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Broadband dichromatic variational measurement
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The standard quantum limit (SQL) of a classical mechanical force detection results from quantum backaction
impinged by the meter on a probe mechanical transducer perturbed by the force of interest. In this paper we
introduce a technique of continuous broadband backaction, avoiding measurements for the case of a resonant
signal force acting on a linear mechanical oscillator supporting one of the mirrors of an optical Michelson-
Sagnac interferometer (MSI). The interferometer with the movable mirror is an optomechanical transducer able
to support the polychromatic probe field. The method involves a dichromatic optical probe resonant with the
MSI modes and having frequency separation equal to the mechanical frequency. We show that analyzing each of
the harmonics of the probe reflected from the mechanical system separately and postprocessing the measurement
results allows excluding the backaction in a broad frequency band and measuring the force with sensitivity better
than the SQL.
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I. INTRODUCTION

Optical transducers are frequently used for observation
of mechanical motion. They allow measuring displacement,
speed, acceleration, and rotation of mechanical systems. Me-
chanical motion can change the frequency, the amplitude, and
the phase of the probe light, which are processed to obtain
information about the motion. The measurement sensitivity
can be extremely high. For instance, a relative mechanical
displacement that is orders of magnitude smaller than a proton
size can be detected. This feature is utilized in gravitational
wave detectors [1–6], in magnetometers [7,8], and in torque
sensors [9–11].

The fundamental sensitivity limitations of the measure-
ment always were of interest. One of the limits results from
the fundamental thermodynamic fluctuations of the probe me-
chanical system. The absolute position detection is restricted
due to the Nyquist noise. However, this obstacle can be re-
moved if one intends to measure a variation of the position,
not its absolute value. The thermal noise does not limit the
sensitivity of the measurement that occurs much faster than
the system ringdown time.

Another limitation comes from the quantum noise of the
meter. On one hand, the accuracy of the measurements of
the observables of the meter is restricted because of their
fundamental quantum fluctuations, represented by the shot
noise for the optical probe wave. On the other hand, the
sensitivity is impacted by the perturbation of the state of
the probe mass due to the mechanical action of the meter
on the mass. This effect is called “quantum backaction.” In
the case of the optical meter, the mechanical perturbation
results from the pressure of light. Interplay between these two
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phenomena results in the so-called standard quantum limit
(SQL) [12,13] of the measurement sensitivity.

The value of the SQL depends on the measurement system
as well as the measurement strategy and the measurement
observable. In the case of the detection of a classical force
acting on a mechanical probe mass, the SQL can be avoided
in a configuration supporting optomechanical velocity mea-
surement [14,15]. The limit also can be surpassed using
opto-mechanical rigidity [16–18]. Preparation of the probe
light in a nonclassical state [19–25] as well as detection of
a variation of a strongly perturbed optical quadrature [26–28]
curbs the quantum backaction and lifts the SQL. The back-
action and the SQL can be avoided with coherent quantum
noise cancellation [29–31] as well as compensation using an
auxiliary medium with negative nonlinearity [32].

Optimization of the detection scheme by utilizing a few
optical frequency harmonics as a probe allows beating the
SQL of a force detection. The technique was introduced
40 years ago [33,34] and then expanded to various mea-
surement configurations involving only one optical resonant
mode [35–39] as well as configurations involving two modes
[29,40]. Additionally, usage of a dichromatic optical probe in
a resonant optical transducer may lead to the observation of
phenomena such as negative radiation pressure [41,42], opti-
cal quadrature-dependent quantum backaction [26,28,43,44],
and mechanical velocity-dependent interaction [14,15]. All
these phenomena are useful for backaction suppression.

Noncommutativity between the probe noise and the quan-
tum backaction noise is the reason for the SQL. In a
simple displacement sensor the probe noise is represented by
the phase noise of light and the backaction noise depends on
the amplitude noise of light. The signal is contained in the
phase of the probe. The relative phase noise decreases with
optical power. The relative backaction noise increases with the
power. The signal-to-noise ratio optimizes at a specific power
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value. The optimal measurement sensitivity corresponds to the
SQL. Because phase and amplitude quantum fluctuations of
the same wave do not commute, it is not possible to measure
the amplitude noise and subtract it from the measurement
result.

In this paper we suggest an alternative measurement pro-
cedure, in which the experimenter uses a dichromatic optical
probe (i.e., two optical modes, separated by a mechanical
resonator frequency, are pumped). It provides the important
possibility to detect amplitude (or phase) quadratures of two
outputs from each mode independently. These quadratures are
entangled due to ponderomotive interaction with the mechan-
ical oscillator. In particular, we propose to measure the sum
and the difference, for example, of amplitude quadratures,
because the sum contains backaction without any information
on the mechanical degree of freedom, whereas the difference
of amplitude quadratures contains information on the mechan-
ical degree with backaction. This allows postprocessing of the
measurement result and subtracting the quantum backaction
contribution completely, not only in some bandwidth as in
conventional variational measurement [26,28,43]. This is the
main advantage of the proposed procedure.

In the measurement procedure the probe mass is strongly
perturbed. In this way the technique is similar to the vari-
ational approach, leading to the accurate measurement of a
variation of a quantum system despite the strong perturba-
tion of the system parameters. Unlike the standard variational
measurement, the technique described here is broadband. The
backaction can be removed at all spectral frequencies.

The technique proposed here is especially efficient when
the signal force is resonant with the mechanical probe mass
suspension. In this regime the external force modifies the
power redistribution between the probe spectral compo-
nents most efficiently. The variational measurement technique
based on a monochromatic probe light does not perform well
in this case.

The paper is organized as follows. The physical model of
the measurement system is introduced in Sec. II. The mean
amplitudes of the system parameters, the quantum fluctua-
tions, and the associated noise components are studied in
Sec. III. The optimal sensitivity of the measurement is also
found in Sec. III. The impact of the parasitic sidebands is
analyzed in Sec. IV. Section V concludes the paper.

II. PHYSICAL MODEL

Let us consider an optomechanical system consisting of
two externally pumped optical modes coupled with each other
and with a mechanical oscillator. The difference between the
optical mode frequencies is equal to the frequency of the
mechanical oscillator. In this case the mechanical oscillation
signal that appeared in one mode became resonance for an-
other one—see (2.9) below.. In what follows we show the
feasibility of the broadband detection of a small signal force
acting on the mechanical oscillator while keeping the sensi-
tivity of the measurement better than that of the SQL.

The optomechanical system can be realized in a ring cavity
with coupled clockwise and counterclockwise modes (Fig. 1).
The uncoupled modes are frequency degenerate. Let us as-
sume that their frequency is equal to ω0. Introducing a low
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FIG. 1. High-finesse ring cavity with the input mirror M0 with
transmission t0 and reflectivity r0 (t0 � r0) and the dielectric mirror
M (membrane) inside with transmission t and reflectivity r (r � t).

reflecting membrane (with transmittivity t and reflectivity r)
inside the cavity removes degeneracy and eigenfrequencies
ω± of the modes split (so-called coherent coupling [45]):

ω± = ω0 ± |κ|, κ = rceiφ

t (L1 + L2)
, r � t, (2.1)

where the splitting factor κ is a complex value. A specific
feature of coherent coupling is that the absolute value of
|κ| depends on optical parameters of the membrane and its
phase of φ depends on the membrane position [45]. For res-
onance the optomechanical interaction mechanical frequency
ωm should be equal to the splitting between optical modes:
2|κ| = ωm.

