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Effects of photon statistics in wave mixing on a single qubit
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We theoretically consider wave mixing under the irradiation of a single qubit by two photon fields. The first
signal is a classical monochromatic drive, while the second one is a nonclassical light. Particularly, we address
two examples of a nonclassical light: (i) a broadband squeezed light and (ii) a periodically excited quantum
superposition of Fock states with 0 and 1 photons. The mixing of classical and nonclassical photon fields gives
rise to side peaks due to the elastic multiphoton scattering. We show that a side peaks structure is distinct from
the situation when two classical fields are mixed. The most striking feature is that some peaks are absent. The
analysis of peak amplitudes can be used to probe photon statistics in the nonclassical mode.
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I. INTRODUCTION

Wave mixing is a well-known phenomenon in the domain
of nonlinear optics that has various applications [1–3]. This
effect manifests itself in a generation of waves with new
frequencies as a result of interaction between incoming two
or three frequency waves, which conserves the total energy
of the photons. Wave mixing occurs in a nonlinear medium
characterized by nonzero second-order or higher-order sus-
ceptibilities [2].

Recent progress in microfabrication methods and quantum
fields control has resulted in the possibility to realize nonlinear
effects on the level of a single artificial quantum system.
Progress in this direction is of importance in the context
of quantum information processing. One of the promising
platforms for the construction of quantum devices is super-
conducting quantum circuits. Particularly, superconducting
systems offer regimes which are not accessible for natural
atoms and give rise to various unusual quantum optics phe-
nomena, both in on-chip and open-space configurations; see,
e.g., Refs. [4–14]. An example of such a phenomena is a wave
mixing on a single artificial atom that was demonstrated ex-
perimentally in the series of articles [15–17]. The atom plays
a role of a nonlinear element providing interaction between
microwaves. In Ref. [17], wave mixing of continuous coherent
waves on a superconducting flux qubit coupled to the coplanar
waveguide was demonstrated and the existence of narrow
side peaks of different orders in nonlinearity was observed,
which have been attributed to elastic multiphoton scatter-
ing. Although both the experimental and theoretical results
of Ref. [17] were obtained for coherent waves only, it was
suggested that the amplitudes of side peaks, in general, should
be sensitive to the photon statistics of incident waves and

this feature can be used to probe their statistical properties.
This could be realized by mixing classical and nonclassical
drivings on an atom that should allow for the reconstruction
of information on quantum statistics in the nonclassical mode
[17]. Note that four-wave mixing of two coupled light modes
was theoretically proposed for the quantum nondemolition
measurement of the photon number in a selected mode per-
formed by destructive measurement of photons in another
coupled mode [18,19].

Here, we theoretically consider wave mixing in the case of
a nonclassical photon field. We address a dynamics of a sin-
gle qubit irradiated simultaneously by the coherent wave and
nonclassical light. We consider two examples of a nonclas-
sical field that is produced either by a degenerate parametric
amplifier [10,20] or by a single-photon source [21–23]. We
indeed find that the peaks’ structure is not identical to the
case of wave mixing of two continuous coherent waves—for
example, some peaks turn out to be absent. For the case of
a single-photon source, we get the three-peaked spectrum,
which is similar to what was observed for the case of classical
driving trains of pulses with relative time delay [15]. For
the squeezed vacuum in one mode and a classical drive in
another mode, we get only peaks containing an even number
of photons from the squeezed mode, while other peaks are
absent. We conclude that the peak amplitudes can be used to
probe the statistical properties of incident waves.

The paper is organized as follows. In Sec. II, we consider
the wave mixing under the irradiation by two coherent waves
along the ideas of Ref. [17]. In Sec. III, we analyze similar
equations of motion for qubit degrees of freedom under the
irradiation by coherent wave and broadband squeezed light.
In Sec. IV, we consider wave mixing under the irradiation by
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the coherent wave and a periodically excited superposition of
Fock states with 0 and 1 photons. We conclude in Sec. V.

II. WAVE MIXING UNDER THE IRRADIATION BY TWO
COHERENT WAVES

Let us reproduce the main theoretical results of Ref. [17].
We consider the dynamics of the qubit coupled to the trans-
mission line under the classical drive with two frequencies
ω1 and ω2 close to the qubit transition frequency ω01, with
the amplitudes of the drives being �1 and �2, respectively.
The relaxation of the atom � is radiative due to the photon
emission into the waveguide and the difference between ω1

and ω2 is much smaller than �, |ω1 − ω2| � �.
We switch to the rotating frame characterized by the

frequency ωd = (ω1 + ω2)/2 and introduce notations δω =
ω1 − ωd = ωd − ω2. Maxwell-Bloch equations in this frame
and under the rotating wave approximation read as

d〈σ−〉
dt

= 〈σ−〉(−i�ω − γ ) − i�1

2
e−iδωt 〈σz〉 − i�2

2
eiδωt 〈σz〉,

(1)

d〈σz〉
dt

= −�(〈σz〉 + 1) + i�1
(〈σ+〉e−iδωt − 〈σ−〉eiδωt

)
+ i�2

(〈σ+〉eiδωt − 〈σ−〉e−iδωt
)
, (2)

where �ω = ω01 − ωd , and � is the radiative decay rate due
to the coupling to the waveguide, while γ is a decoherence
rate, which also depends on the pure dephasing rate �ϕ : γ =
�/2 + �ϕ .

