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Bichromatic synchronized chaos in driven coupled electro-optomechanical nanoresonators

Guilhem Madiot ,1 Franck Correia,1 Sylvain Barbay,1 and Rémy Braive 1,2

1Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
2UFR de Physique, Université de Paris, F-75006 Paris, France

(Received 17 May 2020; accepted 27 July 2021; published 27 August 2021)

Chaos and synchronization are important and ubiquitous phenomena in nature. Chaos synchronization spon-
taneously emerges in the collective dynamics of coupled nonlinear oscillators; however, its control remains a
challenge at the nanoscale. Here, we present an experimental and theoretical investigation of synchronization on
the route to chaos and in the chaotic regime in mechanically coupled electro-optomechanical nanocavities. In this
system an integrated electroactuation enables one to drive the mechanical normal modes in the nonlinear regime
while the mechanical displacement is transferred to an optical probe which provides a direct readout access
to both their amplitude and phase responses. Using a single low-frequency modulation of the force applied to
each normal mode, we induce a chaotic dynamics in the coupled nanoresonators. By applying a simultaneous
force modulation on each of the normal modes, we generate chaos at two distinct carrier frequencies referred
to as bichromatic chaos. The mode amplitudes are synchronized all the way on the route to chaos as well as in
the chaotic regime. Meanwhile, their phases experience complex dynamics with imperfect synchronization in
the chaotic regime. These results set the ground for applications of mechanical nanoresonators in areas such as
metrology, multispectral chaotic encryption, and analog computing.

DOI: 10.1103/PhysRevA.104.023525

I. INTRODUCTION

Synchronization is a phenomenon commonly observed in
macroscopic coupled or driven oscillating systems [1]. Since
the work of Huygens [2], such phenomenon has been found in
many fields of science, e.g., in physics [3–6], chemistry [7],
biology [8], ecology [9], economy [10], and even in sociology
[11]. Signatures of synchronization can be imprinted on the
dynamics of both quadratures of the investigated signal, i.e.,
on the amplitude and the phase. However, the latter exhibits
a much richer dynamics which may experience over time
either periodic or erratically distributed jumps and many other
regimes, as described in the Kuramoto model [7]. Even though
synchronization of chaotic systems may seem counterintuitive
[12], the investigation and implementation of such a phe-
nomenon is particularly meaningful and has applications from
large-scale systems in meteorology [13] to lasers [14] for, e.g.,
secure chaotically encrypted communications [15,16].

In the general case of nonidentical chaotic oscillators,
complete synchronization of the amplitudes and phases is
expected only for strongly coupled systems [17]. For smaller
coupling strength, either phase locking or imperfect phase
synchronization (IPS) [18] is observed. IPS corresponds to the
case where intermittent phase slips occur while the amplitudes
are generally not fully synchronized. This phenomenon
has received a large theoretical interest [19–21] with few
experimental demonstrations only at the macroscopic scale, in
electronic circuits [22,23] or Nd:YAG lasers [24]. However,
at the nanoscale—where the collective dynamics of large
oscillators’ arrays can be deeply studied—synchronization
remains a challenge due to ineluctable fabrication
disorder.

Large nonlinearities at the origin of chaotic dynamics can
be achieved in nanoscale mechanical and optomechanical sys-
tems [25–30]. Thus, thanks to their experimental adaptability
[5,25] and possibility of accurate modeling [31,32], it makes
them a platform of choice to test and evidence these concepts.
As such, we note that synchronization [33–35] and chaos
[36,37] have been separately investigated in single or cou-
pled nanoelectromechanical systems. In line with these latest
studies, chaos with electro- or optomechanical systems has
been extensively studied theoretically [38–41]. Only recently
and using a single resonator, experimental demonstrations of
chaos in an optomechanical cavity have been reported [42,43]
with a strong optical driving.

Here we evidence IPS between optical signals at two
distinct carrier frequencies. This is achieved with two
mechanically coupled electro-optomechanical nanocavities.
Chaos is first observed independently on each normal mode,
using a low-frequency modulated monochromatic drive. This
experiment evidences that the dynamics is transferred through
spring coupling between the subsystems despite their in-
trinsic natural frequency mismatch. Moreover, through the
optomechanical scheme, chaos is transferred from the me-
chanical to the optical domain. By simultaneously driving and
modulating the normal modes at their respective frequency,
a nonlinear reciprocal coupling occurs due to orthogonality
breaking. Interestingly, the quadrature amplitudes of the two
chaotic signals at two different tones are synchronized. Mean-
while the quadrature phases evidence different regimes from
synchronous evolution in phase-locked regime to imperfect
phase synchronization in chaotic regime. The bichromatic
excitation allows synchronized chaos to be generated at two
distinct carrier frequencies opening potential new avenues
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FIG. 1. (a) False color scanning electron microscope image of the two suspended membranes (A, B) bridged by a coupling nanobeam
(blue). Gold stripes are visible underneath the membranes for electroactuation with IDEs (yellow). Schematic experimental setup with electrical
actuation on the IDEs and optical readout. The response signal is demodulated with two bandpass filters respectively centered on the driving
frequencies. (b) Reflectance spectra of the two Fabry-Pérot cavities formed by membranes A (black) and B (blue) and the substrate. Inset:
Schematic of an injected cavity. (c) Mechanical displacement of membrane B under forward and backward sweeps of the driving frequency
with excitations Vdc = 2 V and Vac = 3 V (blue line) and fit (red lines) with the Duffing-Duffing model. Insets: Displacement field of each
eigenmode simulated by the finite-element method.

to synchronized multifrequency data encryption [44–47] and
random number generation [48].

