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Out-of-phase few-cycle solitons in multicore fibers
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An equation is derived for analyzing the self-action of wave packets with few optical cycles in multicore
fibers (MCFs). A class of stable out-of-phase spatiotemporal solitons with few-cycle durations in the MCF with
cores located in a ring is found and analyzed. The stability boundary of the obtained solutions is determined.
As an example of using such solitons, we considered the problem of their self-compression in the process of
multisoliton dynamics in the MCF. The formation of laser pulses with a duration of a few optical cycles at the
output of a 10-core MCF is shown.
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I. INTRODUCTION

In the last decade, significant progress has been made in the
generation of high-energy laser pulses with a small number of
field oscillations. These advances in laser science have led to
the development of a new field of extreme light, in which the
interaction of such extremely short pulses with matter is stud-
ied. A stable propagation mode of such few-cycle pulses is
realized in waveguide systems with anomalous group-velocity
dispersion and is associated with the existence of exact solu-
tions of the wave equation in the form of solitons [1–4].

The concept of optical solitons has played an important
role in the development of nonlinear optics in recent years.
Several remarkable applications of the use of solitons should
be noted: supercontinuum generation [5–8], self-compression
of laser pulses to a duration of a small number of field
oscillations [1,5,9–12], and creation of effective sources of
laser pulses in insufficiently developed spectral ranges, such
as mid-IR [5,13–15] and ultraviolet [16–19] through the use
of various types of nonstationary nonlinearities (Raman and
ionization ones).

Along with this, the search for stable non-one-dimensional
soliton solutions is of interest. However, it is well known that
in a bulk medium with cubic nonlinearity, the wave field is
subject to filamentation instability and self-focusing [20–22].
In recent decades, theoretical and experimental studies of
the nonlinear dynamics of wave fields in multicore fibers
(MCFs), consisting of identical equidistantly spaced weakly
coupled cores, have intensified in order to eliminate fila-
mentation instability in the transverse direction, which is a
fundamental limitation on the generation and use of high-
power laser pulses. A number of interesting results have been
obtained in such MCFs: supercontinuum generation [23–25],
laser-pulse compression [24–32], nonlinear switching [33]
and light-bullet formation [24–30,34–37]. However, most of
them were obtained for in-phase field distributions, which are
influenced by a discrete analog of filamentation instability and
stochasticity [38].
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At the same time, out-of-phase distributions of a wave field
in MCFs of various configurations, which are not subject to
filamentation instability, were found [39–43]. The existence
of out-of-phase modes make it possible to find stable out-
of-phase spatiotemporal solitons in MCFs within the slowly
varying amplitude approximation [32,43,44]. Such spatiotem-
poral solitons allow us to operate with significantly higher
total energy in comparison with single-core fibers. The ques-
tion of the existence of similar solutions describing stable
spatiotemporal solitonlike structures with an arbitrary number
of field oscillations arises. Their presence will make it pos-
sible to generalize the well-known methods of compression
of laser pulses in a single fiber as applied to MCFs and to
take a significant step towards solving the problem of creating
laser pulses of high energy and short duration in systems built
entirely in fiber format.

In this work, we derive the basic equation describing the
evolution of the wave field in MCFs without scale separation
into a slow envelope and high-frequency carrier (Sec. II). For
simplicity, we consider MCFs with cores located on a ring
in this paper since they have most simple forms of trans-
verse super-modes [40]. We find and analyze a class of stable
solitary solutions of the wave field which describes the propa-
gation in a transparent nonresonant medium of out-of-phase
spatiotemporal solitonlike structures of circularly polarized
optical pulses, including few-cycle ones (Sec. III). We an-
alyze the stability of the found solutions and demonstrate
their relation to the spatiotemporal solutions [32] found in the
framework of the nonlinear Schrödinger equation (Sec. IV).
We generalize the concept of high-order Schrödinger solitons
as applied to the found spatiotemporal solitary solutions with
a small number of field oscillations and demonstrate its use
for effective compression of laser pulses in an MCF (Sec. V).

II. BASIC EQUATIONS

To adequately describe the space-time evolution of ultra-
short circularly polarized laser pulses (E = Ex + iEy, where Ex

and Ey are the corresponding components of the electric field
strength) in MCFs with cubic nonlinearity, we turn directly to
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the wave equation

∂2E
∂z2

+ �⊥E− 1

c2

∂2

∂t2

∫ t

−∞
ε(x, y, t − t ′)E (t ′)dt ′ = 4π

c2

∂2Pnl

∂t2
.