It is straightforward to find a stationary solution taking into
account that δωt is a slowly varying phase on the timescale of
�−1. This solution can be represented as

〈σz〉 = −
(

1 + γ

�

�2
1 + �2

2 + �1�2(e−2iδωt + e2iδωt )

(�ω)2 + γ 2

)−1

,

(3)

〈σ−〉 = 1

2

�1e−iδωt + �2eiδωt

�ω − iγ

×
(

1 + γ

�

�2
1 + �2

2 + �1�2(e−2iδωt + e2iδωt )

(�ω)2 + γ 2

)−1

.(4)

The amplitude of the elastically scattered wave is −i�〈σ−〉/μ,
where μ is the qubit dipole moment [17,24]. It is clear from
this result that amplitudes of spectral components of the emit-
ted power are nonzero for all frequencies divisible by δω (in
the rotating frame). Particularly, Eq. (4) can be rewritten as
[17]

〈σ−〉 = �1e−iδωt + �2eiδωt



tan ϑ

+∞∑
p=−∞

[− tan(ϑ/2)]|p|ei2pδωt ,

(5)
where


 = 4γ�1�2

�(�ω + iγ )
, (6)

ϑ = arcsin
2γ�1�2

�[(�ω)2 + γ 2] + γ (�2
1 + �2

2)
. (7)

FIG. 1. Spectral components of 〈σ−〉 in the case of qubit irradia-
tion by two coherent waves (see text).

Spectral components of 〈σ−〉, defined through S(ω) =
limt→∞ 1

t

∫ t/2
−t/2〈σ−〉 exp(−iωt )dt , are illustrated in Fig. 1 at

�1 = �2 = 0.15�, �ω = 0, � = 2γ . A quantitatively good
agreement was observed between the theory and experimental
results for the case of a superconducting flux qubit irradiated
by two coherent fields [17].

The wave mixing can be understood in terms of multipho-
ton elastic scattering involving frequencies of photons from
the coherent waves [2], which correspond to the arrows in
Fig. 1—lengths of arrows provide frequencies, while arrow
directions show either an absorption (up) or emission (down).
The absorption of two photons with frequencies ω1 and emis-
sion of a single photon with ω2 produces the frequency 2ω1 −
ω2 = ωd + 3δω since the process is elastic and accompanied
by the energy conservation. In the same way, the absorption
of two photons from the ω2 mode and emission of a single
photon from ω1 mode gives rise to the peak at 2ω2 − ω1 =
ωd − 3δω. These two processes correspond to the four-wave
mixing. Similarly, higher-order processes involving 2l + 1
photons are possible that result in spectral peaks at frequencies
(l + 1)ω1 − lω2 and (l + 1)ω2 − lω1, with l being an integer
number. According to the idea of Ref. [17], the intensities of
the sidebands can be used to extract information about the
photon statistics of incident waves.

Note that the wave mixing phenomenon is robust against
energy dissipation into degrees of freedom different from
photon modes. In this case, the amplitude of the elastically
scattered wave is determined by a purely radiative relaxation
rate, while the qubit’s dynamics is described by Maxwell-
Bloch equations with full � and γ , which incorporate losses.

For optics in the visible range, the single artificial atom
is to be replaced with a cloud of identical natural atoms to
achieve a strong coupling with the propagating field. In this
system, there is a strong resonant absorption, so the only ex-
perimentally available configuration of bichromatic classical
drive implies that δω � �. For this case, the solution for the
elastic and inelastic spectrum was analytically and numeri-
cally elaborated in several works [25–27]. Particularly, it was
predicted that the elastic side peaks do appear at combination
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frequencies ω±(2l+1) = ωd ± (2l + 1)δω and with intensities
proportional to J2

0 (2�/δω)J2
2l+1(2�/δω), where �1 = �2 =

�, but no experiments demonstrating this dependence are
known (here, Jl is the lth Bessel function of the first kind).
Here we consider the opposite case of small δω, which is
specifically appropriate for superconducting qubits as the fre-
quency of the single microwave tone is controlled with great
precision.

III. WAVE MIXING UNDER QUBIT IRRADIATION BY A
COHERENT WAVE AND SQUEEZED LIGHT

In this section, we address the effect of the simultaneous
irradiation of the qubit by the classical coherent drive with
frequency ω1 and squeezed light. As the squeezed vacuum is
significantly nonclassical and has nontrivial photon statistics
[28], the mixing of classical and squeezed signals will result in
side components which are different from those for classical
drives [17]. Thereby, wave mixing will allow one to investi-
gate photon statistics in the nonclassical mode.