The unequivocal description of these regimes is enabled
by the measurement method which gives direct access to
the dynamical variables, without making any use of recon-
structed signals. These phenomena can be understood and
fully supported by numerical simulations based on a classical
model using Duffing resonators which, beyond nanomechan-
ics, can be used in many fields including superconducting
Josephson amplifier [49], ionization plasma [50], and complex
spatiotemporal behaviors such as chimera sates [51].

II. EXPERIMENTAL SYSTEM AND DETECTION SCHEME

The experimental system [see Fig. 1(a)] consists of two
coupled mechanical microresonators made of a 260-nm-thick
InP layer suspended over a 380-nm air gap. Each membrane
is a (10 × 20)-μm2 rectangle pierced with a square lattice of
cylindrical holes which allows an enhancement of the out-of-
plane reflectivity [52]. The two membranes are mechanically
coupled through a 1-µm-wide and 1.5-µm-long bridge. A pair
of gold interdigitated electrodes (IDEs) is positioned on the
substrate below each resonator and allows for independent
actuation of the mechanical resonators. The fabrication pro-
cess is described in Ref. [53]. All measurements are done
at room temperature and the chip is placed in a vacuum
chamber pumped below 10−5 mbar. The system composed of
the membrane plus the IDEs constitutes a low-finesse optical
cavity which we can probe for measuring the mechanical
displacement [see inset in Fig. 1(b)]. The reflectance spectra

shown in Fig. 1(b) are measured by focusing a supercontin-
uum laser on the centers of the at-rest membranes with a ×20
microscope objective. The resulting spectra are normalized
with a reference measurement obtained by pointing the laser
at an on-chip gold planar surface. For each membrane, the
reflectance shows a pronounced dip typical of a Fabry-Pérot
cavity resonance and centered around 630 nm with optical Q
factors of about 10. In the following experiments, only the
membrane B is probed. The reflectance dip matches with the
helium-neon wavelength λ = 633 nm which is used in the fol-
lowing for the optical readout of the calibrated displacement
of membrane B, RB. This also ensures the transduction of the
mechanical motion into the optical phase of the probe field.
Thus the optical cavity is used as a passive optomechanical
transducer enhancing the readout. It is assumed not to play a
role in the dynamics of the system in the following.

We first apply a driving voltage Vtot = Vdc + Vac cos(ωdt )
where Vdc is a static voltage and Vac is the amplitude of the ac
driving at frequency ωd . The electrocapacitive force exerted
by the IDEs on membrane B reads [26]

F = 1

2

dC

dx
V 2

tot, (1)

where C(x) is the position-dependent capacitance of the
membrane/IDEs system. A calibration of the force gives
|dC/dx| = 2.2 μN V−2. We access the mechanical modes of
the system by sweeping the driving frequency while recording
the response signal of membrane B. The latter is demodulated
at the driving frequency via a 100-Hz-wide bandpass filter.
This operation enables us to access both the amplitude of the
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signal—that we convert into a displacement of membrane B,
RB—and its phase, θB. Calibrations of the displacement and
of the driving force are detailed, respectively, in Appendices
A and B. In the linear regime, at low amplitude driving, the
fundamental normal modes of the coupled membranes are
centered, respectively, at ω− = 2π × 2.163 MHz and ω+ =
2π × 2.374 MHz (see Aappendix C). Finite-elementmethod
simulations allow one to identify the in-phase (−) and out-
of-phase (+) modes with their respective displacement fields
shown in the inset of Fig. 1(c). Importantly the natural fre-
quency mismatch ωB − ωA is quite significant and leads the
normal mode (−) [respectively, (+)] to be dominated by
the motion of membrane A (respectively, membrane B). This
is also confirmed by measuring the impact of a change in
one natural frequency on the normal mode frequencies (see
Appendix D).

The mechanical response of the system in the nonlinear
regime is shown in Fig. 1(c) for Vdc = 2 V and Vac = 3 V.
It displays two hysteretic regions around ω− and ω+ that
are evidenced by sweeping ωd forward and backward. The
effective mode coupling is attested by the presence of a de-
structive interference dip which is typical of a Fano resonance
[54–56] between the nearly identical resonators, as confirmed
by the modelization. The observed bistable responses arise
from intrinsic mechanical nonlinearities [57] which can be
modeled thanks to a Duffing oscillator model [53,58].

In the case of coupled membranes, the model writes

ẍA + �AẋA + ω2
AxA + βx3

A − GxB = 0,

ẍB + �BẋB + ω2
BxB + βx3

B − GxA = FB cos ωdt,
(2)

where xA,B are the mechanical displacements of membranes
A and B, �A,B the membranes’ mechanical dampings, β the
Duffing nonlinearity, and G is the membrane coupling. The
resonant frequencies of the mechanical resonators are ωA,B

and a near-resonant mass-normalized force FB is acting on
membrane B. A fit of the nonlinear response [Fig. 1(c)]
allows one to retrieve the values of the physical parameters.
We obtain the resonant frequencies ωA = 2π × 2.187 MHz
and ωB = 2π × 2.345 MHz and the mechanical dampings
�A = 2π × 2.4 kHz and �B = 2π × 4.3 kHz. The resonant
frequencies mismatch arises because of fabrication imperfec-
tions. We extract the cubic nonlinearity β = (2π )2 × 6.71 ×
10−6 MHz2 nm−2. The reduced coupling constant is obtained
from a fit of the linear response (see appendix C) and is given
by G/ωA ≈ 2π × 130 kHz.

