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Dual quasibound states in the continuum in compound grating waveguide structures for large
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Based on the selective excitations of the forward and backward propagating resonant guided modes, we
achieve dual bound states in the continuum (dual BICs) in a compound grating waveguide structure composed
of a four-part periodic grating layer and a waveguide layer. Assisted by the quasi-BIC corresponding to forward
propagating resonant guided mode (quasi-BIC 1) and the one corresponding to backward propagating resonant
guided mode (quasi-BIC 2), large posit ive and negative GH shifts can be simultaneously realized. Also, in
contrast to the GH shift enhanced by conventional transmission-type resonance, large positive and negative GH
shifts assisted by dual quasi-BICs possess 100% reflectance, which can be more easily detected and utilized. Our
work provides a route to design GH-shift-based high-performance sensors, wavelength division (de)multiplexers
and light storage devices.
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I. INTRODUCTION

In recent years, a kind of special bound states called bound
states in the continuum (BICs) have attracted researchers’
interest since they are perfectly confined states without any
radiation [1–3]. In 1929, von Neumann and Wigner found
that under some artificial potential functions, the single-
particle Schrödinger equation could possess bound solutions
with discrete eigenvalues embedded in the continuum energy
spectrum [4]. This work can be regarded as the origin of
the concept of BICs. In 1985, Friedrich and Wintgen pro-
posed a general method to realize BICs in quantum systems
based on a two-level non-Hermitian Hamiltonian [5]. The
Fridrich-Wintgen approach was theoretically extended to op-
tical systems by Bulgakov and Sadreev in 2008 [6]. After
three years, optical BICs were experimentally observed by
Plotnik et al. [7]. True optical BICs with infinite Q factor
are mathematical objects, which cannot be utilized physically.
Nevertheless, optical quasi-BICs with ultralarge Q factors can
be physically utilized in various applications, such as lasers
[8,9], sensors [10,11], light absorption [12–15], enhancement
of harmonic generation [16–20] and wireless power transfers
[21], due to their strong resonance properties. In the past
decade, researchers have proposed lots of microstructures to
realize optical quasi-BICs, including photonic crystal slabs
[22–29], gratings [30–37], dielectric disk chains [38], and
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high-index dielectric resonators [39,40]. Very recently, re-
searchers achieved dual-BICs in dual-grating metamembranes
[41] and dual-split ring resonator arrays [42].

When a light beam launches onto the interface between two
media, it will undergo a lateral shift from the position pre-
dicted by geometrical optics in the incident plane. This lateral
shift was observed experimentally by Goos and Hänchen in
1947 and called the Goos-Hänchen (GH) shift [43]. In 1948,
Artmann utilized the stationary phase method to prove that
the GH shift is proportional to the partial derivative of the
reflection phase to the incident angle [44]. If one could realize
strong optical resonance with a high-Q factor, reflection phase
will dramatically vary around the resonant angle and lead to
a large GH shift [45]. Over the past two decades, various
resonant microstructures have been proposed to enhance the
GH shift, including surface plasmon resonators [46], Bloch
surface wave resonators [47], metal cladding waveguides [48],
epsilon-near-zero metamaterial slabs [49,50], defective pho-
tonic crystals [51], photonic crystal heterostructures [52], and
graphene-based structures [53,54]. According to the sign, GH
shifts can be divided into two classes: positive GH shifts and
negative GH shifts. For most of practical application scenar-
ios, such as sensing and wavelength division (de)multiplexing,
positive GH shift is more desirable because the reflected light
beam and the incident light beam can be effectively sepa-
rated [55–57]. However, for some special practical application
scenarios, such as light storage (also called light stopping),
negative GH shift is necessary in order to achieve a closed
optical path [58–60]. Therefore, in addition to realize large
positive GH shift, realizing large negative GH shift has also
attracted researchers’ great interests [61–67].
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Very recently, researchers achieved a single quasi-BIC in
compound grating waveguide structure based on the selec-
tive excitation of the resonant guided mode [68]. Assisted
by quasi-BIC with ultrastrong resonance, the GH shift can
be greatly enhanced to larger than three orders of wave-
length [68]. Besides, different from the large GH shift based
on conventional transmission-type resonance [46–54], the
maximum GH shift assisted by quasi-BIC is located at the
reflectance peak with perfect reflection, which can be more
easily detected in the experiment. Nevertheless, in Ref. [68],
researchers only investigated the selective excitation of the
forward propagating resonant guided mode and realized a
large positive GH shift. In this paper, we start from the
guided mode resonance condition in the compound grating
waveguide structure composed of a four-part periodic grating
layer and a waveguide layer and then simultaneously achieve
selective excitations of the f orward and backward prop-
agating resonant guided modes. By tuning the asymmetric
geometric parameter, the four-part periodic grating reduces to
the two-part periodic grating with half grating constant. As
a result, the previously excitable odd-order resonant guided
modes cannot be excited and finally become BICs. Our work
shows that under normal incidence, the odd-order forward and
backward propagating resonant guided modes are degenerate
since the tangential component of the incident wave vector
is zero. However, under oblique incidence, the degeneracy
of the odd-order forward and backward propagating resonant
guided modes is eliminated since the tangential component
of the incident wave vector is not zero, leading to dual
BICs. Interestingly, assisted by the quasi-BIC corresponding
to odd-order f orward propagating resonant guided mode
(quasi-BIC 1), we achieve a large posit ive GH shift. Never-
theless, assisted by the quasi-BIC corresponding to odd-order
backward propagating resonant guided mode (quasi-BIC 2),
we also achieve a large negative GH shift. To sum up, we
realize dual BICs in the compound grating waveguide struc-
tures based on the selective excitations of the forward and
backward propagating resonant guided mode. Assisted by
dual quasi-BICs with ultrahigh Q factors, we simultaneously
achieve large posit ive and negative GH shifts. Although large
positive and negative GH shifts have been simultaneously
achieved based on the transmission-type resonances in some
published works [46,67], here the large posit ive and negative
GH shifts possess 100% reflectance, which can be more easily
detected and utilized. Our work provides a route to design
GH-shift-based high-performance sensors, wavelength divi-
sion (de)multiplexers as well as light storage devices.