A paradigmatic example of a source of nonclassical light is
the degenerate parametric amplifier described by the Hamilto-
nian of the driven cavity [20],

Hs = ω2a†
0a0 + i

2

(
a†2

0 εse
−2iω2t − a2

0ε
∗
s e2iω2t

)
, (8)

where a0 is the destruction operator for the internal cavity
mode with frequency ω2, while a classical pump frequency
is also ω2. The output field of the degenerate parametric am-
plifier is a finite-bandwidth squeezed light. In the squeezed
white-noise limit, the correlation functions of the output field
can be represented as [20]

〈a†
out (t )aout (t

′)〉 = Neiω2(t−t ′ )δ(t − t ′), (9)

〈aout (t )aout (t
′)〉 = Me−iω2(t+t ′ )δ(t − t ′), (10)

where M is a measure of light squeezing. In general, |M|2 �
N (N + 1), while |M|2 = N (N + 1) corresponds to the pure
squeezed state.

The output field from the parametric amplifier is treated as
an input field for the qubit [20]. The interaction between the
qubit and the light is described by a usual electric-dipole ap-
proximation:

∑
ω gk (a†

kσ− + akσ+). The equations of motion
for the mean values 〈σ−〉 and 〈σz〉 in the case of a qubit in-
teracting with the output field from the degenerate parametric
amplifier having central frequency close to ω01 are generally
known from the literature [20,29–31]. They take a simple
form [20] in the white-noise limit, when the bandwidth of
the squeezed light significantly exceeds γ . We take into con-
sideration the additional classical drive at another frequency
ω1 that is also close to ω01, as described by the Hamiltonian
fq(t )σx, where fq(t ) = −�1(eiω1t + e−iω1t )/2. The equations
of motion in the white-noise limit (see, e.g., Eq. (10.3.2) of
Ref. [20]) read as

d〈σ−〉
dt

= 〈σ−〉[−iω01 − γ (1 + 2N )]

− i�1

2
e−iω1t 〈σz〉 − 2γ Me−2iω2t 〈σ+〉, (11)

d〈σz〉
dt

= −�(〈σz〉 + 1) − 2N�〈σz〉

+ i�1
(〈σ+〉e−iω1t − 〈σ−〉eiω1t

)
. (12)

Note that the last term in the right-hand side of Eq. (11)
describes a process of absorption of a photon pair ac-
companied by the qubit excitation. We again switch to
the rotating frame characterized by the frequency ωd =
(ω1 + ω2)/2 as in the case of two coherent fields. The
stationary solution in the rotating wave approximation
is

〈σz〉 = − 1

1 + 2N
+ γ�2

1

�(1 + 2N )

1 + M
2N+1 e4iδωt + M∗

2N+1 e−4iδωt

(�ω)2 + γ 2[(2N + 1)2 − 4|M|2] + γ�2
1

�

(
1 + M

2N+1 e4iδωt + M∗
2N+1 e−4iδωt

) , (13)

〈σ−〉 = �1

2

(iγ + �ω
2N+1 )e−iδωt + iγ 2M

2N+1 e3iδωt

(�ω)2 + γ 2[(2N + 1)2 − 4|M|2] + γ�2
1

�

(
1 + M

2N+1 e4iδωt + M∗
2N+1 e−4iδωt

) . (14)

We see from Eq. (14) that
(i) the peaks structure in the spectrum is not identical to the

similar structure in the case of two coherent fields,
(ii) nonzero squeezing M together with a classical drive

produces side peaks, and
(iii) without a classical drive, no peak appears under the

irradiation by only a squeezed light.
Spectral components S(ω) of 〈σ−〉 are shown in Fig. 2 at

�1 = 0.15�, �ω = 0, and � = 2γ and for the pure squeezed
state with 2|M|/(2N + 1) 
 1, where M is real. Compared to
Fig 1, the spectrum is shifted and some peaks are absent.

The obtained results can be qualitatively explained as fol-
lows. In the absence of a coherent drive, the photon field at
the qubit is just a broadband output field from the degenerate
parametric amplifier which contains correlated photon pairs

[20], with each pair having total energy 2ω2. This means that
there is no resonant frequency for a single photon since the
radiated field is broadband, but there is such a frequency for
each correlated photon pair. Therefore, no peak appears in the
spectrum of 〈σ−〉 without an additional coherent field. For the
same reason, there is no peak at δω also in the presence of this
field.

The first side peak appears at 3δω and it corresponds to
the multiphoton process when a photon couple with total
frequency 2ω2 is absorbed and a single photon with the fre-
quency ω1 is emitted, giving rise to the output photon with
2ω2 − ω1 = ωd − 3δω. This process is illustrated in Fig. 3(a).
The dominant contribution to the amplitude is proportional to
both �1/� and M, since M provides a number of correlated
photon pairs in the incident nonclassical light. The peak at
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FIG. 2. Spectral components of 〈σ−〉 in the case of qubit irradi-
ation by a coherent wave together with the pure squeezed light (see
text).