Another example of a scheme enabling the backaction
evading measurement is the Michelson-Sagnac interferometer
(MSI) shown in Fig. 2. The system also has two degenerate
modes. If the position of a perfectly reflecting mirror M is
fixed, one MSI mode, characterized by the frequency ω+, is

FIG. 2. (a) Schematic of the Michelson-Sagnac interferometer in
which the mirror M is totally reflecting. The mirror is a test mass m of
the mechanical oscillator with the frequency ωm. (b) Two eigenmodes
with the frequencies ω− and ω+ are coupled with the mechanical
oscillator. The relaxation rate γ is the same for both modes, γ � ωm.
Modes ω± are resonantly pumped.
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given by a light wave which travels between M1 and the beam
splitter (BS). The light is split on the BS and after reflection
from the mirror M returns exactly to M1. It does not propagate
to M2. The other mode, characterized by the frequency ω−, is
represented by a wave which travels from M2 to the BS and
after reflection from M returns to M2 and does not propagate
to M1. The frequencies of the modes, ω±, are controlled by the
variation of the path distances �1 and �2. Variation of the po-
sition of the mirror M provides coupling between the modes.
The mirror M is a test mass of the mechanical oscillator with
the mass m and the eigenfrequency ωm.

One can show that both optomecanical schemes in Figs. 1
and 2 are described by similar Hamiltonians—see the Hamil-
tonian for the scheme in Fig. 1 derived in Appendix A and
Eqs. (2.4) below. The advantages of the scheme shown in
Fig. 2 include the following.

(i) One is capable of tuning the scheme without mirrors
M1 and M2, selecting the position of the mirror M so that the
MSI becomes nontransparent. Light from the left and right
ports reflects without mixing up unless a force is applied to
the mirror.

(ii) Adding mirrors M1 and M2 defines the eigenfrequency
of the modes ω±. By shifting the position, for example, of
the mirror M1, one can tune the difference of frequencies to
realize the resonance condition ω+ − ω− = ωm.

(iii) The outputs of each mode are separated in space,
enabling the measurement of the light in each output inde-
pendently.

The technique proposed here is similar to the earlier in-
troduced two-frequency probe-based measurement strategy in
which a nondegenerate optical parametric amplification was
utilized to achieve the coherent coupling between two op-
tical probes and to beat the SQL [29,40]. The difference is
that the nonlinear crystal is not needed in our case, resulting
in the parametric interaction. A nonlinear coherent coupling
between the modes is achieved via the ponderomotive nonlin-
earity of the movable mirror. Importantly, two optical outputs
are used in the scheme described in our paper, while a single
output was utilized in Refs. [29,40].

A. Main assumptions

Let us consider the scheme shown in Fig. 2. We assume
that the relaxation rates of the eigenmodes are identical and
characterized with the full width at half maximum equal to
2γ . The mechanical relaxation rate is small if compared with
the optical one: γm � γ . We also assume that the conditions
of the resolved sideband interaction and the frequency syn-
chronization are valid:

γm � γ � ωm, ω+ − ω− = ωm. (2.2)

The resonance curves shown in Fig. 2(b) illustrate the condi-
tions accepted above.

For the sake of simplicity we also assume that following
conditions are valid:

L1 � L2, L1, L2 � �1, �2. (2.3)

In order to perform the measurements in our system the
classical resonant mechanical oscillations have to be sup-
pressed. This can be done by using four, not two, modes

with orthogonal polarizations and optimally selected powers.
It is also possible to suppress the classical oscillation via an
electronic feedback. For the sake of simplicity we consider
the simplified Hamiltonian with only two modes, assuming
that the classical portion of the mechanical oscillation is sup-
pressed by other classical means. The full analysis of the
four-mode scheme confirming the assumption is given in Ap-
pendix B.

B. Hamiltonian

The generalized Hamiltonian describing the system can be
presented in the following form:

H = H0 + Hint + HT + Hγ + HT, m + Hγm , (2.4a)

H0 = h̄ω+c†
+c+ + h̄ω−c†

−c− + h̄ωmd†d, (2.4b)

Hint = h̄

i
(ηc†

+c−d − η∗c+c†
−d†). (2.4c)

Hint is the Hamiltonian of the interaction between modes, d
and d† are annihilation and creation operators of the me-
chanical oscillator, c± and c†

± are annihilation and creation
operators of the corresponding optical modes. The operator of
coordinate x of the mechanical oscillator can be presented in
the form

x = x0(d + d†), x0 =
√

h̄

2mωm
. (2.5)

The coupling constant η can be written as

|η| � x0

L
ω0, L � L1, L2, ω0 � ω±. (2.6)

HT is the Hamiltonian describing the environment (thermal
bath) and Hγ is the Hamiltonian of the coupling between the
environment and the optical modes resulting in the decay rate
γ . Similarly, HT, m is the Hamiltonian of the environment and
Hγm is the Hamiltonian describing the coupling between the
environment and the mechanical oscillator resulting in the
decay rate γm. See Appendix C for details.

It is convenient to separate the expectation values of the
wave amplitudes as well as their fluctuation parts and assume
that the fluctuations are small:

A± = (A± + â±)e−iω±t , (2.7)

B± = (B± + b̂±)e−iω±t . (2.8)

A± and B± stand for the expectation values of the amplitudes
of the corresponding optical waves and a± and b± represent
the fluctuations, |A±|2 � 〈a†

±a±〉 and |B±|2 � 〈b†
±b±〉, where

〈· · · 〉 stands for ensemble averaging.
The normalization of the amplitudes is selected so that

h̄ω±|A±|2 describes the optical power [28]. We also consider
only spectral components around carrier frequencies ω± and
drop the harmonics centered at frequencies (ω+ + ωm) and
(ω− − ωm) far from the corresponding resonances.

The Hamiltonian of the system allows us to write the equa-
tions of motion for the intracavity fields:

ˆ̇c+ + γ ĉ+ + ηc−d̂ =
√

2γ â+, (2.9a)

ˆ̇c− + γ ĉ− − ηc+d̂† =
√

2γ â−. (2.9b)
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The complete derivation of these equations is presented in
Appendix C.