(1)

Here Pnl is the nonlinear response of the medium; c is the
speed of light in vacuum. The linear dielectric constant of the
homogeneous medium ε can be approximated as [1,45–48]

ε(ω) ≈ εH =ε0 − ω2
D

ω2
+ bω2, (2)

where ε0 is the static dielectric constant and ω2
D and b charac-

terize the low-frequency and high-frequency dispersions.
Note that the dependence (2) describes the dispersion of

transparent dielectrics with a high degree of accuracy in the
near IR and part of the visible spectral range. For example,
the dielectric constant of fused silica can be written by the
Sellmeyer formula [49]

εglass = 1 + B1

1 − A1/λ2
+ B2

1 − A2/λ2
+ B3

1 − A3/λ2
, (3)

where B1 = 0.696, B2 = 0.4079, B3 = 0.897, A1 = 4.62 ×
10−3 μm2, A2 = 1.36 × 10−2 μm2, and A3 = 98 μm2. Out
of resonance λ2 < λ < λ1 (where λ1 = 9.896 μm = 2πc/ω1

and λ2 = 0.116 μm = 2πc/ω2) expression (3) can be rewrit-
ten in a form similar to expression (2),

εglass ≈ (1 + B1 + B2) + 1

λ2
(B1A1 + B2A2) − B3

A3
λ2. (4)

A. Linear case

Next, let us analyze the propagation of laser radiation in
an array of parallel weakly coupled cores without taking into
account the nonlinearity of the medium Pnl(E ) = 0. As an ex-
ample, the perturbation of the dielectric constant of a medium
can be considered in the form

ε(x, y) = εH+δε0

∑
n

exp
[− [(x−xn )2+(y−yn )2]2

r4
n

]
, (5)

where xn, yn, and rn are the position and radius of the cores
and δε0 � ε is the difference in the permittivity of cores
and cladding. Obviously, such perturbations of the dielectric
constant of the medium will lead to a dependence of the coeffi-
cients ε0, ωD, and b on the transverse coordinates x and y. That
is, one can continue to use Eq. (2) with coordinate-dependent
coefficients ε0(x, y), ωD(x, y), and b(x, y). Note that this will
not present a problem since the coordinates x and y and the
frequency ω are commuting variables.

Substitution of expression (2) into Eq. (1) gives the wave
equation

∂2E
∂z2

+ �⊥E− ε0(x, y)

c2

∂2E
∂t2

− ω2
D(x, y)

c2
E+ b(x, y)

c2

∂4E
∂t4

= 0,

(6)

with the action

S =
∫∫∫∫ [

ε0(x, y)

c2

∣∣∣∣∂E∂t

∣∣∣∣
2

− ω2
D(x, y)

c2
|E |2

+ b(x, y)

c2

∣∣∣∣∂
2E

∂t2

∣∣∣∣
2

−
∣∣∣∣∂E∂z

∣∣∣∣
2

− |∇⊥E |2
]

dxdydzdt . (7)

Here and below, integration is carried out at infinite limits
unless otherwise indicated.

We use the approximation that the fundamental guided
modes of optical waveguides are weakly coupled to each
other [5]. In this case, the propagation of laser radiation in
the MCF with cores located along a line or a ring can be ap-
proximately described as a superposition of modes localized
in each core,

E (z, t, x, y) ≈
∑

n

An(z, t )φ(r⊥ − rn), (8)

where φ(r) is the transverse structure of the fundamental
mode and An is the field envelope in the nth core.

The form of the solution (8) postulates the presence of only
wave-field structures in the form of the fundamental mode in
each MCF core. Such an approximation is generally accepted
when analyzing the wave-field dynamics in MCFs [5], which
are a system of weakly coupled single-mode cores. Thus, we
do not consider the possibility of nonlinear problems inside
the core, which, as is known, leads to rapid destruction of the
wave-field structure due to filamentation instability caused by
Kerr, Raman, thermal, and other nonlinearities [5]. This will
definitely limit the maximum amplitude that can be transmit-
ted in each core. For example, the maximal power in each
MCF core should be less than the critical self-focusing power
in the medium.

Assuming the overlap of wave fields from neighboring
cores are small∫

φ2(r)dxdy �
∫

φ(r)φ(r + d )dxdy, (9)

where d is the vector between centers of adjacent cores (as
the lattice period), we can apply the variational approxima-
tion, i.e., substitute the field in the form of the sum (8) into
expression (7) and integrate over the transverse coordinates
[below φ = φ(r), φ+ = φ(r + d )]

S =
∑

n

∫∫
⎡
⎢⎢⎢⎣

∣∣∣∣∂An

∂t

∣∣∣∣
2 ∫∫

ε0(x, y)

c2
φ2dxdy︸ ︷︷ ︸

β

+
(

∂A∗
n

∂t

∂An+1

∂t
+ c.c.