−5δω appears as a result of the absorption of three photons
of frequency ω1 and the emission of a photon couple having a
total frequency 2ω2; this mechanism produces output photons
with frequency 3ω1 − 2ω2 = ωd + 5δω; see Fig. 3(b). The
amplitude is proportional to the product of M∗ and (�1/�)3.
The peak at 7δω appears as a result of the absorption of two
pairs with 2ω2 and the emission of three photons with ω1; the
amplitude is therefore proportional to the product of M2 and
(�1/�)3 since two correlated photon pairs are involved [see
Fig. 3(c)], and so on.

In the weak driving regime, �1 � �, and at the resonance,
�ω = 0, Eq. (14) can be represented as

〈σ−〉 ≈ i f �

�1

(
f e−iδωt + f me3iδωt − f 3m∗e−5iδωt

− f 3m2e7iδωt + · · · ), (15)

FIG. 3. Schematic images of multiphoton processes resulting in
different side peaks in the emission spectra at (a) 3δω, (b) −5δω, and
(c) 7δω. Blue arrows (solid lines) show the absorption and emission
of correlated photon pairs with total energy 2ω2. Green arrows (dot-
ted lines) correspond to single photons with energies ω1. Red arrows
(dashed lines) indicate photon emission, which is responsible for the
side peaks.

where, for simplicity, we assumed that pure dephasing is neg-
ligible, so that γ = 2�,

f = �1√
2�γ [(2N + 1)2 − 4|M|2]

, (16)

m = 2M

2N + 1
. (17)

We see that apart from the general prefactor, 〈σ−〉 in the
stationary state is a sum of contributions, which correspond
to different multiphoton processes, with each contribution
being proportional to f in a power given by the number of
photons in the coherent wave participating in this process,
as well as to the squeezing characteristics m, which depend
on the total number of correlated pairs in the nonclassical
wave, in a power given by the number of correlated photon
pairs also participating in a given process. The side peaks at
δω(1 + 4l ), where l is an arbitrary integer number, are absent
since there is no multiphoton process that can produce these
peaks. The obtained results also evidence that the squeezing
parameter can be reconstructed from the analysis of the side
peaks’ amplitudes in the emission spectra—for example, a
direct comparison of the two largest peak amplitudes at −δω

and 3δω directly gives m.

IV. WAVE MIXING UNDER QUBIT IRRADIATION BY A
COHERENT WAVE AND QUANTUM SUPERPOSITION OF

VACUUM AND ONE PHOTON

In this section, we consider another example of wave mix-
ing, when nonclassical light is represented by periodically
generated superpositions of Fock states with 0 and 1 pho-
tons. We assume that the additional qubit serves as a emitter
and creates the mentioned superpositions in the semi-infinite
waveguide due to strong coupling with the continuum of
modes. This source for quantum superpositions of vacuum
and one photon can be engineered, for example, on the basis
of the ideas of Refs. [21,22], where tunable single-photon
sources constructed from artificial superconducting atoms
were demonstrated. The emitter is periodically excited by a
strong external drive, which brings it to a quantum mechanical
superposition of the lowest-energy state |↓〉 and excited state
|↑〉 with fixed weights. The relaxation of the excited state is
radiative due to the single-photon emission into the line. Let
us denote a tunable probability for the photon to be emitted
after the excitation pulse as ν. The excitation pulse is assumed
to be much shorter than the emitter relaxation characteristic
time 1/γe. Hereafter, indices e are referred to as the emitter.
The time interval between two excitation pulses T is much
larger than 1/γe. Using a Bloch sphere representation, the
emitter state at t = T n, with n being an integer number, can
be expressed as

〈σ e
−(T n)〉 = sin θ

2
e−iωe

01T n, (18)〈
σ e

z (T n)
〉 = cos θ, (19)

where θ is a polar angle, cos θ = 2ν − 1. Equivalently,
the same state can be represented as

√
1 − ν |↓〉 +

e−iωe
01T n√ν |↑〉. The presence of the phase factor e−iωe

01T n

implies that the emitter is excited by the Rabi pulse, with
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the frequency ωe
01 coinciding with the emitter transition fre-

quency. The excitation is assumed not to alter the quantum
state of the second qubit, which is responsible for the wave
mixing, that can be achieved in experiments by using different
methods. The emitter relaxation creates the superposition of 0
and 1 photons in the waveguide. These photon states are then
mixed with the continuous classical monochromatic drive of
frequency ω1 and amplitude �1 when they together irradiate
the second qubit characterized by the dissipation rate γ ∼ γe.
Since the nonclassical signal at the second qubit’s position
at any time instance contains no more than a single photon
(T � 1/γ ), the side peaks’ structure must be distinct from
the case of wave mixing under two coherent drives because
higher-order mixing processes cannot take place.

The presence of the qubit emitter can be described by an in-
teraction term [30], which has a form

√
γ γe(σ+σ e

− + σ−σ e
+).