The input-output relations are

b̂± = −â± +
√

2γ ĉ±. (2.9c)

III. SOLUTION

Using the Hamiltonian formalism we obtain the following
set of equations for the expectation values:

γC+ + ηC−D =
√

2γ A+, (3.1a)

γC− − η∗C+D∗ =
√

2γ A−, (3.1b)

γmD = η∗C+C∗
−, (3.1c)

γmD∗ = ηC∗
+C−. (3.1d)

Introducing the parameter ν = |η|2/γ γm, we arrive at

C+

(
1 + νg2|A−|2

(1 − ν|C+|2)2

)
=

√
2

γ
A+, (3.2a)

C−

(
1 − νg2|A+|2

(1 + ν|C−|2)2

)
=

√
2

γ
A−. (3.2b)

The amplitudes C+ and C− are limited due to the pondero-
motive nonlinearity. The classical resonant ponderomotive
force creates mechanical oscillations with the amplitude D
which can be large. These oscillations are classical and can
be suppressed using a regular force optimized for the known
amplitudes of the probe fields. We also can use two orthogonal
polarizations in the scheme shown in Fig. 2 to reduce the un-
desirable resonant excitation of the mechanical oscillator (see
Appendix B for details). In what follows we omit them from
consideration and assume that D = 0 and C± = √

2/γ A±.

A. Langevin equations

The equations of motion for the Fourier amplitudes of the
operators describing the intracavity fields and the mechanical
oscillator, c± and d , can be written in the following forms
using (2.9a) and (2.9b):

(γ − i	)c+(	) + ηC−d (	) =
√

2γ a+(	), (3.3a)

(γ − i	)c−(	) − η∗C+d†(−	) =
√

2γ a−(	), (3.3b)

(γm − i	)d (	) − η∗[C∗
−c+(	) + C+c†

−(−	)]

=
√

2γm q(	) + i fs(	), (3.3c)

b±(	) = −a±(	) +
√

2γ c±(	), (3.3d)

where b± are the output Fourier amplitudes of the optical
waves. The incident waves are in the coherent state, so the op-
erators â± are characterized with the following commutators
and correlators:

[â±(t ), â†
±(t ′)] = δ(t − t ′), (3.4)

〈â±(t )â†
±(t ′)〉 = δ(t − t ′), (3.5)

where 〈· · · 〉 stands for ensemble averaging.

The Fourier transforms of these operators are introduced as
follows:

â±(t ) =
∫ ∞

−∞
a±(	) e−i	t d	

2π
. (3.6)

The same is true for the other operators. Using (3.4) and
(3.5) we derive commutators and correlators for the Fourier
amplitudes of the input fluctuation operators as follows:

[a±(	), a†
±(	′)] = 2π δ(	 − 	′), (3.7)

〈a±(	)a†
±(	′)〉 = 2π δ(	 − 	′). (3.8)

For the signal force we also introduce its Fourier amplitude
assuming that the force is the resonant one acting during the
time interval τ :

FS (t ) = Fs0 cos(ωmt + ψ f )

= Fs(t )e−iωmt + F ∗
s (t )eiωmt , −τ

2
< t <

τ

2
, (3.9)

fs(	) = Fs(	)√
2h̄ωmm

, fs0 = Fs0(	)√
2h̄ωmm

= 2 fs, (3.10)

where Fs(	) is the Fourier amplitude of the slow complex
amplitude Fs(t ). In the general case, Fs(	) �= F ∗

s (−	).
The thermal mechanical noise operators are described us-

ing the following expressions:

[q(	), q†(	′)] = 2π δ(	 − 	′), (3.11a)

〈q(	) q†(	′)〉 = (2nT + 1) 2π δ(	 − 	′), (3.11b)

nT = 1

eh̄ωm/κBT − 1
. (3.11c)

Here κB is the Boltzmann constant, and T is the ambient
temperature.

It is important to note that the optical modes contain in-
formation on the mechanical oscillator in a slightly different
way. The annihilation operator ∼d impacts c+ in (3.3a) and
the creation operator ∼d† impacts c− in (3.3b). This is usual
for parametric processes and is essential for the measurement
procedure described below.

B. Solution of the Langevin equations

For the sake of simplicity we assume that the phases of the
probe harmonics are selected so that

C+ = C∗
+ = C− = C∗

− = C, η = η∗. (3.12)

Introducing the quadrature amplitudes

a±a = a±(	) + a†
±(−	)√

2
, (3.13a)

a±φ = a±(	) − a†
±(−	)

i
√

2
, (3.13b)

and using (3.3), we obtain

(γ − i	)c+a + ηCda =
√

2γ a+a, (3.14a)

(γ − i	)c+φ + ηCdφ =
√

2γ a+φ, (3.14b)

(γ − i	)c−a − ηCda =
√

2γ a−a, (3.14c)
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(γ − i	)c−φ + ηCdφ =
√

2γ a−φ, (3.14d)

(γm − i	)da − ηC(c+a + c−a) =
√

2γmqa − fs φ,

(3.14e)

(γm − i	)dφ − ηC(c+φ − c−φ ) =
√

2γmqφ + fs a.

(3.14f)

The sum of amplitude quadratures, c+a + c−a, on one hand,
does not contain information on the mechanical motion (the
term proportional to ∼da is absent), and, on the other hand,
produces the backaction term in Eq. (3.14e). The difference
of phase quadratures, c+φ − c−φ , does not contain dφ but
produces backaction in Eq. (3.14f). We use this feature to
achieve the backaction evasion in the force detection.

We would like to stress here that in the measurement
scheme illustrated in Fig. 2 one can measure any single
quadrature independently in each frequency and spatial chan-
nel separated from the other channels. The results of the
measurements can be combined and processed after the mea-
surement is done. For example, one can detect amplitude
quadratures b+a and b−a and then combine their sum and dif-
ference numerically. Another possibility is to measure phase
quadratures b+φ and b−φ and to combine their sum and dif-
ference. However, it is not allowed to measure b±a and b±φ at
the same time.

So introducing

ga± = c+a ± c−a√
2

, gφ± = c+φ ± c−φ√
2

, (3.15)

αa± = a+a ± a−a√
2

, αφ± = a+φ ± a−φ√
2

, (3.16)

βa± = b+a ± b−a√
2

, βφ± = b+φ ± b−φ√
2

, (3.17)

and rewriting (3.14) in the new notations

(γ − i	)ga+ =
√

2γαa+, (3.18a)

(γ − i	)ga− +
√

2ηCda =
√

2γαa−, (3.18b)

(γm − i	)da −
√

2ηCga+ =
√

2γmqa − fs φ, (3.18c)

(γ − i	)gφ+ +
√

2ηCdφ =
√

2γαφ+, (3.18d)

(γ − i	)gφ− =
√

2γαφ−, (3.18e)

(γm − i	)dφ −
√

2ηCgφ− =
√

2γmqφ + fs a, (3.18f)

we find that sets [(3.18a), (3.18b), (3.18c)] and [(3.18d),
(3.18e), (3.18f)] are decoupled.

It is convenient to present the solution of the set [(3.18a),
(3.18b), (3.18c)] for the amplitude quadratures in the form

βa+ = ξ αa+, ξ = γ + i	

γ − i	
, (3.19a)

βa− = ξ

(
αa− − K αa+

γm − i	

)

−
√

ξK
γm − i	

(
√

2γmqa − fs φ ), (3.19b)

K ≡ 4γ η2C2

γ 2 + 	2
. (3.19c)

As expected, in Eq. (3.19b) the backaction term is propor-
tional to the normalized probe power K. However, this term
can be excluded in the postprocessing. One can measure both
βa+ and βa− simultaneously and subtract βa+ from βa− to
remove the backaction completely. This means that we can
measure the combination as

βcomb
a+ = βa− + ξ

K αa+
γm − i	

(3.20)

= ξαa− −
√

ξK
γm − i	

(
√

2γmqa − fs φ ), (3.21)

which is completely backaction free. This is the main finding
of the study.