)∫∫
ε0(x, y)

c2
φφ+dxdy︸ ︷︷ ︸

β1

− |An|2
∫∫ (

ω2
D(x, y)

c2
φ2 + (∇⊥φ)2

)
dxdy

︸ ︷︷ ︸
σ

+(A∗
nAn+1 + c.c.)

∫∫ (
ω2

D(x, y)

c2
φφ+ + ∇⊥φ∇⊥φ+

)
dxdy

︸ ︷︷ ︸
−X
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+
∣∣∣∣∂

2An

∂t2

∣∣∣∣
2 ∫∫

b(x, y)

c2
φ2dxdy︸ ︷︷ ︸

γ

+
(

∂2A∗
n

∂t2

∂2An+1

∂t2
+ c.c.

)∫∫
b(x, y)

c2
φφ+dxdy︸ ︷︷ ︸

γ1

−
∣∣∣∣∂An

∂z

∣∣∣∣
2 ∫∫

φ2dxdy︸ ︷︷ ︸
α

−
(

∂A∗
n

∂z

∂An+1

∂z
+ c.c.

)∫∫
φφ+dxdy︸ ︷︷ ︸

α1

⎤
⎥⎥⎥⎦dtdz. (10)

Note that quantities ε0, ωD, and b can be considered to be
almost constant on the scale of the cores for the fibers under
consideration. Therefore, we can put

α1 ≈ ζα, β1 ≈ ζβ, γ1 ≈ ζγ , ζ =
∫∫

φφ+dxdy∫∫
φ2dxdy

� 1.

(11)

In this case, the action (10) generates the equations(
β

∂2

∂t2
− α

∂2

∂z2
− γ

∂4

∂t4

)
[An + ζAn−1 + ζAn+1]

+ σAn − X (An−1 + An+1) = 0. (12)

For a further analysis, it is convenient to use the evolution-
ary equation for the field in the simplest form of the reduced
wave equation. Assuming the changes in the field distributions
An(z, t ) are small on scales of the order of wavelengths and
neglecting the reflected wave, we obtain, for a wave field
traveling along the z axis,

∂2An

∂t2
− α

β

∂2An

∂z2
=

[
∂

∂t
− V

∂

∂z

][
∂

∂t
+ V

∂

∂z

]
An

≈ 2V
∂2An

∂z∂τ
, (13)

where V = √
α/β is the speed of light in the medium

and τ = t − z/V is the time in the accompanying coordi-
nate system. The formal condition for the applicability of
the approximation (13) is that the envelope changes slowly
along the propagation path: |∂zAn| � |∂τAn|/V . In the case
of quasimonochromatic radiation, this approach leads to a
Schrödinger-like equation for the envelope. Application of
approximation (13) to Eq. (12) gives

2
√

αβ
∂2

∂z∂τ
(An + ζAn−1 + ζAn+1)

+ σAn − X (An−1 + An+1)

− γ
∂4

∂τ 4
(An + ζAn−1 + ζAn+1) = 0. (14)

The terms with ζ � 1 describe the weak influence of
the field of neighboring cores on the velocity V and on the
high-frequency dispersion of the medium γ . Variable change
Anew

n = An + ζAn+1 + ζAn−1 allows one to get rid of them,
in contrast to the much stronger influence of the terms with
X , which describe the field coupling in neighboring cores.
As a result, we obtain, up to ζ 2 terms, a unidirectional wave
equation with new variables (we omit the “new” subscript)

that describe the dynamics of a laser pulse in an MCF without
taking into account the nonlinearity,

2
√

αβ
∂2An

∂z∂τ
+ σAn − (X + σζ )(An+1 + An−1) − γ

∂4An

∂τ 4

= 0. (15)

Thus, the contribution of the dispersion determined by the
fiber grating manifested itself mainly in the linear term cor-
responding to the coupling between cores.