It corresponds to the interaction of two qubits via a photon
field treated in the Markov approximation and can be derived
using, e.g., a chain of equations of motion in the Heisen-
berg picture. Since much less attention has been paid in the
literature for such a problem of qubit dynamics under the
irradiation from the quantum emitter, we include a micro-
scopic derivation of the equations of motion in Appendix. This
derivation is based on the Heisenberg equations of motion.
The modification of the Maxwell-Bloch equations now takes
the form

d〈σ−〉
dt

= 〈σ−〉(−iω01 − γ ) − i�1

2
e−iω1t 〈σz〉

+√
γ γe〈σzσ

e
−〉, (20)

d〈σz〉
dt

= −�(〈σz〉 + 1) + i�1
(〈σ+〉e−iω1t − 〈σ−〉eiω1t

)
+ 2

√
γ γe(〈σ−σ e

+〉 + 〈σ+σ e
−〉). (21)

The right-hand sides of both equations contain correlators
〈σzσ

e
−〉, 〈σ−σ e

+〉, and 〈σ+σ e
−〉, which cannot be factorized due

to the fact that we consider an ultraquantum limit and this fact
makes the situation distinct from the case of qubit irradiation
by classical signals. We treat these correlators as follows. We
first consider a steady state of the qubit under the irradiation
of only a classical drive and at t = T n,

〈σz(T n)〉 = −
(

1 + γ

�

�2
1

(�ω)2 + γ 2

)−1

, (22)

〈σ−(T n)〉 = 1

2

�1e−iω1T n

�ω − iγ

(
1 + γ

�

�2
1

(�ω)2 + γ 2

)−1

. (23)

Note that these two equations can be obtained from Eqs. (3)
and (4) by assuming that the amplitude of one of the classical
signals is zero, �2 = 0. Now we obtain, from Eqs. (18), (19),
(22), and (23),

〈σzσ
e
−(T n)〉 = 〈σz(T n)〉〈σ e

−(T n)〉

= −
(

1 + γ

�

�2
1

(�ω)2 + γ 2

)−1 sin θ

2
e−iωe

01T n,

(24)

〈σ−σ e
+(T n)〉 = 〈σ−(T n)〉〈σ e

+(T n)〉

= 1

2

�1

�ω − iγ

(
1 + γ

�

�2
1

(�ω)2 + γ 2

)−1

× sin θ

2
ei(ωe

01−ω1 )T n. (25)

The equations of motion for these correlators at t ∈
(T n, T n + T ) read as

d〈σzσ
e
−〉

dt
= 〈σzσ

e
−〉(−iωe

01 − � − γe), (26)

d〈σ−σ e
+〉

dt
= 〈σ−σ e

+〉(i
(
ωe

01 − ω01
) − γ − γe

)
. (27)

From these two equations, we obtain

〈σzσ
e
−(t )〉 = −|〈σzσ

e
−(T n)〉|e−iωe

01T ne−iωe
01(t−T n)e−(�+γe )(t−T n),

(28)

〈σ−σ e
+(t )〉 = |〈σ−σ e

+(T n)〉|ei(ωe
01−ω1 )T n

× ei(ωe
01−ω01 )(t−T n)e−(γ+γe )(t−T n). (29)

Note that in principle, the dynamics of the correlators
〈σzσ

e
−〉, 〈σ−σ e

+〉, and 〈σ+σ e
−〉 is determined by full equations of

motions for these quantities, which, for instance, also include
an external drive of frequency ω1. However, it can be shown
that the simplified equations of motion (26) and (27) produce
correct results, while omitted terms give only small additive
contributions, which do not alter the general conclusions on
the spectrum structure.

The quantities (28) and (29) can be used as inputs for
Eqs. (20) and (21)—they provide additional nonclassical driv-
ing of the qubit. We also take into account that ωe

01 can
be associated with the frequency of the drive ω2: ω2 ≡ ωe

01.
We then switch to the rotating frame characterized by the
frequency ωd and use the same notations as in Sec. II. We
also extend t from t ∈ (T n, T n + T ) to t ∈ (−∞,+∞). This
means that (t − T n) in Eqs. (20) and (21) must be replaced
by �t/T �T , where �. . .� is a floor function. The equations of
motion take the form

d〈σ−〉
dt

= 〈σ−〉(−i�ω − γ ) − i�1

2
e−iδωt 〈σz〉

+√
γ γe|〈σzσ

e
−(T n)〉|eiδωt e−(�+γe )�t/T �T , (30)

d〈σz〉
dt

= −�(〈σz〉 + 1) + i�1
(〈σ+〉e−iδωt − 〈σ−〉eiδωt

)
+ 2

√
γ γe|〈σ−σ e

+(T n)〉|
× (

e−2iδωt ei(δω−�ω)�t/T �T + c.c.
)
e−(γ+γe )�t/T �T .

(31)

We treat these equations as follows. Within each time in-
terval t ∈ (T n, T n + T ), functions of the form e−(γ+γe )�t/T �T

are approximated as 1 at t − T n � γ −1, γ −1
e and 0 otherwise

(steplike irradiation by the nonclassical signal). For the first
interval of time, it is readily seen from the above equations
that 〈σ−〉 is a superposition of three contributions proportional
to eiδωt , e−iδωt , and e−3iδωt , while 〈σz〉 is a superposition of
terms of the form e2iδωt and e−2iδωt . For the second time
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FIG. 4. Spectral components of 〈σ−〉 in the case of qubit irra-
diation by a coherent wave together with the superposition of Fock
states with 0 and 1 photon (see text).

interval, when only a classical drive acts on the qubit, 〈σ−〉
contains only a contribution of the form e−iδωt . Thus, at low
frequencies ω � γ −1, there appear only three spectral com-
ponents of 〈σ−〉. This is due to the limitation of the photon
number in the nonclassical signal since this situation is totally
different from the previously considered setups.