Let us write the force detection condition in terms of the
single-sided power spectral density S f (	) recalculated to the
signal force (3.9). Demanding the signal-to-noise ratio to ex-
ceed unity, we get

fs0 �
√

S f (	)
�	

2π
, (3.22)

where �	 � 2π/τ . Using (3.8) and (3.11b), we obtain the
following for the case when we measure β−a (3.19b):

S f (	) = 2γm(2nT + 1) +
(
γ 2

m + 	2
)

|K| + |K|

� 2γm(2nT + 1) + SSQL, f , (3.23)

SSQL, f = 2
√

γ 2
m + 	2. (3.24)

The sensitivity is restricted by the SQL. If we measure
βcomb

−a (3.21), the spectral density is not limited by the SQL:

S f (	) = 2γm(2nT + 1) +
(
γ 2

m + 	2
)

|K| . (3.25)

Here the first term describes the thermal noise and the last
one stands for the quantum measurement noise (shot noise).
The quantum measurement noise decreases with the power
increase. The backaction term is absent.

It worth noting that the thermal noise term is present in
any optomechanical detection scheme. It can exceed the mea-
surement error related to the measurement apparatus rather
significantly. However, a proper measurement procedure al-
lows one to suppress this noise and also exclude the initial
quantum uncertainty associated with the mechanical system.
The main requirement for such a measurement is a fast in-
terrogation time, which should be much shorter than the
ringdown time of the mechanical system [12,13]. This is pos-
sible if the measurement bandwidth exceeds the bandwidth
of the mechanical mode. Sensitivity of narrowband resonant
measurements is usually limited by the thermal noise.

Instead of the amplitude quadratures one can measure sums
and differences of the phase quadratures. Solving the set
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FIG. 3. Side bands c̃± = c±(ω± ∓ 2ωm ) inside the cavity pro-
duce a parasitic backaction force acting on the mechanical oscillator.
We assume that one can measure waves b± and sidebands b̃±
separately.

[(3.18d), (3.18e), (3.18f)], we arrive at

βφ− = ξ αφ−, (3.26a)

βφ+ = ξ

(
αφ+ − K αφ−

γm − i	

)
−

√
ξK

γm − i	

(√
2γmqφ + fs a

)
.

(3.26b)

We can measure quadratures β±φ simultaneously and subtract
the backaction proportional to β−φ from β+φ .

Finally, a generalization is possible for a pair of quadra-
tures with the arbitrary parameter ϕ:

b+ϕ = b+a cos ϕ + b+φ sin ϕ, (3.27a)

b−ϕ = b−a cos ϕ − b−φ sin ϕ. (3.27b)

The sum b+ϕ + b−ϕ is not disturbed by the mechanical motion
but contains the term proportional to the backaction force,
whereas the difference b+ϕ − b−ϕ contains the term propor-
tional to the mechanical motion (with backaction and signal).
The backaction term can be measured and subtracted from the
force measurement result.

IV. PARASITIC BACKACTION

The fluctuation force acting on the mechanical oscillator is
proportional to the cross product (c−c†

+ + c†
−c+) of the probe

modes. This means that the fluctuation fields characterized by
the Fourier amplitude c̃−(	) = c−(ω− + 2ωm + 	) centered
at frequencies in the vicinity of ω− + 2ωm and the Fourier
amplitude c̃+(	) = c+(ω+ − 2ωm + 	) centered at frequen-
cies in the vicinity of ω+ − 2ωm (see Fig. 3) contribute to
the ponderomotive fluctuation force impinged by the light on
the mirror. We mark with a tilde these complex amplitudes
of the input and output waves for the sake of shortness. We
neglect these harmonics in the analysis above because the
amplitude of the harmonics can be small. In what follows we

take them into account and find the limitations they introduce
for the measurement strategy proposed here.

Parasitic sidebands provide additional terms to the expres-
sions of the optical fields, for instance, Eq. (3.21) should be
rewritten as

βcomb
a− = ξ

[
αa− + Kg̃a+

(γm − i	)

(γ − i	)√
2γ

−
√

ξK
γm − i	

(
√

2γmqa − fs φ )

]
, (4.1)

where noise term g̃a+ , defined by (D9), at conditions (2.2) is
approximately equal to

g̃a+ �
√

γ

2ωm
[ã+φ − ã−φ]. (4.2)

See Appendix D for details.
The backaction created by the parasitic sidebands limits

sensitivity of the measurements. Instead of (3.23) we obtain
a corrected expression for the single-sided power spectral
density that can be presented as

S f (	) = 2γm(2nT + 1) +
(
γ 2

m + 	2
)

|K| + |K|(γ 2 + 	2)

4ω2
m

� 2γm(2nT + 1) +
√

γ 2 + 	2

2ωm
SSQL, f (4.3)

While the sensitivity still can be less than the SQL at con-
ditions (2.2), the sensitivity becomes limited after the probe
power reaches the optimal value found from Eq. (4.3):

|K|2 = 4ω2
m

γ 2
m + 	2

γ 2 + 	2
� |KSQL|2, (4.4)

where KSQL corresponds to the optimal power value needed
to reach the SQL in the system.

The impact of the parasitic harmonics can be reduced if
one is able to measure b̃−(	) = b−(ω− + 2ωm + 	) as well
as b̃+(	) = b+(ω− − 2ωm + 	) independently on the other
spectral components of the output light. The measurement can
be performed if narrowband bandpass filters are available.

The scheme of such a measurement is illustrated in Fig. 3.
Measurement of optimally selected quadratures of b̃± allows
partial reduction of the parasitic backaction described by the
term g̃a+ in Eq. (4.1). The reduction factor is R � 	/2ωm � 1
(see details in Appendix E).

This means that, in the case γm = 0 and at conditions (2.2),
the formula (4.3) will have the form

S f (	) = 	2

|K| + |K|γ 2	2

16ω4
m

� γ |	|
2ω2

m

SSQL, f . (4.5)

The sensitivity (4.5) is better than that defined by Eq. (4.3)
achieved for the case of not suppressed parasitic harmonics.

V. DISCUSSION AND CONCLUSION

In the transducers shown in Figs. 1 and 2, the informa-
tion on the mechanical quadratures transfers to the optical
quadratures of two independent probe fields which can be
measured independently. It provides an alternative possibility
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TABLE I. Proposed set of optomechanical parameters.

Parameter Value

Mechanical oscillator frequency ωm/2π 2.5 MHz
Mechanical rate of decay γm/2π 100 Hz
Oscillator mass m 10 ng
Cavity length L 40 cm
Pump frequency ω0/2π 300 THz
Optical rate of decay γ /2π 0.1 MHz

of postprocessing analysis leading to the broadband backac-
tion evasion.