It is seen from expression (10) that the distribution of the
fundamental mode φ(x, y) contributes to the “low-frequency”
dispersion σ of the combined medium. Moreover, this con-
tribution can be significant in the case of cores with a small
radius, ∫∫

ω2
D(x, y)

c2
φ2dxdy <

∫∫
(∇⊥φ)2dxdy. (16)

Moreover, the terms σ and X can be of the same order due
to the different structure of the integrands. The presence of
the gradient ∇⊥φ∇⊥φ+ in the integrand for X leads to the
fact that the corresponding term for weakly coupled cores
becomes negative; that is, the following expression becomes
positive:

X + σζ ≈
∫∫

φφ+dxdy∫∫
φ2dxdy

∫∫
(∇⊥φ)2dxdy

−
∫∫

∇⊥φ∇⊥φ+dxdy > 0. (17)

B. Nonlinear case

Let us take into account the influence of the medium non-
linearity Pnl on the dynamics of the laser pulse. The term
Pnl in Eq. (1) takes into account the nonstationarity of the
nonlinear response of the medium,

Pnl, n = n2(1 − fR)|An|2An

+ n2 fRAn

∫ ∞

0
|An(τ − τ ′)|2hR(τ ′)dτ ′, (18)

where fR is the partial contribution of the inertial Raman
response to nonlinear polarization and n2 is the nonlinearity
coefficient. Here we have assumed that the nonlinearity is
the same in all cores. The Raman response function hR is
responsible for the Raman gain and can be determined from
the experimentally measured Raman spectrum. An approxi-
mate analytical form of this function for silica fibers is as
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follows [5]:

hR(τ ) = τ 2
1 + τ 2

2

τ1τ
2
2

exp(−τ/τ2) sin(τ/τ1), (19)

where τ1 = 12.2 fs, τ2 = 32 fs, and fR = 0.18 for silica fiber.
As a result, we arrive at the following final unidirectional

wave equation in dimensionless form describing the self-
action of a few-cycle laser pulse in the MCF:

∂2un

∂ ẑ∂τ̂
+ un − χ (un−1 + un+1) − μ

∂4un

∂τ̂ 4

+ ∂2

∂τ̂ 2

[
(1 − fR)|un|2un + fRun

×
∫ ∞

0
|un(τ̂ − τ̂ ′)|2ĥR(τ̂ ′)d τ̂ ′

]
= 0. (20)

Here we introduced normalizing dimensional factors
for time τ0 = 1/ω0, traces z0 = 2

√
αβω0/σ , fields

A0 =
√

σc2/(4πn2ω
2
0 ), μ = γω4

0/σ , χ = ζ + X/σ ,
ĥR = hR( τ̂ ′

ω0
)/ω0, and ω0 is the carrier frequency. In what

follows, we will not write the hat.
In the case under consideration, the linear-dispersion law

for waves propagating along z, in the case of uncoupled cores
(χ = 0), has the form

k = − 1

ω
+ μω3. (21)

Note that by changing the center frequency � of broadband
radiation, one can control the role of dispersion in the dynam-
ics of the system. In particular, for radiation with frequency
ωbnd = 1/(3μ)1/4, the group-velocity-dispersion parameter

β2 = ∂2k

∂ω2
= − 2

ω3
+ 6μω (22)

become zero. Accordingly, for wave fields with a frequency
of � � ωbnd, the field spectrum is concentrated in the region
with normal group-velocity dispersion, and for � � ωbnd, the
dispersion is anomalous.

It is important to note that the obtained equation (20) has
a fundamental character and allows one to describe the non-
linear dynamics of few-cycle laser pulses in weakly coupled
multicore fibers. It is easily generalized to the case of an MCF
with a core configuration other than circular or linear too.

III. OUT-OF-PHASE SPATIOTEMPORAL
FEW-CYCLE SOLITONS

This section is devoted to the analysis of the most interest-
ing case when the main role in the dynamics of a laser pulse
is played by the low-frequency dispersion of the medium
(μ = 0) and the medium nonlinearity is inertialess ( fR = 0).

Consider an MCF in which the cores are arranged in a ring.
Earlier, we found a number of stable nonlinear solutions for
wave beams propagating in the considered MCF [40–43]. The
most interesting of them is the ± mode un ∝ (−1)n, which
provides coherent transportation of maximal power at a given
field amplitude. Moreover, this solution is stable and exists at
all amplitudes.

Along with this solution, soliton solutions are of interest.
We found out-of-phase soliton solutions in the framework of
the nonlinear Shrödinger equation (NSE) [32]

un = (−1)n

√
2a0ei(2χ−a2

0 )z

cosh(a0τ )
. (23)

It was shown that solution (23) is stable with respect to
filamentation instability. The analysis was carried out using
the second Lyapunov method. Note that in-phase solitonlike
solutions are unstable with respect to a kind of filamentation
instability [32].

An interesting question is the existence of a stable out-
of-phase spatiotemporal soliton with a small number of field
oscillations in the MCF within the framework of the derived
equation (20). The found solution will provide coherent prop-
agation of few-cycle laser pulses of constant shape in all
available MCF cores. In this case, the total energy of the found
nonlinear structure will significantly exceed the soliton energy
in a single-core fiber.