An equivalent qualitative picture can be obtained by
considering a stationary state solution and neglecting time
derivatives in the right-hand sides of Eqs. (30) and (31). The
solution can be represented as

〈σ−〉 = c1eiδωt + c−1e−iδωt + c−3e−3iδωt . (32)

The expressions of coefficients c1, c−1, and c−3, in the general
case, are rather cumbersome so we present them only for
�ω = 0 and in leading order in �1/�,

c1 
 −
√

γe

γ

sin θ

2
, (33)

c−1 
 i�1

2γ
, (34)

c−3 
 �2
1

2γ 2

√
γ γe

�

sin θ

2

× (
e−(γ+γe )[t/T ]T eiδω�t/T �T + e−(�+γe )�t/T �T

)
. (35)

Thus, at low frequencies ω � γ −1, there appear only three
spectral components of 〈σ−〉. They are shown in Fig. 4 at
�1 = 0.15�, �ω = 0, � = 2γ , γ = γe, ν = 1/2, and T =
5/γe. The only side component is given by the third term in the
right-hand side of Eq. (32). It appears due to the absorption of
two photons of the coherent wave with frequency ω1 and the
emission of a single photon at frequency ω2 since there can
be no more than a single photon in the second signal which
is fundamentally nonclassical. This process is illustrated in
Fig. 5. The spectrum therefore is totally different from the
spectrum in the case of two coherent waves mixing, which was
described in Sec. II; see Fig. 1. Note that c−3 is proportional
to (�1/�)2, which is consistent with the fact that two photons
from the coherent wave are mixed with zero or one photon of

FIG. 5. Schematic image of a multiphoton process resulting in a
side peak in the emission spectra at 3δω under the qubit irradiation by
the classical signal and quantum superpositions of Fock states with
0 and 1 photons. Green arrows (dotted lines) correspond to photons
from the coherent wave with energies ω1. Blue arrow (solid line)
corresponds to the single photon with energy ω2. Red arrow (dashed
line) indicates photon emission with energy 2ω1 − ω2 = ωd + 3δω.

the nonclassical field within each time “window” T . Another
interesting observation is that the effect of the nonclassical
signal is strongest at ν = 1/2 and not at ν = 1. This is due to
the fact that the single-photon Fock state contains no informa-
tion about the phase.

V. CONCLUSIONS

To conclude, we considered theoretically wave mixing be-
tween the classical monochromatic signal and a nonclassical
light. The mixing occurs due to the interaction of two photon
fields on a single qubit that gives rise to elastic multiphoton
processes. Two particular examples of nonclassical light were
addressed: broadband squeezed light that can be produced by
the degenerate parametric amplifier and a periodically excited
superposition of Fock states with 0 and 1 photons that can be
generated by a single-photon source.

The spectrum for the emitted light, which contains side
peaks attributed to nonlinearities of various orders, is distinct
from the similar spectrum in the case of qubit irradiation by
two classical drives. The reason is that nonclassical photon
fields are characterized by zero occupancies of certain Fock
states. For example, in the case of a finite-bandwidth squeezed
light, only multiphoton processes involving correlated pairs
of the squeezed field contribute to the side peaks’ amplitudes.
Such a restriction is even more strict for Fock states with 0
and 1 photons, so that only a single side peak appears in this
case.

Thus, the amplitudes of side peaks can be used to probe
nonclassical light statistics. The key idea is that light, whose
statistical properties have to be determined, must be mixed
with the classical signal on a single artificial atom. The ab-
sence of some peaks in the elastic spectrum of the emitted
light compared to the case of mixing of two classical signals
shows that the first signal is strongly nonclassical since occu-
pancies of certain Fock states must be zero for these peaks to
be absent.
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APPENDIX: QUBIT IRRADIATION BY A COHERENT
WAVE AND QUANTUM SUPERPOSITION OF VACUUM

AND ONE PHOTON: EQUATIONS OF MOTION

1. Hamiltonian and preliminaries

We consider a single qubit coupled to the waveguide,
which experiences the simultaneous effect of a classical
monochromatic drive and irradiation from the source of 0 + 1
states, which is represented by another qubit (emitter). The
equations of motion are derived from the microscopic theory.

We assume that the one-dimensional space is discrete and
the distance between nearest points is δ, while the number of
points is Ns → ∞. The discreteness will be eliminated at the
end from all observables; this is a technical issue. The creation
and destruction operators a†

R and aR for photons in a given
point R are constructed from delocalized states described by
a†

k and ak as

a†
R = 1√

Ns

∑
k

exp(−ikr)a†
k . (A1)

Here, k is allowed to take the form −π
δ

+ 2πm
L , where integer

m ranges from 0 to Ns − 1, while L = Nsδ is the system’s
length. Thus, the maximum ωk is ωmax = πc/δ. The differ-
ence between two closest values of energy is 2πc/L, so that
the density of energy states is ρ = L/2πc.