For example, one can measure amplitude quadrature com-
ponents in each output, save them, and then combine them
numerically, taking their sum and difference. This gives the
unique possibility to (a) record the backaction force with-
out any information on mechanical displacement (in the sum
of quadratures) and (b) record the position of the oscillator
with shot noise and backaction. Then one can subtract the
backaction completely using the recorded data. At this stage
the quantum fluctuations are already reduced to the classical
numbers.

One also can measure phase quadrature amplitudes in-
dependently in both outputs and combine their sum and
difference. In this case the difference contains pure backaction
force and the sum includes information about the position
of the mechanical oscillator with shot noise and backaction,
as shown by Eq. (3.14). This is a peculiar property of the
parametric interaction. In this case the backaction can be
subtracted completely.

One of the main features of the measurement strategy
proposed here is in the usage of the dichromatic probe field
that results in the two independent quantum outputs. It gives
us the flexibility to measure the backaction separately and
then subtract it completely from the measurement result. The
subtraction can be made in a broad frequency band.

In contrast, in conventional variational measurements
[26–28] there is only one quantum output and the backaction
cannot be measured separately from the signal. Measurement
of the linear combination of the amplitude and phase quadra-
tures in that case allows partial subtraction of the backaction.
Only one quadrature of the output wave has to be measured to
surpass the SQL.

The single-channel measurement of the optical quadrature
is a common feature in many practical schemes of backaction
evasion force detection, including the optical spring [16–18],
ancilla cavity and parametric amplification [29,40], and the
nonclassical probe [19–25]; all of these result in backaction
evasion measurements. In all these schemes only one quantum
output is generally utilized.

The scheme proposed here allows measurement of either a
combination of a sum and a difference of amplitude quadra-
tures (3.21) or a sum and a difference of phase quadratures
(3.26) of two optical probe harmonics. Generalization (3.27)
is also possible. These measurement strategies lead to back-
action evasion in a broad frequency band. We expect that
this technique will find a realization in other metrological
configurations.

FIG. 4. Noise power spectral densities S as a function of the
input power P. Measurement of only β−a (red line) (3.23) does
not allow the SQL to be surpassed (horizontal orange line) (3.24).
Measurement of the combination βcomb

−a (dashed green line) (3.25)
allows backaction to be evaded and the SQL to be surpassed. It is
still possible to surpass the SQL with parasitic harmonics taken into
account (dot-dashed purple line) (4.3) but the corresponding Power
spectral density (PSD) rises at higher pump-power levels. Reduction
of parasitic harmonics (blue line) (4.5) improves sensitivity but the
corresponding PSD still rises at higher pump-power levels. The plots
are presented for 	/2π = 100 Hz. The parameters used for the plots’
evaluation are given in Table I except for γm = 0.

It is important to know precise values of the system param-
eters to realize the proposed technique experimentally. There
are techniques for identification of those parameters [18]. To
illustrate numerically the expected performance of the sys-
tem described here we have introduced realistic numerical
parameters listed in Table I and evaluated the power spectral
density of the measurement noise (Fig. 4). The values of these
parameters are based on estimations and assumptions given
in Refs. [18,45]. The plots are presented for the ideal case
of γm = 0 and nT = 0 which corresponds to solely quantum
noise without thermal noise. Crystalline strained silicon seems
to be a promising material because mechanical nanooscilla-
tors made of it have quality factor Q > 1010 [46], which is
ten times higher than the quality factor of oscillators made of
Si3N4 [47].

We propose to use filtration of output waves in order to
depress backaction due to parasitic sidebands. Experimental
realization of this filtration is not a simple task, but it is
possible in principle.
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APPENDIX A: HAMILTONIAN FOR SCHEME IN FIG. 1

Here we derived the Hamiltonian for the scheme in Fig. 1
in order to demonstrate that it is similar to Hamiltonian (2.4).

We consider clockwise and counterclockwise modes with
amplitudes c1 and c2 coupled with each other by a small
coupling coefficient κ (2.1), assuming that its phase ϕ is
φ = φ0 + 2kx. We write the cavity Hamiltonian as follows:

H = H0 + Hint + Hm, (A1a)

H0 = h̄ω(c†
1c1 + c†

2c2), Hm = h̄ωmd†d, (A1b)

Hint = h̄

i
(κc†

1c2 − κ∗c1c†
2). (A1c)

Let us introduce eigenmodes cp and cm inside the cavity

κ0 = |κ0|eiφ, φ = φ0 + 2kx, (A2a)

cp,m = c1 ± ic2e2iφ0

√
2

(A2b)

and express the optical part of Hamiltonian (A.1) (without Hm)
as

H = h̄ω(c†
pcp + c†

mcm) + h̄|κ|(c†
mcm − c†

pcp) cos 2kx

− h̄|κ|
i

[c†
mcp − c†

pcm] sin 2kx

� h̄(ω − |κ|)c†
pcp + h̄(ω + |κ|)c†

mcm

− h̄|κ|
i

[c†
pcm − c†

mcp]2kx. (A3a)

Here k is the optical wave vector, x is displacement of mirror
M, and we assume kx � 1.

Using the rotating-wave approximation and notation (2.5),
we reduce Hamiltonian (A3) to Hamiltonian (2.4).

APPENDIX B: SUPPRESSION OF THE RESONANT
PONDEROMOTIVE EXCITATION

In this section we discuss possibilities of the suppression
of resonant ponderomotive excitation of the mechanical oscil-
lations of the system.

We assume that there exist modes c+ and e+ characterized
by orthogonal polarizations and the same geometrical path.
These modes are characterized by the eigenfrequency ω+.
Similarly, modes c− and e− are characterized by orthogonal
polarizations and the same eigenfrequency ω−. In this config-
uration (2.4),

H = H̃0 + H̃int + H̃γ , (B1a)

H̃0 = h̄ω+c†
+c+ + h̄ω−c†

−c− + h̄ω+e†
+e+

+ h̄ω−e†
−e− + h̄ωmd†d, (B1b)

H̃int = h̄

i
(ηc†

+c−d − η∗c+c†
−d†) + h̄

i
(ηee†

+e−d − η∗
e e+e†

−d†).

(B1c)

From this Hamiltonian we derive the equations of motion
for the intracavity fields:

ċ+ + γ c+ + ηc−d =
√

2γ a+, (B2a)

ċ− + γ c− − η∗c+d† =
√

2γ a−, (B2b)

ė+ + γ e+ + ηee−d =
√

2γ ae
+, (B2c)

ė− + γ e− − η∗
e e+d† =

√
2γ ae

−, (B2d)

ḋ + γmd = η∗c+c†
− + η∗

e e+e†
− +

√
2γmq + i fs.