This paper is organized as follows. In Sec. II, we analyze
the guided mode resonance (GMR) condition in the com-
pound grating waveguide structure. In Sec. III, we discuss the
physical mechanism of single and dual BICs in the compound
grating waveguide structure based on the GMR condition.
In Sec. IV, we utilize the dual quasi-BICs with ultrahigh Q
factors to simultaneously achieve large positive and negative
GH shifts. Finally, the conclusion is given in Sec. V.

II. GMR CONDITION IN COMPOUND GRATING
WAVEGUIDE STRUCTURE

Figure 1 shows the unit cell of the compound grating
waveguide structure composed of a four-part periodic grating

FIG. 1. Schematic of the unit cell of the compound grating
waveguide structure. The first layer is a four-part periodic photoresist
grating layer with the period � and the height hg. The widths of the
first and third parts are the same value da while those of the second
and fourth parts are db = d0 + �d and dc = d0 − �d , respectively.
The second layer is a HfO2 waveguide layer with the height hwg.
A TE-polarized plane wave is obliquely launched onto the structure
with an incident angle θ .

layer and a waveguide layer. The first layer is a four-part
periodic grating layer with the grating period � = 500 nm
and the height hg = 160 nm. The first and third parts of the
unit cell are made of photoresist with the refractive index
ng = 1.63 [69], while the second and fourth parts are made of
air. The widths of the first and third parts are the same value da

while those of the second and fourth parts are db = d0 + �d
and dc = d0 − �d , respectively. Here we set da = 0.15� =
75 nm and d0 = 0.35� = 175 nm. An asymmetric geometric
parameter α = �d/d0 ∈ [−1, 1] is defined to reflect the dif-
ference between the second and fourth parts of the unit cell.
The second layer is a HfO2 waveguide layer with the refractive
index nwg = 1.98 [69] and the height hwg = 270 nm. The
third layer is a fused-silica substrate with the refractive index
ns = 1.48 [69]. This structure can be fabricated by deposition
of a layer of HfO2 on a fused-silica substrate by electron-
beam evaporation and subsequent recording of a holographic
grating in photoresist on top of the HfO2 layer [69]. Without
loss of generality, we only consider that a transverse electric
(TE) polarized plane wave (electric field is parallel to the
y direction) obliquely launches onto the structure with an
incident angle θ .

Then, we begin to analyze the GMR condition of the pro-
posed structure. The tangential component of the wave vector
in the system can be denoted by kx. In the incident medium
(air), kx can be expressed as kx = k0x = k0 sin θ , where k0 =
ω/c is the wave vector in the air. ω is the angular frequency
and c is the light speed in the air. In the waveguide layer, kx can
be expressed as kx = β, where β represents the propagating
constant of the guided mode. Without the grating layer, the
incident light cannot couple with the guided mode because
the dispersion relation of the guided mode lies below the light
cone of the air (β > k0x). With the grating layer, the inci-
dent light can couple with the guided mode at some specific
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frequencies due to the grating-induced reciprocal lattice vec-
tor. This phenomenon is called GMR [70,71].

When the asymmetric geometric parameter α �= 0, the
widths of the second part db = d0 + �d and the fourth
parts dc = d0 − �d are different. Therefore, the grating layer
is a four-part periodic grating with the period �. In the
grating layer, kx can be expressed as kx = kx,i = k0x − i ·
2π/� (i = ±1,±2, . . .), where i · 2π/� denotes the recip-
rocal lattice vector induced by the grating. For the compound
grating waveguide structure, the main functionality of the top
grating layer is to provide the additional wave vector while
the main functionality of the waveguide layer is to provide
the guided mode [17]. Therefore, the GMR condition can be
approximately expressed as [17]

kx,i = k0sinθ − i
2π

�
= β (i = ±1,±2, . . .). (1)