In the case of MCF, in which the cores are located on a
ring, the amplitude of the nonlinear structure is the same in all
cores. So we look for a solution in the form

un(z, τ ) = (−1)nu±(z, τ ). (24)

Substituting expression (24) into (20) and neglecting the non-
linearity inertia ( fR = 0), we obtain the short-pulse equation
for the wave-field dynamics in the MCF,

∂2u±
∂z∂τ

+ (1 + 2χ )u± + ∂2

∂τ 2
(|u±|2u±) = 0. (25)

Note that the absolute value of the coefficient related to the
dispersion properties of the MCF in the out-of-phase mode
is (1 + 2χ ) times greater than for a single-core fiber, which
agrees with the results of Ref. [50].

The following integral relation for localized field distribu-
tions follows from Eq. (25):∫ +∞

−∞
u±dτ = 0, (26)

expressing the absence of an averaged field in such distribu-
tions and indicating their oscillating character. Equation (25)
conserves an infinite set of integrals [51] starting from the
energy W± and the Hamiltonian H±,

W± =
∫ +∞

−∞
|u±|2dτ, (27a)

H± =
∫ +∞

−∞

[
1

2
|u±|4 − (1 + 2χ )

∣∣∣∣
∫ τ

−∞
u±dη

∣∣∣∣
2]

dτ. (27b)

Here the integral (26) is a consequence of the fact that the
zero harmonic of an electric field is not propagating in media
with a plasmalike dispersion law (2).

Earlier we found and analyzed a class of stable soliton
solutions in the framework of Eq. (25) [1]. The wave solitons
of the equation can be represented by a two-parameter family
of solutions of the form

u±(z, τ ) = √
vsG(ξ ) exp[iωs(τ + vsz) + iϕ(ξ )], (28)

where ωs is the characteristic carrier frequency, vs is the pa-
rameter that determines the group velocity of the soliton, and
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ξ = ωs(τ − vsz). The phase and group velocities are differ-
ent, which leads to oscillations of the wave structure, which
will be noticeable for short laser pulses. The envelope of the
soliton G(ξ ) and the nonlinear phase ϕ(ξ ) obey the following
equations:

dϕ

dξ
= G2(3 − 2G2)

2(1 − G2)2
, (29a)

∫ G

Gm

1 − 3G2

G
√

δ2 − F (G2)
dG = ±(ξ − ξ0), (29b)

where F (G2) = G2[3/2(1 + δ2) − (4 − 5G2)/4(1 − G2)2],
Gm is the maximum amplitude of the soliton, and ξ0 is
the integration constant corresponding to the position of
the maximum of the envelope of the soliton. As seen
from (29b), the solutions for the envelope of the soliton G(ξ )
depend only on the parameter δ2 = (1 + 2χ )/(ω2

s vs) − 1 and
exist at 0 � δ � δcr ≡ √

1/8. An important feature of the
considered wave solitons is the semibounded spectrum of
their admissible solutions, i.e., the presence of a boundary
solution corresponding to the limiting soliton with the
minimum possible pulse duration and, accordingly, with
the maximum possible amplitude. It should be noted that the
existence of a limiting soliton with the shortest duration is
determined by the integral (26). The duration of the limiting
soliton for δ = δcr is τ ∗

s ≈ 2.31ω−1
s .

Thus, the out-of-phase solitary solution of the wave field
un with an arbitrary number of field oscillations in an MCF
consisting of cores arranged in a ring, with an inertialess
nonlinearity of the Kerr type, has the form

usol
n (z, τ ) = (−1)n√vsG(ξ ) exp[iωs(τ + vsz) + iϕ(ξ )],

δ2 = 1 + 2χ

ω2
s vs

− 1 � 1

8
. (30)

IV. STABILITY OF THE OUT-OF-PHASE
SPATIOTEMPORAL SOLITON

Next, we turn to the question of the stability of the found
out-of-phase soliton (30) with respect to spatial filamentation
instability. Unfortunately, due to the complexity of the original
equation, (20), it is not possible to analyze analytically the
stability of the solution found in the MCF in the case of
an inertialess Kerr nonlinearity ( fR = 0) and low-frequency
dispersion (μ = 0).