(B2e)

The input-output relations are given as

b± = −a± +
√

2γ c±, be
± = −ae

± +
√

2γ e±. (B3a)

Here a± and b± are the input and output fields of the c±
modes, and ae

± and be
± are the input and output fields of the e±

modes. Equations for the mean amplitudes follow from (B2):

γC+ + ηC−D =
√

2γ A+, (B4a)

γC− − η∗C+D∗ =
√

2γ A−, (B4b)

γ E+ + ηeE−D =
√

2γ Ae
+, (B4c)

γ E− − η∗
e E+D∗ =

√
2γ Ae

−, (B4d)

γmD = η∗C+C∗
− + η∗

e E+E∗
−. (B4e)

We consider the case of equal coupling constants η = ηe.
For the sake of simplicity we choose

η = η∗ = ηe = η∗
e , (B5a)

C+ = C− = C = C∗. (B5b)

In order to suppress the mean amplitude of the mechanical
oscillator we have to pump e± modes so

E+ = E∗
− = −iC (or iC). (B6)

Then we get the following equations for the fluctuation parts:

(γ − i	)c+ + ηCd =
√

2γ a+, (B7a)

(γ − i	)c− − ηCd† =
√

2γ a−, (B7b)

(γ − i	)e+ + iηCd =
√

2γ ae
+, (B7c)

(γ − i	)e− + iηCd† =
√

2γ ae
−, (B7d)

(γm − i	)d = ηC(c+ + c†
−) − iηC(e+ + e†

−).

(B7e)

Introducing quadrature amplitudes as in (3.13), we obtain

(γ − i	)c+a + ηCda =
√

2γ a+a, (B8a)

(γ − i	)c+φ + ηCdφ =
√

2γ a+φ, (B8b)

(γ − i	)c−a − ηCda =
√

2γ a−a, (B8c)

(γ − i	)c−φ + ηCdφ =
√

2γ a−φ, (B8d)

(γ − i	)e+a − ηCdφ =
√

2γ ae
+a, (B8e)

(γ − i	)e+φ + ηCda =
√

2γ ae
+φ, (B8f)

(γ − i	)e−a − ηCdφ =
√

2γ ae
−a, (B8g)

(γ − i	)e−φ + ηCda =
√

2γ ae
−φ, (B8h)

023519-8



BROADBAND DICHROMATIC VARIATIONAL MEASUREMENT PHYSICAL REVIEW A 104, 023519 (2021)

(γm − i	)da − ηC(c+a + c−a + e+φ − e−φ )

=
√

2γmqa − fs φ, (B8i)

(γm − i	)dφ − ηC(c+φ − c−φ − e+a − e−a)

=
√

2γmqφ + fs a. (B8j)

Then we combine amplitudes as in (3.15), (3.16), and
(3.17):

εa± = e+a ± e−a√
2

, εφ± = e+φ ± e−φ√
2

, (B9a)

αe
a± = ae

+a ± ae
−a√

2
, αe

φ± = ae
+φ ± ae

−φ√
2

, (B9b)

βe
a± = be

+a ± be
−a√

2
, βe

φ± = be
+φ ± be

−φ√
2

, (B9c)

and we rewrite (B8) using these combinations, similarly to
(3.18):

(γ − i	)ga+ =
√

2γαa+, (B10a)

(γ − i	)ga− +
√

2ηCda =
√

2γαa−, (B10b)

(γ − i	)εφ+ +
√

2ηCda =
√

2γαe
φ+, (B10c)

(γ − i	)εφ− =
√

2γαe
φ−, (B10d)

(γm − i	)da −
√

2ηC(ga+ + εφ−) =
√

2γmqa − fs φ,

(B10e)

(γ − i	)gφ+ +
√

2ηCdφ =
√

2γαφ+, (B10f)

(γ − i	)g−φ =
√

2γαφ−, (B10g)

(γ − i	)εa+ =
√

2γαe
a+, (B10h)

(γ − i	)εa− −
√

2ηCdφ =
√

2γαe
a−, (B10i)

(γm − i	)dφ −
√

2ηC(gφ− − εa+) =
√

2γmqφ + fs a.

(B10j)

So, in order to completely evade backaction from modes c
and e as it follows from (B10e) we have to measure simulta-
neously the next combination of output quadratures:

βcomb
a− = βa− + K

γm − i	

(
β+a + βe

φ−
)
, (B11a)

or as follows from Eq. (B10j),

βcomb
φ+ = βφ+ + K

γm − i	

(
βφ− − βe

a+
)
. (B11b)

Another possibility to suppress the mechanical oscillator
is having a small coupling constant ηe (ηe � η). It can be
realized by engineering coating of the mirror M in Fig. 2.
The larger pumps E± can compensate regular force in (B4e),
without introducing significant backaction noise.

APPENDIX C: DERIVATION OF THE INTRACAVITY
FIELDS

Here we provide details of calculation of intracavity fields
(for example, see Ref. [48]).

We begin with Hamiltonian (2.4):

H = H0 + Hint + HT + Hγ + HT, m + Hγm , (C1)

HT =
∞∑

k=0

h̄ωkb†
kbk, (C2)

Hγ = ih̄

√
γ�ω

π

∞∑
k=0

[(c†
+ + c†

−)bk − (c+ + c−)b†
k], (C3)

HT, m =
∞∑

k=0

h̄ωkq†
kqk, (C4)

Hγm = ih̄

√
γ�ω

π

∞∑
k=0

[d†qk − dq†
k ]. (C5)

Here HT is the Hamiltonian of the environment presented
as a bath of oscillators described with frequencies ωk =
ωk−1 + �ω and annihilation and creation operators bk and b†

k .
Hγ is the Hamiltonian of coupling between the environment
and the optical resonator, and γ is the coupling constant. Sim-
ilarly HT, m is the Hamiltonian of the environment presented
by a thermal bath of mechanical oscillators with frequencies
ωk = ωk−1 + �ω and amplitudes described with annihilation
and creation operators qk and q†

k . Hγm is the Hamiltonian of
coupling between the environment and the mechanical oscil-
lator, and 2γm is the decay rate of the oscillator.

We write the following Heisenberg equations for operators
c+ and bk:

ih̄ċ+ = [c+, H] = h̄ω+c+ − ih̄ηc−d + ih̄

√
γ�ω

π

∞∑
k=0

bk,

(C6a)

ih̄ḃk = [bk, H] = h̄ωkbk − ih̄

√
γ�ω

π
(c+ + c−). (C6b)

We introduce slow amplitudes c± → c±e−iω±t , d →
de−i(ω+−ω− )t , and bk → bke−iωkt and substitute them into (C6):

ċ+ = −ηc−d +
√

γ�ω

π

∞∑
k=0

bke−i(ωk−ω+ )t , (C7a)

ḃk = −
√

γ�ω

π
(c+e−i(ω+−ωk )t + c−e−i(ω−−ωk )t ). (C7b)

Using the initial condition bk (t = 0) = bk (0) to integrate
(C7b), we obtain

bk (t ) = bk (0) −
∫ t

0

√
γ�ω

π
c+(s)e−i(ω+−ωk )sds

−
∫ t

0

√
γ�ω

π
c−(s)e−i(ω−−ωk )sds. (C8)

Using the final condition bk (t = ∞) = bk (∞) to integrate
(C7b), we derive

bk (t ) = bk (∞) +
∫ ∞

t

√
γ�ω

π
c+(s)e−i(ω+−ωk )sds

+
∫ ∞

t

√
γ�ω

π
c−(s)e−i(ω−−ωk )sds. (C9)
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To get the input-output relation we substitute the initial con-
dition (C8) into (C7a),