In the context of identical resonators, the strong-coupling
regime is established when the criterion G/ωA > �A is
satisfied [59]. This criterion applies in our experiment;
however, since the resonator frequency mismatch is about
twice as large as the minimum normal mode splitting, we
are rather in an intermediate regime between the strong- and
weak-coupling cases.

III. CHAOTIC DYNAMICS WITH A MONOCHROMATIC
EXCITATION

An additional low-frequency modulation signal is added
to the total voltage applied to the membrane B set of IDEs.
It now writes Vtot = Vdc + Vac cos(ωdt ) + Vp cos(ωpt ) with

Vp and ωp � ωd the modulation amplitude and frequency,
respectively. We reduce the set of experimental variables by
locking Vdc = 2 V and Vac = 3 V while Vp is used as the
control parameter to explore the dynamical changes of the
system. The modulation frequency is set to ωp = 2π × 7 kHz.
The driving frequency is set to the low-frequency edge of the
(−) eigenmode bistability curve at ωd = 2π × 2.164 MHz.
The He-Ne laser is focused on membrane B and the modula-
tion amplitude Vp is swept from 0 to 3 V. Higher values are
not reached in order to preserve the mechanical system from
failure. For each value of Vp, we record the signal quadra-
tures XB = RB cos(θB) and YB = RB sin(θB) in real- time thus
accessing simultaneously phase and amplitude components.
The signal is demodulated with a 40-kHz-wide bandpass filter
centered at ωd . The sampling rate is 500 kHz and each trace
has a length of 100 ms, ensuring that several hundreds of mod-
ulation periods are recorded. The Poincaré section made of the
local maxima of YB(t ) as a function of Vp is shown in Fig. 2(a).
Using YB(t ) rather than XB(t ) is an arbitrary choice motivated
by the higher amplitude of the phase portraits along the Y axis.
Additionally, each time trace is used to compute the largest
Lyapunov exponent (LLE) shown below the diagram. We use
the TISEAN package [60] routine implementing the Rosenstein
algorithm [61]. For four positions on the diagram correspond-
ing to a typical dynamical regime, we plot YB(t ) as a function
of XB(t ) in a phase portrait in Fig. 2(b). For a low value of
the modulation voltage injected into the normal mode (−), the
Poincaré section in Fig. 2(a) results in a closed single loop. In
this limit-cycle oscillation regime the membrane oscillation
envelope is modulated at ωp. As the amplitude is modulated
stronger, we observe two consecutive period-doubling bifur-
cations [62] at Vp ≈ 1.75 V and Vp ≈ 2.5 V prior to a window
of chaotic dynamics for a modulation amplitude higher than
2.8 V. The presence of chaos is confirmed by the presence
of a strictly positive LLE while it is zero for limit-cycle
oscillations. Similar measurements are conducted driving the
other normal mode (+). By setting the driving frequency to
the low edge of the bistability at ωd = 2π × 2.379 MHz, we
now construct the bifurcation diagrams by reading the motion
of membrane B [Fig. 2(d)]. The phase portraits associated to
particular positions of this latter case are shown in Fig. 2(e).
The bifurcation diagrams of eigenmode (+) also display a
period-doubling route to chaos structure although the chaotic
regime now occurs around Vp ≈ 2 V. Most interestingly, we
observe chaos intermittency (i.e., several chaotic regions that
are separated by small windows of periodic or quasiperiodic
regimes) as captured by the zero values of the associated LLE
[see Fig. 2(e)]. Both experimental diagrams share a com-
mon dynamics but the bifurcation points significantly differ
whether the eigenmode (−) or (+) is driven. These quantita-
tive differences between the eigenmodes dynamics result from
the imbalanced energy injection in the normal modes since
only membrane B is driven.

The bifurcation diagram using the membrane B re-
sponse for the mechanical mode (−) [respectively, for the
mode (+)] is numerically reproduced in Fig. 2(c) [re-
spectively, in Fig. 2(f)] using the Duffing-Duffing model
developed previously at the driving frequency ωd = 2π ×
2.167 38 MHz without any further adjustable parameter
(respectively, at ωd = 2π × 2.37940 MHz). The simulations
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FIG. 2. (a)–(d) Experimental bifurcation diagrams built by sweeping Vp and reading membrane B. A modulated drive is applied,
respectively, on the in-phase mode with ωd = 2π × 2.164 MHz or on the out-of-phase mode with ωd = 2π × 2.379 MHz. We use Vdc = 2 V,
Vac = 3 V, and ωp = 2π × 7 kHz. The largest Lyapunov exponent (LLE) is shown below. Note the broken axis. (b)–(e) Phase portraits
built from response of membrane B in different dynamical regimes. (c)–(f) Numerical bifurcation diagrams built by solving the dynamics of
membrane B.

implement an adaptative step-size RK4 method to solve the
reduced coupled-Duffing oscillators’ equations, including a
time-dependent forcing (see appendix E) and injecting the
experimentally determined parameters. This results in a mod-
ulated force amplitude

FB(t ) ∝ Vac[Vdc + Vp cos(ωpt )]. (3)

Note that in the literature, similar perturbative approaches
aiming to generate and control chaos in nonlinear oscillators
also implement the Duffing model [63–66].