First, let us establish a relation between the obtained so-
lution (30) and the out-of-phase envelope soliton solution,
which was found earlier in the framework of the nonlin-
ear Schrödinger equation (23) [32]. For this, we expand the
first integral (29b) in powers of G since the transition to
long quasimonochromatic pulses corresponds to the case of
small amplitudes G � 1. Keeping the terms of order G4 in
Eq. (29b), we obtain a solution for the envelope G(ξ ) which
corresponds to the Schrödinger soliton,

usol
n = (−1)n δ

ωs

√
2(1 + 2χ )eiθ

cosh(δξ )
, δ � 1,

θ = ξ + 2(1 + 2χ )(1 − δ2)z

ωs
+ ϕ0. (31)

This solution coincides with the solution (23), obtained in the
framework of NSE [32], if we set ωs = 1 and χ � 1. The
maximum amplitude exceeds the NSE soliton amplitude by
the factor

√
1 + 2χ since we take into account in Eq. (25)

that the group-velocity dispersion is higher in the case of an
out-of-phase mode [50]. Note that the velocity of a soliton
does not depend on its amplitude and is equal to 1/vs � ω2

s .
Typical distributions of the field and spectral intensity of the
soliton in one of the MCF cores at the small value of δ = 0.06
are shown in Figs. 1(a) and 1(b).

As the amplitude increases, the soliton duration decreases,
and the processes associated with the dependence of the group
velocity on the amplitude begin to play an increasing role,
which is primarily reflected in the phase-modulated structure
of the pulse (29a). Its amplitude dependence is then trans-
formed into solitons of the generalized nonlinear Schrödinger
equation, which have the following form, as is easy to obtain
from (29b) by expanding the polynomials and keeping the
terms of the order of smallness G6:

usol
n = (−1)n

ωs

√
1 + δ2

2δ
√

1 + 2χeiθ√
1 + √

1 + 12δ2 cosh(2δξ )
,

θ = ξ + 2vsωsz + 3

2

∫ ∣∣usol
n

∣∣2
dξ + ϕ0. (32)

It follows from these expressions that the amplitude distri-
bution of the soliton (32) is close to the NSE soliton (23).
However, a distinctive feature of the solution is the presence
of a sufficiently strong frequency modulation in the laser
pulse. Typical distributions of the field and spectral intensity
at δ = 0.3 are shown in Figs. 1(c) and 1(d).

In this case, the soliton velocity

1

vs
= ω2

s (1 + δ2)

1 + 2χ
(33)

depends on the amplitude (∝ δ2), which is a qualitative dif-
ference from the NSE solitons (23). Obviously, this fact can
lead to the development of instability. Let us clarify this point.
Let an out-of-phase spatial-temporal soliton be injected into
the nonlinear medium. At this, the amplitudes in different
cores are slightly different 〈(δ − 〈δ〉)2〉 �= 0. Obviously, this
will lead to a spread in the velocities of the solitons (33) in
different cores. Therefore, the found solution will be stable if
the coupling length 2π/χ is less than the dispersion length
2ωs/δ

2, i.e., for a sufficiently large coupling between neigh-
boring cores

χ > χcr ≡ πδ2

ωs
. (34)

To confirm the obtained estimate of the stability bound-
ary (34) of the found solution (30), let us turn to the results of
numerical simulation. Figure 2 shows the evolution of one of
the components of the electric field strength Re(un) of a laser
pulse with an initial distribution for ωs = 1 in an MCF of six
cores for different values of the parameters δ and χ . The initial
noise level is 10−2.

Figure 2(a) shows the evolution of a wave packet at δ =
0.05, which contains a large number of field oscillations. It
can be seen that for the coupling coefficient χ = 0.002 < χcr
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FIG. 1. Exact soliton solutions for one of the field polarizations (red solid curves) corresponding to (a) δ = 0.06, ωs = 1 and (c) δ = 0.3.
The dotted black line represents the distribution of the field envelope

√
vsG(ξ ). (b) and (d) show the spectral intensity distributions for different

δ: (b) δ = 0.06 and (d) δ = 0.3. The coupling coefficient is χ = 0.3; the central frequency ωs = 1.

the solution (30) is subject to filamentation instability and
is destroyed as it propagates in the medium. However, for
a larger coupling coefficient χ = 0.008 > χcr [Fig. 2(c)],
the soliton solution propagates unchanged. Along with this,
Fig. 2(b) also shows the evolution of a wave packet at δ = 0.3,
which contains a pair of field oscillations. The solution is
unstable for a small value of the coupling coefficient 0.2 < χcr

and becomes stable when the threshold χ = 0.3 > χcr is ex-
ceeded [Fig. 2(d)].

Figure 3 shows a map of the existence and stability
of found solutions. As noted above, out-of-phase spatial-
temporal soliton solutions exist for δ2 � 1/8. In Fig. 3, the
red dashed line shows the stability boundary (34); dots and
crosses show the results of numerical simulation. Thus, the
found stability estimate is in good agreement with the results
of numerical simulation.

