qi, X. Y. Deng, X. Dai, S. C.
Zhang, and Z. Fang, Electronic structures and surface states

023707-7

https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.124.043001
https://doi.org/10.1103/PhysRevB.102.024425
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1007/s11467-020-0983-3


HU, CHEN, QI, CUI, ZHANG, AND WANG PHYSICAL REVIEW A 104, 023707 (2021)

of the topological insulator Bi1−xSbx , Phys. Rev. B 80, 085307
(2009).

[8] A. A. Burkov and L. Balents, Weyl Semimetal in a Topological
Insulator Multilayer, Phys. Rev. Lett. 107, 127205 (2011).

[9] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D.
Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of
a large-gap topological insulator class with a single Weyl cone
on the surface, Nat. Phys. 5, 398 (2009).

[10] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Photonic floquet topological insulators, Nature (London) 496,
196 (2013).

[11] J. Cao, X. X. Yi, and H. F. Wang, Band structure and the
exceptional ring in a two-dimensional superconducting circuit
lattice, Phys. Rev. A 102, 032619 (2020).

[12] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy Band-
Gap Engineering of Graphene Nanoribbons, Phys. Rev. Lett.
98, 206805 (2007).

[13] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[14] W. Al-Sawai, H. Lin, R. S. Markiewicz, L. A. Wray, Y. Xia,
S. Y. Xu, M. Z. Hasan, and A. Bansil, Topological electronic
structure in half-Heusler topological insulators, Phys. Rev. B
82, 125208 (2010).

[15] R. J. Cava, H. Ji, M. K. Fuccillo, Q. D. Gibson, and Y. S.
Hor, Crystal structure and chemistry of topological insulators,
J. Mater. Chem. C 1, 3176 (2013).

[16] Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, W. X. Cui,
H. F. Wang, A. D. Zhu, and S. Zhang, Controllable photonic
and phononic edge localization via optomechanically induced
kitaev phase, Opt. Express 26, 16250 (2018).

[17] K. M. Dantscher, D. A. Kozlov, P. Olbrich, C. Zoth, P.
Faltermeier, M. Lindner, G. V. Budkin, S. A. Tarasenko, V. V.
Bel’kov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, D.
Weiss, B. Jenichen, and S. D. Ganichev, Cyclotron-resonance-
assisted photocurrents in surface states of a three-dimensional
topological insulator based on a strained high-mobility HgTe
film, Phys. Rev. B 92, 165314 (2015).

[18] J. T. Shen and S. Fan, Coherent Single Photon Transport in
a One-Dimensional Waveguide Coupled with Superconducting
Quantum Bits, Phys. Rev. Lett. 95, 213001 (2005).

[19] Y. Yan, L. Qi, D. Y. Wang, Y. Xing, H. F. Wang, and S. Zhang,
Topological phase transition and phase diagrams in a two-leg
Kitaev ladder system, Ann. Phys. (Berlin, Ger.) 532, 1900479
(2020).

[20] W. X. Cui, L. Qi, Y. Xing, S. Liu, S. Zhang, and H. F. Wang,
Topological and nontopological photonic states in two coupled
circuit quantum electrodynamics chains, Laser Phys. Lett. 17,
055206 (2020).

[21] F. Mei, J. B. You, W. Nie, R. Fazio, S. L. Zhu, and L. C.
Kwek, Simulation and detection of photonic chern insulators in
a one-dimensional circuit-QED lattice, Phys. Rev. A 92, 041805
(2015).

[22] L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu,
S. Zhang, and H. F. Wang, Simulation and detection of the
topological properties of a modulated Rice-Mele model in a
one-dimensional circuit-QED lattice, Sci. China: Phys., Mech.
Astron. 61, 080313 (2018).

[23] L. Xiang, Z. Zong, Z. Sun, Z. Zhan, Y. Fei, Z. Dong, C.
Run, Z. Jia, P. Duan, J. Wu, Y. Yin, and G. Guo, Simulta-
neous Feedback and Feedforward Control and Its Application
to Realize a Random Walk on the Bloch Sphere in an Xmon-
Superconducting-Qubit System, Phys. Rev. Applied 14, 014099
(2020).

[24] F. Mei, Z. Y. Xue, D. W. Zhang, L. Tian, C. Lee, and S. L.
Zhu, Witnessing topological Weyl semimetal phase in a min-
imal circuit-QED lattice, Quantum Sci. Technol. 1, 015006
(2016).

[25] I. C. Hoi, C. M. Wilson, G. Johansson, J. Lindkvist, B.
Peropadre, T. Palomaki, and P. Delsing, Microwave quantum
optics with an artificial atom in one-dimensional open space,
New J. Phys. 15, 025011 (2013).

[26] W. Tan, L. Chen, X. Ji, and H. Q. Lin, Photonic simulation of
topological superconductor edge state and zero-energy mode at
a vortex, Sci. Rep. 4, 7381 (2014).

[27] P. Barthelemy and L. M. K. Vandersypen, Quantum dot sys-
tems: A versatile platform for quantum simulations, Ann. Phys.
(Berlin, Ger.) 525, 808 (2013).

[28] L. Qi, Y. Xing, G. L. Wang, S. Liu, S. Zhang, and H. F. Wang,
Topological phase induced by distinguishing parameter regimes
in a cavity optomechanical system with multiple mechanical
resonators, Phys. Rev. A 101, 052325 (2020).
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