The simulated time traces are analyzed with the same
protocol used for our experimental data. We use the quadra-
ture wB, which is the numerical equivalent of the observable
YB. The route to chaos by period-doubling cascade is well
captured by our model. The quantitative comparison with
the experimental results yields a very satisfactory agreement.
The period-doubling cascade bifurcation positions are corrob-
orated with a continuation method. Additional experimental
and numerical analysis further show that the modulation fre-
quency plays a role in the appearance of the chaotic regime
and a large window of frequencies around the damping
timescale �−1

A,B leads to chaos.
Interestingly, the chaotic dynamics of the membranes is

imprinted in the laser field intensity thanks to the integrated
Fabry-Pérot cavity. This mechanical-to-optical chaos transfer
is an interesting concept to exploit in chaos-based technolo-

gies. Furthermore, the transfer of the chaotic dynamics from
one membrane to the other is possible in spite of the mismatch
between the membranes natural frequencies. This allows one
to simultaneously envision chaotic dynamics at distinct fre-
quencies.

IV. IMPERFECT PHASE SYNCHRONIZATION
UNDER BICHROMATIC EXCITATION

With a single tone drive, it is not possible to induce a
sufficiently strong nonlinear response in both modes such
that their responses synchronize. Therefore, we inject energy
in both normal modes by using a bichromatic drive. Thus
bidirectional nonlinear coupling of the normal modes is made
possible thanks to the orthogonality breaking of these latter in
the Duffing regime [67,68]. The new total voltage applied on
the membrane B set of IDEs writes

Vtot = Vdc + V −
ac cos(ω−

d t ) + V +
ac cos(ω+

d t ) + Vp cos(ωpt ).

With Vdc = 2 V, V −
ac = 3.5 V, ω−

d = 2π × 2.177 MHz, V +
ac =

0.5 V, ω+
d = 2π × 2.410 MHz, and ωp = 2π × 5 kHz, the

force exerted on membrane B thus has two components
F−

B cos(ω−
d t ) and F+

B cos(ω+
d t ). We chose V +

ac < V −
ac in or-

der to balance the normal mode response amplitudes. This
way we also ensure that both modes display a chaotic
dynamics. We use two independent demodulators to
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FIG. 3. (a), (b) Experimental bifurcation diagrams and associated calculated largest Lyapunov exponent (LLE in ms−1) built from the
normal modes response quadrature Y −

B and Y +
B in units of nanometers with swept parameter Vp. The modes are driven at V −

ac = 3.5 V and V +
ac =

0.5 V at frequencies ω−
d = 2π × 2.177 MHz and ω+

d = 2π × 2.410 MHz with amplitude modulation at ωp = 2π × 5 kHz. (c), (d) Simulated
bifurcation diagrams based on the calibrated reduced model and using the driving frequencies ω−

d = 2π × 2.168 500 MHz and ω+
d = 2π ×

2.370 280 MHz.

simultaneously access the signal amplitude and phase at ω−
d

(R−
B and θ−

B ) and at ω+
d (R+

B and θ+
B ). By sweeping the pa-

rameter Vp, two bifurcation diagrams are built, respectively,
from the local maxima of signal quadratures Y −

B = R−
B sin(θ−

B )
and Y +

B = R+
B sin(θ+

B ) [see Figs. 3(a) and 3(b)]. Cross talks
between the two demodulators are reduced by nearly −46 dB,
by use of 40 kHz cut-frequency bandpass filters. We note that
the diagram branches are broader than in the monochromatic
experiment. This comes from the integration of noise and
signal over a large spectral span. The qualitative comparison
of the bifurcation diagrams shows a clear match of the dynam-
ical regimes in which the normal modes (−) and (+) settle;
more importantly, the bifurcation points are the same. After a
limit-cycle region, both display an identical period-doubling
route to chaos structure confirmed by the LLE. Numerical
simulations of a reduced model (see appendix F) allow one
to recover a similar bifurcation diagram as can be seen in
Figs. 3(c) and 3(d).

To study the amplitude synchronization of the responses,
we plot in Figs. 4(a)–4(c) (top row) (R±

B − 〈R±
B 〉)/σ±, the

normalized response amplitudes for three identified dynam-
ical regimes, with 〈R±

B 〉 and σ±, respectively, the mean value
and the standard deviation of R±

B (t ) calculated over the en-
tire time trace. The dashed black lines correspond to the
synchronization regime where both normalized amplitudes
are equal. Below the period-doubling bifurcation, for Vp <

VPD = 2.140 V, a master-slave relation is established be-
tween the drive and each resonance so these two inescapably
move in synchrony. This corresponds to the phase-locked
(PL) regime. For Vp > VPD the responses are now driven in
a high-order synchronization regime. Nevertheless, the am-
plitudes are clearly correlated to each other. This is even
more manifest in the chaotic regime where the amplitudes
are still correlated despite their asynchronous phase behav-
ior with the drive. This regime corresponds to the chaotic
synchronization of the nonlinearly coupled normal modes.
We now focus on the phase response correlations shown in

Figs. 4(a)–4(c) (bottom row). In each case, we fit the data
with a unit-slope line (black-dashed) corresponding to the
synchronization regime d

dt (θ+
B − θ−

B ) = 0. These plots show a
tendency of synchronous evolution of θ−

B and θ+
B under force

modulation for Vp < VPD. Contrary to the amplitudes, the syn-
chronization of the phases is not maintained for Vp > VPD.