The Hamiltonian of the whole system can be represented
as

H = Hphot + Hq + Hint + He + H (e)
int , (A2)

where

Hphot =
∑

k

ωka†
kak (A3)

is a photon Hamiltonian. The second term Hq is the Hamilto-
nian of the qubit under the classical drive,

Hq = ω01

2
σz − fq(t )(σ+ + σ−). (A4)

The third term Hint represents an interaction between the qubit
placed at r and the photon field,

Hint = 1√
Ns

∑
k

(e−ikrg∗
ka†

kσ− + eikrgkakσ+), (A5)

where r is qubit coordinate and gk is an interaction constant
defined as

gk = −i

√
ωk

2ε0δ
μ. (A6)

The fourth term He is the emitter Hamiltonian,

He = ω
(e)
01

2
σ (e)

z . (A7)

The fifth term H (e)
int describes the interaction between the emit-

ter positioned at re and photon field,

H (e)
int = 1√

Ns

∑
k

(e−ikre g(e)∗
k a†

kσ
(e)
− + eikre g(e)

k akσ
(e)
+ ), (A8)

where re is the emitter coordinate, and g(e)
k is defined in a

similar way as gk . The term (A8) is responsible for peri-
odical excitation of the |0〉 + |1〉 states through the emitter
relaxation. We do not explicitly take into consideration an
external drive which excites the emitter. Notice that we also
use a slightly nonstandard definition of the interaction con-
stant since we extracted 1/

√
Ns from it to the prefactor in

Eqs. (A5) and (A8). The prefactor is usually absorbed by gk ,
and the latter then scales as 1/

√
L. We stress that finally, the

interaction constant will be expressed via the qubit relaxation
rate.

If the dependence of gk on ωk can be neglected, the interac-
tion is determined by the local photon field ar at the position
of the qubit, as can be verified by performing a summation in
Eq. (A5),

Hint ∼ (a†
r σ− + arσ+). (A9)

2. Equations of motion

We are going to explore the dynamics of the system and
focus on the steady state. There is no need to phenomeno-
logically introduce any energy dissipation associated with the
qubit within our treatment since dissipation is due to the decay
of the qubit excited state into the continuum of photon modes.
These modes as well as their interaction with the qubit are
included in the Hamiltonian.

Let us consider an infinite chain of equations of motion for
the qubit in the Heisenberg picture. The equations of motion
for 〈σ−〉 and σz read as

d〈σ−〉
dt

= −iω01〈σ−〉 − i fq〈σz〉 + i√
Ns

∑
k

eikrgk〈akσz〉,
(A10)

d〈σz〉
dt

= 2i fq(〈σ+〉 − 〈σ−〉)

+ 2i√
Ns

∑
k

(e−ikrg∗
k〈a†

kσ−〉 − eikrgk〈akσ+〉).

(A11)

They depend on higher-order correlators. The equations of
motion for them are
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d〈akσz〉
dt

= −iωk〈akσz〉 − 2i fq(〈akσ−〉 − 〈akσ+〉) + 2i√
Ns

∑
p

(e−iprg∗
p〈a†

pakσ−〉 − eiprgp〈apakσ+〉)

+ i√
Ns

e−ikrg∗
k〈σ−〉 + i√

Ns
e−ikre ge∗

k 〈σ e
−σz〉, (A12)

d〈akσ+〉
dt

= i(ω01 − ωk )〈akσ+〉 + i fq〈akσz〉 − i√
Ns

∑
p

e−iprg∗
p〈a†

pakσz〉 − i

2
√

Ns
e−ikrg∗

k (〈σz〉 + 1)

− i√
Ns

e−ikre ge∗
k 〈σ (e)

− σ+〉, (A13)

which depend on next-order correlators, and so on.
Note that in most of the situations, the dependence of gk on ωk can be neglected, and therefore the correlators from the

right-hand side (RHS) of the above equations are reduced to the correlators involving the local photon field strictly at the qubit
position (after the summations over p).

The infinite chain of equations of motion is untractable. Therefore, certain approximations must be made. In general, our
system must be well described by the Born-Markov approximation. It assumes that there is no back action of the field emitted
by the qubit on qubit. We limit ourselves to the second order in g, which means that we adopt the Born approximation. In this
case, we can truncate the infinite chain of equations and consider only the system (A10)–(A13). We can also neglect 〈akσ−〉 in
the right-hand side of Eq. (A12) that is justified in the rotating-wave approximation.