V. LASER-PULSE SELF-COMPRESSION

The studies carried out above have shown the existence of
stable out-of-phase spatiotemporal solitons with a duration of
up to one field oscillation in an MCF of 2N cores arranged in a
ring. The found solution guarantees the coherent propagation
of wave packets with unchanged shape in all cores of such
an MCF. In this case, the total energy of the found nonlinear
structure is 2N times the energy of a soliton in a single core.

In this section, we present the results of generalizing the
well-known method of self-compression of laser pulses based
on multisoliton dynamics [5], as applied already to MCFs.

This will make it possible to take a significant step towards
solving the problem of the formation of high-energy and
short-duration laser pulses in systems built entirely of fiber.

A few words should be noted about the self-compression
of laser pulses in the multisoliton dynamics regime in the case
of a single core [5]. Analysis of the NLS equation showed that
in the case of a high-order soliton injected into the input of a
nonlinear medium

u = M
√

2δ0

cosh(δ0τ )
(35)

at the initial stage, a significant shortening of the laser pulse
as a whole is observed. Subsequently, the wave packet decays
into M solitons with parameters δm = (2m − 1)δ0, where m =
1, . . . , M is an integer. Thus, a soliton is formed 2M − 1 times
shorter than the initial one with a fraction of the energy,

η = 2M − 1

M2
. (36)

Next, we turn to a numerical analysis of the self-
compression of a laser pulse in an MCF consisting of 10 cores,
arranged in a ring [Fig. 4(a)]. At the MCF input, we inject a
laser pulse with an initial duration of 100 fs, whose amplitude
is three times greater than the amplitude of the found out-of-
phase spatiotemporal soliton. It is expected that three pulses
should be formed in the process of nonlinear dynamics. In
this case, the duration of the high-intensity soliton should be
approximately five times shorter than the initial duration.
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FIG. 2. Evolution of one of the components of the electric field strength Re(un) of the found solution (30) in an MCF of six cores at
different values of δ and χ : (a) δ = 0.05, χ = 0.002, (b) δ = 0.3, χ = 0.2, (c) δ = 0.05, χ = 0.008, and (d) δ = 0.3, χ = 0.3. The initial
noise level is 10−2.

Consider an MCF with silica cladding and cores doped
with 6% GeO2, which gives a refractive index difference of
�n ∼ 0.009 compared to the cladding one. The diameters of
the cores d and the distances between them L were chosen to
satisfy the stability condition for the out-of-phase spatiotem-
poral solution (34). In other words, the coupling length Lb =

FIG. 3. Dependence of the threshold value of the coupling co-
efficient (34) on the soliton parameter δ at ωs = 1. Dots show the
parameters (30), which have shown their stability in the numerical
simulation, and the crosses correspond to an unstable propaga-
tion regime. The hatched area is where the soliton’s existence is
impossible.

2π/χ must be less than the dispersion length Ldis = τ 2
min/|β2|,

estimated for the soliton with the shortest duration (about
15–20 fs).

The use of a FINITE-ELEMENT code allows us to find, for
such a configuration, both the distribution of the field of the
out-of-phase mode and the propagation constant K±(ω) as a
function of frequency and calculate the dispersion of the group
velocity β2 = ∂2K±/∂ω2. Figure 4(a) shows an example of
the distribution of the field Ex at wavelength λ = 1550 μm.
In Fig. 4(b), the black line shows the calculated β2(ω) for
d = 6 μm and L = 7 μm. For comparison, the red dashed line
shows the dependence of β2(ω) in the case of a single core. It
can be seen that the dispersion of the group velocity β2 for
the out-of-phase mode in the MCF is greater in absolute value
than in the case of a single core, which is consistent with our
earlier conclusion (25). In addition, the magenta dotted curve
shows the approximation (22) of the group-velocity dispersion
for one core, which fits well on the red dashed line.

To further simplify the numerical calculation for the pur-
pose of a detailed analysis of the nonlinear dynamics of a
laser pulse, we use explicitly the stability of the out-of-phase
solitary solution. We represent the electric field of a laser pulse
in the form

Eω(r, z) = F±(r, ω) gm, (37)

where Eω(r, z) = F̂ [E(r, z, τ )] is the spectrum of the field
laser pulse, F̂ is the Fourier transform in the τ coordinate,
and F±(r, ω) is the spatial distribution of the mode. The
dynamics of the laser-pulse spectrum envelope g± = F̂ [u±]
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FIG. 4. (a) Distribution of the Ex field at the wavelength λ =
1550 μm. The diameter of the cores is d = 6 μm; the distance
between the centers of the cores is L = 7 μm. (b) Frequency de-
pendence of the dispersion of the group velocity β2 for a 10-core
MCF (black solid line), for a single core (red dashed line), and for its
approximation (22) (magenta dotted line).