By studying the real-time dynamics of the phase difference
[see Fig. 5], we find that 2π phase slips occur when Vp > VPD

while the resonators evolve in synchrony in the PL regime
for Vp < VPD (green trace). When high-order synchronization
is established between each mode and the drive [1], phase
slips resulting from phase desynchronization (PDS) can come
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FIG. 4. For Vp = 1.5 V, Vp = 2.425 V, and Vp = 2.75 V: Exper-
imental phase portraits showing the normal modes relative response
normalized amplitudes (a) and phase (b) with perfect amplitude or
phase synchronization references (black-dashed lines).
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FIG. 5. Response phase difference θ+
B − θ−

B over 80 modulation
periods (16 ms) for different Vp values: synchronous dynamics in
phase-locked (PL) regime (Vp = 1.5 V, green), phase desynchroniza-
tion (PDS) (Vp = 2.425 V, red), and imperfect phase synchronization
(IPS) (Vp = 2.75 V, blue).

up even if the amplitudes stay correlated. This process leads
to phase slips occurring regularly (red trace)—in this situa-
tion, the phases periodically execute one more (or one less)
cycle regarding the drive—or chaotically (blue trace) with
possibly long durations of phase-synchronized evolution. This
corresponds to the imperfect phase synchronization (IPS) sce-
nario [17].

The different synchronization regimes can be described
through a statistical study of the durations between two suc-
cessive phase slips. For a given time trace, we list all the phase
synchronization (PS) durations τ and calculate both the mean
value 〈τ 〉 as well as the standard deviation στ . In Fig. 6(a),
we plot the scaled mean PS duration 〈τ 〉/στ as a function of
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FIG. 6. (a) Scaled mean phase synchronization (PS) duration
〈τ 〉/στ as a function of Vp. (b) Experimental probability distributions
of the PS durations within the PDS (red) or the IPS (blue) regimes.
Numerical distribution in the chaotic regime (orange dots) and expo-
nential distribution (black dashed) are shown for comparison.

Vp. No value can be estimated below the bifurcation to chaotic
regime at Vp = 2.3 V since the PL regime is established and
therefore we do not observe any phase slip in the data. The
PDS regime around Vp = 2.425 V is identified by the regular-
ity of the phase slips with a small standard deviation of the PS
durations leading to a peak in the scaled mean PS duration. As
this peak is found precisely on a bifurcation point separating
a period-4 motion from chaos, PDS might result here from
particularly unstable phase dynamics at this position. In order
to compare the statistics of τ between the different traces
obtained for different Vp, we normalize all the synchronized
phase durations found in a given trace by the mean duration
value for this trace. In the PDS regime [red stripe in Fig. 6(a)],
the probability distribution is concentrated around 1, meaning
that most of the durations are near the mean value 〈τ 〉 = 3.6
modulation periods.

Note that the histogram displays a 63% probability for the
phases to synchronize during four modulation periods because
this PDS occurs while the system sets in a period-4 motion
dynamics. In the chaotic regime [blue stripe in Fig. 6(a)], we
find that the scaled mean PS duration remains constant and
slightly over 1, which tends to indicate an almost exponential
probability distribution [Fig. 6(b) (right)]. In this regime the
mean PS duration is 〈τ 〉 = 26 modulation periods. The prob-
ability distribution indeed decays exponentially but we find
that the probability around the mean PS duration (τ/〈τ 〉 = 1)
is significantly higher than predicted with this distribution.
Additionally, the observed long PS duration occurrences are
more unlikely. We conclude that the phase slips constitute a
non-Poissonian process due to the deterministic chaotic dy-
namics and do not result from noise. Relying on the simulated
diagrams in Figs. 3(c) and 3(d), we also reproduce a histogram
of the PS durations in Fig. 6(b) integrated over a range of
modulation amplitude showing a chaotic domain. We find a
good agreement with the experimental distribution.

Even though a natural frequency mismatch of nearly 10%
is observed in our system, synchronized dynamics is ob-
served. This highlights the robustness of such phenomenon
with regard to the frequency mismatch highly inherent to
nanofabricated resonators. However, one should expect that
higher disorder becomes a major limitation for one to address
both normal modes via one subsystem with reasonable drive
powers.

Further numerical adjustments of the two driving frequen-
cies in a restricted range evidence the possibility to achieve
perfect phase (and amplitude) synchronization in the chaotic
regime. This could be of major interest for applications based
on chaos such as synchronized random number at two distinct
carrier frequencies.

V. CONCLUSION

Beyond the chaotic behavior of a single resonator, we
have deeply investigated and analyzed the chaotic and
synchronization dynamics of distinct mechanically coupled
electro-optomechanical nanoscale resonators based on two
slowly modulated near-resonant drives. Chaos is first observed
independently on each normal mode, using a low-frequency
modulated monochromatic drive. The experimentally built
bifurcation diagrams, with a direct measurement of all the
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dynamical variables, are numerically reproduced using a cal-
ibrated model of coupled nonidentical Duffing oscillators.
Chaos transfer on different carrier frequencies from MHz in
mechanics to THz in optics is undoubtedly opening more av-
enues for random number generation based on optomechanics
and more schemes for data encryption, chaotic optomechani-
cal sensing, optomechanical logic, and chaos computing. By
simultaneously driving and modulating the normal modes
at their respective frequency, a nonlinear reciprocal cou-
pling occurs due to orthogonality breaking. Interestingly,
the quadrature amplitudes of the two chaotic signals at
two different tones are synchronized. Meanwhile the phases
evidence different regimes from synchronous evolution in
phase-locked regime to imperfect phase synchronization in
chaotic regime. Statistical study of the synchronization du-
rations results in nonexponential distribution confirmed by
our theoretical description attesting to the deterministic nature
of the dynamics. Beyond low mechanical frequency carrier
and thus low-frequency modulation, optomechanical crys-
tals and their GHz frequencies could allow synchronization
regimes for multispectral communications, where signals with
different frequencies must carry the same encoded sequence
and be a playground for integrated multispectral optomechan-
ical communications at a frequency relevant for applications.
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APPENDIX A: DISPLACEMENT CALIBRATION