Let us now concentrate on Eqs. (A12) and (A13). A simplification comes from the fact that terms proportional to fq can be
omitted in the right-hand sides of these two equations since they produce corrections of the order of �1/�01. This approximation
will allow us to decouple Eqs. (A12) and (A13). We also split the correlators as 〈a†

pakσ−〉 
 〈a†
pak〉〈σ−〉, 〈a†

pakσz〉 
 〈a†
pak〉〈σz〉,

and 〈apakσ+〉 
 〈apak〉〈σ+〉, which is justified in the Born approximation. This implies that these two quantities generated by
the emitter will be treated as inputs for the qubit’s dynamics.

Now we address a couple of equations, which are Eqs. (A10) and (A12). The solution of Eq. (A12) can be formally written
in the integral form as

〈ak (t )σz(t )〉 = i√
Ns

∫ t

0
dt ′eiωk (t ′−t )〈σ−(t ′)〉

(
e−ikrg∗

k + 2
∑

p

e−iprg∗
p〈a†

p(t ′)ak (t ′)〉
)

+ i√
Ns

e−ikre ge∗
k

∫ t

0
dt ′eiωk (t ′−t )〈σ e

−(t ′)σz(t ′)〉. (A14)

We neglected the correlator of the form a2 in the RHS of the above equation since it is irrelevant for the quantum source that we
consider here, provided pulses from it are well separated in time. However, it can be relevant for overlapping pulses. We now
adopt the Markov approximation, which is based on the observation that there exists a separation between fast and slow variables
in the integrands. Particularly, we insert 〈σ−(t ′)〉 
 〈σ−(t )〉eiω01(t−t ′ ) into the second integral in the RHS of Eq. (A14).

Now we substitute Eq. (A14) into Eq. (A10). The first term in the RHS of Eq. (A14) provides the following contribution to
the RHS of Eq. (A10):

−〈σ−〉
Ns

∑
k

|gk|2
∫ t

0
dt ′ei(ωk−ω01 )(t ′−t ). (A15)

The integral in the RHS of Eq. (A15), as well as other similar integrals appearing in the derivation of the equations of motion, is
evaluated as ∫ t

0
dt ′ei(ωk−ω01 )(t ′−t ) =

∫ t

0
dt ′[cos(ωk − ω01)(t ′ − t ) + i sin(ωk − ω01)(t ′ − t )]

=
∫ t

0
dt ′ cos(ωk − ω01)(t ′ − t ) + i

ωk − ω01
[−1 + cos(ωk − ω01)t], (A16)

where the last term vanishes after averaging over long time. The first term then gives a dissipation rate since the integral
is nonzero and equal to ≈ t only at (ωk − ω01)t � π and the number of energy states satisfying this condition is ρ/t .
Therefore, the expression (A15) is reduced to −N−1

s ρ|gk01 |2〈σ−〉. The combination N−1
s ρ|gk01 |2 is simply the energy dissipation

rate γ (in the absence of pure dephasing). It is important to stress that it turns out to be independent both on L and δ. The second
term in the RHS of Eq. (A16) is responsible for the Lamb shift, �L = N−1

s

∑
k |gk|2(ωk − ω01)−1. We absorb it into the definition

of ω01 in Eq. (A10). Finally, Eq. (A10) in the Born-Markov approximation takes the form

d〈σ−〉
dt

= −iω01〈σ−〉 − i fq〈σz〉 + √
γ γe〈σ e

−σz〉 − 2γ 〈σ−〉〈a†
r ar〉 − γ 〈σ−〉. (A17)
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Let us consider Eqs. (A11) and (A13). The solutions of Eq. (A13) can be formally written in the integral form as

〈ak (t )σ+(t )〉 = − ig∗
ke−ikr

2
√

Ns

∫ t

0
dt ′ei(ωk−ω01 )(t ′−t )(〈σz(t ′)〉 + 1)〉

− i√
Ns

∫ t

0
dt ′ei(ωk−ω01 )(t ′−t )

∑
p

g∗
pe−ipr〈a†

p(t ′)ak (t ′)〉 − i√
Ns

e−ikre ge∗
k

∫ t

0
dt ′ei(ωk−ω01 )(t ′−t )〈σ (e)

− (t ′)σ+(t ′)〉.

(A18)

In the Markov approximation, 〈σz(t ′)〉 in the integrand can be replaced by 〈σz(t )〉.
We substitute Eq. (A18) into Eq. (A11) and collect all the terms. Within the Markov approximation, we obtain

d〈σz〉
dt

= −�(1 + 〈σz〉) − 2�〈σz〉〈a†
r ar〉 + 2i fq(〈σ+〉 − 〈σ−〉) + 2

√
γ γe(〈σ (e)

+ σ−〉 + c.c.), (A19)

where � = 2γ (pure dephasing has been neglected) .
Thus, Eqs. (A17) and (A19) provide a pair of the equations of motion for the qubit coupled to the emitter. Notice that in

our case, 〈a†
r ar〉 in the RHS of both equations can be omitted. Indeed, for the qubit under the mixed drive, these quantities

are nonzero only within each time window of duration ∼1/γe after the emitter relaxation. The mean value 〈a†
r ar〉 carries no

information about the phase, so it does not influence our qualitative result on the structure of the spectrum. If needed, 〈a†
r ar〉 can

be found from the equations of motion for the emitter.
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