ċ+ = −ηc−d +
∞∑

k=0

√
γ�ω

π
bk (0)e−i(ωk−ω+ )t

−
∞∑

k=0

∫ t

0

γ�ω

π
c+(s)e−i(ωk−ω+ )(t−s)ds

−
( ∞∑

k=0

∫ t

0

γ�ω

π
c−(s)e−i(ωk−ω− )(t−s)ds

)
ei(ω+−ω− )t ,

(C10)

omit the last term proportional to ei(ω+−ω− )t as fast oscillating,
and define the input field as

a+(t ) =
∞∑

k=0

√
�ω

2π
bk (0)e−i(ωk−ω+ )t . (C11)

To calculate the remaining sum in Eq. (C10) we assume the
limit �ω → 0 and replace the sum by the integral using the
rule

�ω

∞∑
k=0

→
∫ ∞

0
dωk, (C12a)

∞∑
k=0

∫ t

0

γ�ω

π
c+(s)e−i(ωk−ω+ )(t−s)ds

→
∫ ∞

0

∫ t

0
2γ c+(s)e−i(ωk−ω+ )(t−s)ds

dωk

2π

=
∫ ∞

−ω+

∫ t

0
2γ c+(s)e−iω(t−s)ds

dω

2π

≈
∫ ∞

−∞

∫ t

0
2γ c+(s)e−iω(t−s)ds

dω

2π

=
∫ t

0
2γ c+(s)δ(t − s)ds = 2γ c+(t )

2
= γ c+(t ).

(C12b)

Substituting (C11) and (C12) into (C10), we obtain

ċ+ = −ηc−d +
√

2γ a+ − γ c+, (C13)

ċ+ + γ c+ + ηc−d =
√

2γ a+. (C14)

By analogy we derive the equation for the input field a−
and present it in a similar form:

a−(t ) =
∞∑

k=0

√
�ω

2π
bk (0)e−i(ωk−ω− )t . (C15)

It leads to the equation for the intracavity field c−:

ċ− + γ c− − ηc+d† =
√

2γ a−. (C16)

A similar equation can be derived for the amplitude q(t ) of
the mechanical oscillator,

q(t ) =
∞∑

k=0

√
�ω

2π
bm, k (0)e−i(ωk−ω+ )t , (C17)

and we get the following Langevine equation for the mechan-
ical oscillator’s quadrature d ,

ḋ + γmd − η∗c+c†
− =

√
2γmq. (C18)

To get the output relation we substitute (C9) into (C7a) and
define the output fields as

b+(t ) = −
∞∑

k=0

√
�ω

2π
bk (∞)e−i(ωk−ω+ )t , (C19)

b−(t ) = −
∞∑

k=0

√
�ω

2π
bk (∞)e−i(ωk−ω+ )t . (C20)

This leads to

ċ+ − γ c+ + ηc−d =
√

2γ b+, (C21)

ċ− − γ c− + η∗c+d† =
√

2γ b−. (C22)

Utilizing pairs of equations, (C14) and (C21) as well as (C16)
and (C22), we obtain the final expressions for the input-output
relations:

b+ = −a+ +
√

2γ c+, (C23)

b− = −a− +
√

2γ c−. (C24)

Let us derive the commutation relations for the Fourier am-
plitudes of the operators. We introduce the Fourier transform
of the field a+(t ) using (C11):

a+(	) =
∫ ∞

−∞

∞∑
k=0

√
�ω

2π
bk (0)e−i(ωk−ω+−	)t dt

(C25a)

=
∞∑

k=0

√
2π�ωbk (0)δ(	 − ωk + ω+) (C25b)

This allows us to find the commutators (3.7):

[a+(	), a†
+(	′)]

=
∞∑

k=0

2π�ω[bk (0), b†
k (0)]

× δ(	 − ωk + ω+)δ(	′ − ωk + ω+)

→
∫ ∞

−∞
2π [b(0), b†(0)]δ(	 − ω)δ(	′ − ω)dω

= 2πδ(	 − 	′), (C26a)

and it allows us to find the correlators (3.8):

〈a+(	), a†
+(	′)〉

=
∞∑

k=0

2π�ω〈bk (0), b†
k (0)〉δ

× (	 − ωk + ω+)δ(	′ − ωk + ω+)

→
∫ ∞

−∞
2π〈b(0), b†(0)〉δ(	 − ω)δ(	′ − ω)dω

= 2πδ(	 − 	′). (C27a)
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Similar expressions can be derived for commutators and
correlators of the optical a− and mechanical q quantum am-
plitudes.

APPENDIX D: ACCOUNT OF PARASITIC SIDE BANDS

In this section we provide details of calculations taking
into account the parasitic optical harmonics in the system. To
do this, we use Hamiltonian equations generated by means
of (2.4) and we replace c± ⇒ C± + c± + c̃±, where C± rep-
resents mean-field amplitudes and c± + c̃± represents the
fluctuation parts. The term c± was considered in the main part
of the paper. The new term c̃± has been introduced to reflect
the generation of the parasitic sidebands.

The fluctuation fields in “+” and “−” cavities are not
correlated with each other. Also, the sidebands described by
c± and c̃± are not correlated because they are localized at
different frequencies.

The terms proportional to c̃± and corresponding to para-
sitic backaction can be written in a similar way if compared
with the standard backaction terms. Fluctuations c̃± are out
of resonance; nevertheless, they are present in modes being
impaired.

Using the rotating-wave approximation we derive the ad-
ditional terms for the set of Hamilton equations (3.3c) for the
mechanical operator

(γm − i	)d (	) = η[C+c†
−(−	) + C∗

−c+(	)] (D1a)

− η[C∗
+c̃−(	) − C−c̃†

+(−	)] (D1b)

+
√

2γmq(	) + i fs(	), (D1c)

where the terms in (D1b) describe the contributions due to the
parasitic backaction. For example, the first term in (D1b) is
derived as

C∗
+eiω+t c̃−(	)e−i(ω−+2ωm )t = C∗

+c̃−(	) e−iωmt (D2)

(see definition of c̃−(	) in Fig. 3). Since the mechanical
operator d (	) is multiplied by the same time-dependent ro-
tation term e−iωmt in the left-hand side of Eq. (D1), it can be
removed.

The operators c± obey (3.3). For the operators of the para-
sitic sidebands inside the cavity we derive

c̃+(	)(γ + i2ωm − i	) =
√

2γ ã+(	) − ηC−d†(−	),

ã+(	) = a+(−2ωm + 	), (D3a)

c̃−(	)(γ − 2iωm − i	) =
√

2γ ã−(	) + ηC+d (	),

ã−(	) = a−(2ωm + 	). (D3b)

For output amplitudes of parasitic sidebands we find

b̃+(	) = γ − 2iωm + i	

γ + 2iωm − i	
ã+(	) −

√
2γ ηC−d†(−	)

γ + 2iωm − i	
,

(D4a)

b̃−(	) = γ + 2iωm + i	

γ − 2iωm − i	
ã−(	) +

√
2γ ηC+d (	)

γ − 2iωm − i	
.