The mechanical displacement RB of membrane B converts
to a measured voltage ηRB with the conversion constant η,
which can be extracted thanks to a Michelson interferometer.
For that purpose, an opened-loop local oscillator is used,
whose optical path difference with the sample arm is set to
� = λ/4. Then the resonant oscillations amplitude of mem-
brane B induced by a given driving strength, which translates
to a voltage variation δV , is compared to the interferometric
signal variation resulting from a small calibrated displacement
δ� of the path difference. Doing this measurement for several
excitation stages allows a confident estimation of the displace-
ment calibration. We estimate the transduction constant to be
η ≈ 0.5 mV nm−1.

APPENDIX B: FORCE CALIBRATION

We calibrate the electrocapacitive force applied on mem-
brane B using

F = 1

2

dC

dx
V 2

tot. (B1)

�

FIG. 7. Membrane B resonant response (ωd = ω+ =
2.375 MHz) amplitude measured as a function of the product
VdcVac. The data (black dots) are fitted with a line (red).

When expanded, this expression includes a static component
∝ (V 2

dc + V 2
ac/2) that displaces the resonator by a negligible

offset plus an off-resonant term at frequency 2ωd , which is
ignored in our model. A measurement of the displacement
amplitude at demodulation frequency 2ωd indeed reveals
an amplitude response less than 3% of that of the driven
mode amplitude at ωd . Therefore we conclude that the mass-
normalized force amplitude exerted on membrane B can be
simplified to its resonant contribution:

FB = 1

meff

∣∣∣∣dC

dx
VdcVac

∣∣∣∣. (B2)

The resonant displacement RB(ωd = ω+) is measured as a
function of the product VdcVac (see Fig. 7). Given the strong
natural frequency mismatch between the resonators, we as-
sume a single resonator model for this calibration. In this case,
the resonant response is given by

RB(ωd = ω+) ≈ FB

�+ω+
, (B3)

where �+ = 2π × 1.9 kHz is the damping rate of normal
mode (+) and meff = 186 pg its effective mass calculated with
finite-element methods. We fit the data shown in Fig. 7 with
a red line. The slope is found to be about 33 nm V−2 and
Eq. (B3) directly gives the electrocapacitive force calibration
| dC

dx | = 2.2 μN V−2. The agreement is satisfying, and the dis-
crepancy found both in the amplitude and in the phase around
2.2 MHz results from a mechanical displacement below the
experimental sensitivity.

APPENDIX C: LINEAR RESPONSE FIT

We measure the mechanical response of membrane B
while exciting the system with low voltages Vdc = 0.2 V
and Vac = 1 V. The response amplitude RB and phase θB are
recorded while the driving frequency is swept between 2.1 and
2.5 MHz, as shown in Fig. 8 (blue dots).

The stationary solutions derived from Eq. (2) of the main
text can be easily obtained in the linear regime by setting the
Duffing nonlinearity to 0 (β = 0). In this case, one can derive
a complex expression for the displacement of membrane B:

rB = [2(ωd − ωA) − j�A]FB

G2 − [2(ωd − ωA) − j�A][2(ωd − ωB) − jγB]
. (C1)
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�

�

�


 �

FIG. 8. Linear amplitude response (top) and phase response (bot-
tom) of the system under excitation applied on membrane B with
Vdc = 0.2 V and Vac = 1 V. The data (blue) are fitted with the sta-
tionary solutions of two coupled linear-driven harmonic oscillators.

We use this expression to fit the data, with the amplitude
and the phase respectively given by rB = abs(rB) and θB =
arg(rB). We fit simultaneously the amplitude and the phase,
implying that only one set of parameters is returned, namely,
the natural frequencies ωA,B, dampings �A,B, and the coupling
G. The force amplitude FB is carefully calibrated in the next
section. The resulting fit is shown with red lines in Fig. 8.
The agreement is satisfying, and the discrepancy found both
in the amplitude and in the phase around 2.2 MHz results from
a mechanical displacement below the experimental sensitiv-
ity. We find ωA = 2π × 2.187 MHz, ωB = 2π × 2.345 MHz,
�A ≈ �B = 2π × 2.4 kHz, and G = (2π )2 × 0.284 MHz2.

APPENDIX D: MECHANICAL MODE IDENTIFICATION

After successfully fitting the membrane B response with a
model of coupled harmonic oscillators (see previous section),
we can conclude that the observed eigenmodes frequency
difference is essentially caused by the natural frequency
mismatch ωB − ωA ≈ 2π × 158 kHz. This implies that the
eigenmodes (−) and (+) are respectively dominated by the
motion of resonators A and B. In order the verify this con-
clusion, we apply a static voltage to the membrane B up to
25 V and observe how the eigenfrequencies are affected. It is
well known that a static voltage acts on a micromechanical
resonator as an additional residual stress [69]. This effect can
be used to tune the frequency of an oscillator and demon-
strate strong coupling between several resonators through the
observation of an avoided crossing in the mechanical spec-
trum. We obtain the eigenfrequencies position by sweeping
the drive frequency and measuring the response spectrum.
A drive amplitude such that Vac < 0.1 V is set to ensure a
linear response and avoid possible confusion with any effect
of the Duffing nonlinearity. The frequency displacements we
observe [Fig. 9(a)] are not large enough to observe an avoided
crossing. We compare the frequency displacements δω± =
ω±(Vdc) − ω±(Vdc = 0) in Fig. 9(b) and it appears clearly that
the eigenmode (+) is mostly affected by the applied static
voltage. In order to fit the data, we use the Jacobian defined