will be described by a unidirectional wave equation taking
into account the exactly found dispersion shown in Fig. 4(b),
Kerr and Raman nonlinearities, and nonlinear dispersion

∂g±
∂z

− iK±g± = iγ F̂

[(
1 + i

ω0

∂

∂τ

)(
(1 − fR)|u±|2u±

+ fRu±
∫ τ

−∞
hR(ξ )|u±(τ − ξ )|2dξ

)]
,

(38)

where ω0 is the center frequency of the laser pulse and fR

and hR are determined in the same way (19). The main differ-
ence of this equation from Eq. (20) is the exact accounting
of the dispersion of the medium—the dependence of the
wave number K±(ω) on the frequency was calculated using
a FINITE-ELEMENT code.

Figure 5 shows the results of the numerical simulation of
the dynamics of a wave packet in an MCF of 10 cores with
d = 6 μm and L = 7 μm, with a length of 10 cm. A laser
pulse with an energy of 40 nJ and a duration of 100 fs at
a wavelength of λ = 1550 μm was injected into the MCF.

FIG. 5. (a) Dynamics of the field envelope |u±(z, τ )|. (b) Depen-
dence of the wave-packet duration on the evolutionary variable z.
(c) Intensity distribution of the wave packet |u±(τ )|2 for different
values of the z coordinate.

The spatial distribution of the wave field is determined by the
out-of-phase mode. For a given MCF, the coupling length is
Lb = 2π/χ = 1.2 mm. The effective area of the out-of-phase
supermode at this wavelength is 300 μm2; the nonlinear coef-
ficient γ = 0.31/(W km).

Figure 5(a) shows the evolution of the envelope of the
wave packet |u±|. Figure 5(b) shows the dependence of the
wave-packet duration on the evolutionary variable z. It is
seen that with the evolution of the laser pulse in a nonlinear
medium, an adiabatic decrease in the duration of the wave
packet takes place. The wave packet is shortened as much
as possible and reached a duration of τp = 14 fs at a length
of z = 34 mm. Figure 5(c) shows the intensity distributions
of the wave packet. The initial distribution is shown by the
blue dashed line; the red solid line shows the distribution
of the wave packet at the length z = 34 mm. In Fig. 5(c),
the value of the intensity of the laser pulse is normalized to
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the maximum value. Note that the dispersion length of the
compressed laser pulse is 5.2 mm, which exceeds the coupling
length Lb = 1.2 mm. The energy in the compressed pulse is
more than 38 nJ.

Figure 5(a) shows that the laser pulse is subsequently split
into three wave structures. The most intense of them forms a
soliton with a duration five times shorter than the initial one,
which is in good agreement with the above theoretical picture.
In this case, the wave packet with the maximum amplitude
(with the shortest duration) is rather quickly separated from
the remaining structures since their group velocities differ
significantly. This separation of pulses is strengthened by the
shifting of the center frequency due to Raman nonlinearity.
From Figs. 5(a) and 5(b), it can be seen that already at dis-
tances of z � 70 mm, the high-intensity soliton is well isolated
from the remaining two structures and further propagates sta-
bly, without any changes.

VI. CONCLUSION

In this work, a basic equation for the analysis of key
self-action features of few-cycle laser pulses in the MCF was
derived. This equation describes the evolution of the wave
field in the MFC without scale division into a slow envelope
and high-frequency carrier. A class of stable out-of-phase
spatiotemporal few-cycle solitons in the MCF consisting of

cores arranged in a ring was found and analyzed. The sta-
bility condition of the obtained solutions was determined.
These nonlinear structures represent an extension of solutions
found by us earlier in the framework of NSE to the few-cycle
regime [32]. This allows them to be considered elementary
wave-field structures that play the same fundamental role in
the nonlinear dynamics of wave fields as NSE solitons applied
to a single fiber.

As an example of the use of such solitons, we consid-
ered the problem of their self-compression in the process
of multisoliton dynamics to effectively shorten laser pulses
to a duration of several optical cycles in the MCF. In this
paper, we considered the case that most closely matches the
realizable experimental situation of compression of a laser
pulse with an initial duration of 100 fs and an energy of 40 nJ
at a wavelength of 1550 μm, propagating in an MCF of 10
cores arranged in a ring. As a result, as shown by numerical
calculations, a laser pulse with a duration of 14 fs (slightly
less than three field periods) with an energy of 38 nJ will be
formed at the output of an MCF 34 mm long.
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