(D4b)

Quadratures

Let us consider the case of the resonance probe light (3.12),
find quadratures for parasitic optical harmonics, and rewrite
the expression (D1) for the mechanical quadratures as

c̃a± = c̃±(	) + c̃†
±(−	)√

2
, c̃φ±

= c̃±(	) − c̃†
±(−	)

i
√

2
, (D5a)

(γm − i	)da = ηC[ca− + ca+] − ηC[c̃a− − c̃a+]

+
√

2γm qa − fφs, (D5b)

(γm − i	)dφ = ηC[−cφ− + cφ+] − ηC[c̃φ− + c̃φ+]

+
√

2γm qφ + fas. (D5c)

Substituting (D5) into (3.3a) and (3.3b), we get

c+a =
√

2γ aa+
γ − i	

− η2C2[ca− + ca+ − c̃a− − c̃a+]

(γm − i	)(γ − i	)

− ηC

√
2γm qa − fφs

(γm − i	)(γ − i	)
, (D6a)

c−a =
√

2γ aa−
γ − i	

+ η2C2[ca− + ca+ − c̃a− − c̃a+]

(γm − i	)(γ − i	)

+ ηC

√
2γm qa − fφs

(γm − i	)(γ − i	)
, (D6b)

c+φ =
√

2γ aφ+
γ − i	

− η2C2[−cφ− + cφ+ − c̃φ− + c̃φ+]

(γm − i	)(γ − i	)

− ηC

√
2γm qφ + fas

(γm − i	)(γ − i	)
, (D6c)

c−φ =
√

2γ aφ−
γ − i	

− η2C2[−cφ− + cφ+ − c̃φ− + c̃φ+]

(γm − i	)(γ − i	)

− ηC

√
2γm qφ + fas

(γm − i	)(γ − i	)
. (D6d)

We introduce sum and difference quadratures for the para-
sitic sidebands, similarly to (3.15), (3.16), and (3.17):

g̃a± = c̃+a ± c̃−a√
2

, g̃φ± = c̃+φ ± c̃−φ√
2

, (D7a)

α̃a± = ã+a ± ã−a√
2

, α̃φ± = ã+φ ± ã−φ√
2

, (D7b)

β̃a± = b̃+a ± b̃−a√
2

, β̃φ± = b̃+φ ± b̃−φ√
2

, (D7c)

and we arrive at the following expressions for the sum and
difference quadratures:

ga+ =
√

2γ αa+
γ − i	

, (D8a)

ga− =
√

2γ αa−
γ − i	

− 2 η2C2[ga+ − g̃a+]

(γm − i	)(γ − i	)

−
√

2 ηC

√
2γm qa − fφs

(γm − i	)(γ − i	)
, (D8b)
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gφ− =
√

2γ αφ−
γ − i	

, (D8c)

gφ+ =
√

2γ αφ+
γ − i	

− 2η2C2[gφ− + g̃φ−]

(γm − i	)(γ − i	)

−
√

2 ηC

√
2γm qφ + fas

(γm − i	)(γ − i	)
. (D8d)

At the next step we evaluate the sum and difference quadra-
tures of sidebands using (D3):

g̃a+ =
√

2γ

2

(
ã+(	) + ã†

−(−	)(
γ + 2iωm − i	

) + ã†
+(−	) + ã−(	)(
γ − 2iωm − i	

) )
,

(D9a)

g̃φ− =
√

2γ

i 2

(
ã+(	) + ã†

−(−	)(
γ + 2iωm − i	

) − ã†
+(−	) + ã−(	)(
γ − 2iωm − i	

) )
.

(D9b)

The combinations above do not contain any information on
the displacement of the mechanical oscillator.

For output sum and difference quadratures, taking advan-
tage of Eq. (3.3d), we obtain

βa− = γ + i	

γ − i	
αa− −

√
2γ

2η2C2[ga+ − g̃a+]

(γm − i	)(γ − i	)

− 2
√

γ ηC

√
2γm qa − fφs

(γm − i	)(γ − i	)
, (D10a)

βa+ = γ + i	

γ − i	
αa+, (D10b)

βφ+ = γ + i	

γ − i	
αφ+ −

√
2γ

2η2C2[gφ− + g̃φ−]

(γm − i	)(γ − i	)

− 2
√

γ ηC

√
2γm qφ + fas

(γm − i	)(γ − i	)
, (D10c)

gφ− = γ + i	

γ − i	
αφ−. (D10d)

Finally, we rewrite βa+ after compensation of the main
backaction term as (4.1).

We see that one can subtract completely the main (propor-
tional to αa+) term of the backaction. The contribution of the
parasitic harmonic (proportional to g̃a+) into the backaction
limits the sensitivity of the measurement in this case. In the
following section we discuss a possibility of the reduction of
their impact.

APPENDIX E: REDUCTION OF THE RESIDUAL
BACKACTION

Using (D9) we find

β̃a+ = 1

2

{
γ − 2iωm + i	

γ + 2iωm − i	

[
ã+(	) + ã†

−(−	)
]

+ γ + 2iωm + i	

γ − 2iωm − i	

[
ã†

+(−	) + ã−(	)
]}

, (E1a)

β̃φ− = 1

2i

{
γ − 2iωm + i	

γ + 2iωm − i	

[
ã+(	) + ã†

−(−	)
]

− γ + 2iωm − i	

γ − 2iωm + i	

[
ã†

+(−	) + ã−(	)
]}

. (E1b)

In order to compensate for the “tilde” terms we have to
measure a combination of arbitrary quadratures defined by
phases ϕ±:

b̃+ϕ = b̃+(	)eiϕ+ + b̃†
+(	)e−iϕ+

√
2

, (E2a)

b̃−ϕ = b̃−(	)eiϕ− + b̃†
−(	)e−iϕ−

√
2

. (E2b)

In order to remove parasitic terms we have to define the
phases as follows:

ϕ+ = −ϕ− = ϕ ⇒ b̃+ϕ + b̃−ϕ√
2

= γ − i2ωm + i	

2(γ + i2ωm − i	)

(
ã+(	) + ã†

−(−	)
)
eiϕ

+ γ + i2ωm + i	

2(γ − i2ωm − i	)

(
ã−(	) + ã†

+(−	)
)
e−iϕ.

(E2c)

We get for ϕ an approximate expression:

(γ − i2ωm + i	)eiϕ � const ⇒ eiϕ =
√

γ + 2iωm

γ − 2iωm
. (E2d)

Performing the same procedure we developed for the main
harmonics of the probe light, we find that the impact of the
parasitic harmonics can be reduced by R � 	/2ωm [assuming
the validity of conditions (2.2)]. After the compensation we
obtain

βa− = ξ
√
K

(γm − i	)

{
(γm − i	)√

K
αa− −

√
K αa+

+
√
K (γ − i	)√

2γ
g̃a+R −

√
ξ−1[

√
2γm qa − fφs]

}
.

(E3)

instead of (4.1). The first term in braces, αa−, results from the
quantum measurement noise and the second term, αa+, de-
scribes backaction that can be removed from the measurement
results. The backaction term due to the parasitic harmonics
can be reduced. Optimization of contributions of these terms
defines the ultimate sensitivity of the measurement technique
that is better than that of the SQL.
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