� �	 
� ��

	
� �	 
� �	




�

�

(a) (b)

FIG. 9. (a) Measurement of the eigenfrequencies under static
voltage Vdc applied on membrane B (symbols). The fit considers
a parabolic shift of the self-coupled frequency ωB (black dashed)
that we use to solve the eigenmodes (−) and (+) (respectively,
blue and green lines) resulting from the previously measured cou-
pling G. An avoided crossing is predicted at Vdc = 74 V when
the natural frequencies are equal (at arrow position). (b) Identical
experimental data presented in terms of frequencies displacement
δω± = ω±(Vdc) − ω±(Vdc = 0).

using the vector (xA, xB, ẋA, ẋB) and considering the coupled
linear equations (2) (using β = 0):

J =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−ω2
A G −�A 0

G −ω2
B 0 −�B

⎞
⎟⎟⎠.

The eigenvalues of J have imaginary parts that correspond
to the normal modes’ frequencies, which can be approxi-

mated to ω2
± ≈ ω2

A+ω2
B

2 ±
√

(ω2
A − ω2

B)2 + 4G2 , while their real
parts correspond to the eigenmodes damping rates. We input
the Vdc-dependent self-coupled frequency ωB(Vdc) = ωB(0) +
αV 2

dc. We assume the coupling G/ωB ≈ 2π × 130 kHz and
use the unchanged self-coupled frequency ωB(0) and the
coefficient α as the fitting parameters. We find with this sec-
ond method the frequency mismatch to be ωB(0) − ωA(0) ≈
2π × 168 kHz, which confirms our first result. The resulting
eigenmodes are shown with colored lines and the self-coupled
frequencies with black-dashed lines in Fig. 9(a). It appears
that ωA ≈ ω− and ωB ≈ ω+ in the range of Vdc experimentally
checked. The avoided crossing is predicted when the natural
frequencies are equal, i.e., around Vdc = 74 V, which is out
of reach in our experiment. Note that the assumption on the
coupling value is only necessary to represent the level repul-
sion one would obtain with this voltage but does not affect our
conclusion that the eigenmodes (−) and (+) are respectively
dominated by the motions of membranes A and B.

APPENDIX E: DUFFING-DUFFING MODEL

This Appendix describes the derivations of the Duffing-
Duffing model. We start with the master coupled equations
describing two resonators A and B with respective dis-
placements xA and xB, self-coupled frequencies ωA and ωB,
damping rates �A and �B, and with identical Duffing cubic
nonlinearity β. The resonators are coupled with the spring
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coupling G. In agreement with the experiments, only the res-
onator B is externally driven:

ẍA + �AẋA + ω2
AxA + βx3

A − GxB = 0,

ẍB + �BẋB + ω2
BxB + βx3

B − GxA = FB cos(ωdt ).

We take the ansatz xA = vA cos(ωdt ) + wA sin(ωdt ) and
xB = vB cos(ωdt ) + wB sin(ωdt ) where the quadratures relate
to the response amplitude and phase with r2

A = v2
A + w2

A and
θA = atan2(wA, vA) (and similarly for rB and θB). Before in-
jecting the ansatz into the master equations, we find it useful
to preliminarily calculate x3

A in order to reveal the off-resonant
terms oscillating at 3ωd that we can neglect in the following.
We also expand the expression for the derivatives ẋA and ẍA.
We neglect the quadratures second derivatives by assuming
v̈A, ẅA � ω2

dvA, ω2
dwA.

We now inject these preliminary results into the mas-
ter equations. We use the normalized quantities ωdt →
τ , (ωB − ωd )/ωd → δ, (ωB − ωA)/ωd → �ω, �A,B/ωd →
γA,B, G/ω2

d → g, FB/ω2
d → fB, and β/ω2

d → β̃. Note that
ω2

B − ω2
d ≈ ω2

dδ and ω2
A − ω2

d ≈ 2ω2
d (δ − �ω). It writes

v̇A = 1
2wA

[
2(δ − �ω) + 3

4 β̃
(
v2

A + w2
A

)] − 1
2γAvA − 1

2 gwB,

(S.1.1)

ẇA = −1
2 vA

[
2(δ − �ω) + 3

4 β̃
(
v2

A + w2
A

)] − 1
2γAwA + 1

2 gvB,

(S.1.2)

v̇B = 1
2wB

[
2δ + 3

4 β̃
(
v2

B + w2
B

)] − 1
2γBvB − 1

2 gwA, (S.2.1)

ẇB = −1
2 vB

[
2δ + 3

4 β̃
(
v2

B + w2
B

)] − 1
2γBwB + 1

2 gvA + 1
2 fB.

(S.2.2)

This system of equations describes the evolution of our
system in terms of quadratures vA, wA, vB, and wB. It presents
an interest for the numerical simulations since these quan-
tities are homogeneous. However, we can obtain the final
set of equations [Eq. (E1)] expressed in terms of the ampli-
tudes and phases by performing the reverse transformations
vA = rA cos(θA), wA = rA sin(θA), vB = rB cos(θB), and wB =
rB sin(θB) and taking

S.1.1 × cos(θA) + S.2.1 × sin(θA),

S.1.2 × cos(θB) + S.2.2 × sin(θB),

−S.1.1 × sin(θA) + S.2.1 × cos(θA),

−S.1.2 × sin(θB) + S.2.2 × cos(θB).

The stationary solutions for the resonator amplitudes rA

and rB and phases θA and θB can be described by the following
set of equations:

ṙA = −γA

2
rA + g

2
rB sin(θA − θB),

ṙB = −γB

2
rB − g

2
rA sin(θA − θB) + fB

2
sin(θB),

rAθ̇A = −rA

2

[
2(δ − �ω) + 3

4
β̃r2

A

]
+ g

2
rB cos(θA − θB),

rBθ̇B = −rB

2

[
2δ + 3

4
β̃r2

B

]
+ g

2
rA cos(θA − θB) + fB

2
cos(θB).

(E1)

By assuming the permanent regime ṙA = ṙB = θ̇A = θ̇B = 0,
the frequency domain response amplitude rB is numerically
solved using the experimental parameters. We adjust the
solution on the experimental data by fitting with the re-
maining free parameter β and extract β = (2π )2 × 6.71 ×
10−6 MHz2 nm−2.

The numerical simulations enabling one to reproduce the
observed bifurcation diagrams integrate the equations (S.1.1),
(S.1.2), (S.2.1), and (S.2.2) but including a time-dependent
forcing:

f̃B(t ) = fB

(
1 + Vp

Vdc
cos ωpt

)
. (E2)

APPENDIX F: BICHROMATIC DRIVE MODEL
AND ORTHOGONALITY BREAKING

Driving both normal modes at the same time allows one to
evidence synchronization phenomena. We model the system
with the same master equation but add a second resonant
excitation:

ẍA + �AẋA + ω2
A

(
1 + β̃x2

A

)
xA − GxB = 0,

ẍB + �BẋB + ω2
B

(
1 + β̃x2

B

)
xB − GxA = F−

B cos(ω−
d t )

+ F+
B cos(ω+

d t ).

Since the system is now expected to respond both at ω−
d and

ω+
d , we modify the ansatz:

xA = v−
A cos(ω−

d t )+w−
A sin(ω−

d t ) + v+
A cos(ω+

d t ) + w+
A (ω+

d t ).

The rest of the calculations are essentially the same, except
for the development of the cubic terms x3

A and x3
B where the

nonlinear coupling between r−
A,B and r+

A,B comes from. We
neglect all off-resonant terms including the ones oscillating at
2ω±

d − ω∓
d . Following the exact same procedure as before, we

derive a system of eight coupled nonlinear ordinary differen-
tial equations for the normal modes (−) and (+) quadratures
accessed either through membrane A (v−

A , w−
A , v+

A , w+
A ) or

membrane B (v−
B , w−

B , v+
B , w+

B ). It writes

v̇±
A = 1

2w±
A

[
2ε±(δ± − �ω) + 3

4ε2
±β̃

(
r±2

A + 2r∓2

A

)]
− 1

2ε±γAv±
A − 1

2ε2
±gw±

B ,

ẇ±
A = −1

2 v±
A

[
2ε±(δ± − �ω) + 3

4ε2
±β̃

(
r±2

A + 2r∓2

A

)]
− 1

2ε±γAw±
A + 1

2ε2
±gv±

B ,

v̇±
B = 1

2w±
B

[
2δ± + 3

4ε2
±β̃

(
r±2

B + 2r∓2

B

)]
− 1

2ε±γBv±
B − 1

2ε2
±gw±

A ,

ẇ±
B = −1

2 v±
B

[
2δ± + 3

4ε2
±β̃

(
r±2

B + 2r∓2

B

)]
− 1

2ε±γBw±
B + 1

2ε2
±gv±

A + ε± 1
2 f ±

B ,

where we use the amplitudes r±2

A = v±2

A + w±2

A and r±2

B =
v±2

B + w±2

B for the compactness of these expressions. The
parameter ε± = ω+

d /ω±
d aims to regularize the normaliza-

tion of the parameters such that the time is arbitrarily
chosen to be rescaled with ω+

d t . Thus all the physical pa-
rameters are normalized consequently to this choice: δ± =
(ωB − ω±

d )/ω+
d , �ω = (ωB − ωA)/ω+

d , γA,B = �A,B/ω+
d , g =
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G/ω+2

d , β̃ = β/ω+2

d , and f ±
B = f ±

B /ω+
d . These two systems

of four equations contain new terms that allow the normal
mode response amplitudes r+

A,B and r−
A,B to couple. By express-

ing these equations in terms of amplitudes (r±
A,B) and phases

(θ±
A,B), the normal mode coupling takes the form β̃r±r∓2

.
We integrate these equations using the parameters Vdc =

2 V, V −
ac = 3.5 V, V +

ac = 0.5 V, ω−
d = 2π × 2.168 500 MHz,

ω+
d = 2π × 2.370 280 MHz, and ωp = 2π × 5 kHz. By

sweeping Vp, a bifurcation diagram is reproduced with the
amplitude response of both normal modes using the maxima
of w−

B and w+
B [see Figs. 2(a) and 2(b) in the main text]. The

phases θ−
B and θ+

B are both shifted by 100◦, thus compensating
an experimental dephasing. We analyze 1000 chaotic traces
between Vp = 2.742 V and Vp = 3 V and extract more than
22 000 phase slip occurrences on which the statistical study of
the phase synchronization durations is performed [see Fig. 5
in the main text].
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