Without loss of generality, here we only consider the TE0

guided mode. The dispersion relation of the TE0 guided mode
in the waveguide layer can be determined by [72]

hwg

√
k2

0n2
wg − β2 =atan

⎛
⎝

√
β2 − k2

0n2
0√

k2
0n2

wg − β2

⎞
⎠

+ atan

⎛
⎝

√
β2 − k2

0n2
s√

k2
0n2

wg − β2

⎞
⎠. (2)

However, when the asymmetric geometric parameter α =
0, the widths of the second part db = d0 + �d and the fourth
parts dc = d0 − �d are identical. Therefore, the four-part pe-
riodic grating reduces to a two-part periodic grating with the
new period �′ = �/2. The grating-induced reciprocal lattice
vector doubles. In the grating layer, kx can be expressed
as kx = k′

x,i = k0x − i′ · 4π/� (i′ = ±1,±2, . . .). The GMR
condition now becomes

k′
x,i = k0sinθ − i′

4π

�
= β (i′ = ±1,±2, . . .). (3)

III. SINGLE AND DUAL BICS IN COMPOUND GRATING
WAVEGUIDE STRUCTURE

In this section, we begin with the case of a single BIC
under normal incidence θ = 0◦. We calculate the dispersion
relation of the TE0 guided mode in the HfO2 waveguide
layer based on Eq. (2), as shown by two blue solid lines in
Fig. 2(a) . The normalized angular frequency is selected to
be ω0 = 2πc/hwg and the cutoff angular frequency is ωcutoff =
0.125ω0. The right blue solid line (β > 0) represents the dis-
persion relation of the forward propagating TE0 guided mode
while the left one (β < 0) represents the dispersion relation of
the backward propagating TE0 guided mode. The dispersion
relation in the incident medium (air) kx = k0x = k0sinθ = 0
is shown by black solid line in Fig. 2(a). The dispersion
relations in the grating layer (for α �= 0) kx = kx,i = k0x − i ·
2π/� (i = ±1,±2) is also shown by dashed and dotted lines
in Fig. 2(a). The dashed lines represent kx = kx,i (i = −1,−2)
while the dotted lines represent kx = kx,i (i = +1,+2). The
crossing points between the dispersion relations kx,i and β

represent the satisfactions of the GMR condition [Eq. (1)],

FIG. 2. GMR in the compound grating waveguide structure
under normal incidence (θ = 0◦). (a) Dispersion relations in the
waveguide layer (TE0 guided mode) kx = β (blue solid line), in the
incident medium (air) kx = k0x = k0 sin θ (black solid line), and kx =
kx,i = k0x − i · 2π/� (i = ±1, ±2) in the grating layer (for α �= 0)
(dashed and dotted lines). (b) Dispersion relations in the waveguide
layer (TE0 guided mode) kx = β (blue solid line), in the incident
medium (air) kx = k0x = k0 sin θ (black solid line), and kx = k′

x,i =
k0x − i′ · 4π/� (i′ = ±1) in the grating layer (for α = 0) (dashed
and dotted lines).

which can be called the i-th order resonant guided mode.
One can see that there are four crossing points: A−1, A−2,
A+1,, and A+2. Under normal incidence, the forward and back-
ward propagating resonant guided modes are degenerate since
k0x = 0. The GMR angular frequencies can be obtained as
ω−1 = ω+1 = 0.308ω0 (λ−1 = λ+1 = 876.6 nm) and ω−2 =
ω+2 = 0.575ω0 (λ−2 = λ+2 = 469.6 nm), respectively.

When the asymmetric geometric parameter α = 0, the
dispersion relations in the grating layer become kx = k′

x,i =
k0x − i′ · 4π/� (i′ = ±1,±2, . . .). Now the new dispersion
relation k′

x,m is completely identical with the previous
even-order dispersion relation kx,2m (m = ±1,±2, . . .). For
example, k′

x,−1 is identical with kx,−2 and k′
x,+1 is identical

with kx,+2 . In Fig. 2(b), red dashed and dotted lines represent
k′

x,−1 and k′
x,+1 . One can see that only two crossing points

A′
−1 (previous A−2) and A′

+1 (previous A+2) are remained.
As the asymmetric geometric parameter α changes from a
nonzero value to zero, the odd-order resonant guided mode
(A±1) cannot be excited and become a dark mode (corresponds
to a single BIC) whereas the even-order resonant guided mode
(A±2) can still be excited.

Based on the rigorous coupled wave analysis (RCWA)
[73], we calculate the TE reflectance spectra (zero-order
diffraction) around λ±1 = 876.6 nm of the proposed structure
as the geometric parameter α decreases from 1 to 0 under
normal incidence, as given in Fig. 3. The reflectance spectra
can also be calculated by the spectral element method (SEM)
[74–79], which numerically solves the Helmholtz equation of
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FIG. 3. TE reflectance spectra (zero-order diffraction) around
λ±1 = 876.6 nm of the proposed structure for different values of α

under normal incidence (θ = 0◦). The insets represent the electric
field distributions (|Ey|) at the corresponding reflectance peaks.

the electric field Ey. The geometric is discretized by mesh with
quadrilateral elements. Then, the electric field is discretized
by the higher order polynomials in each element [74,78].
The numerically approximated electric field is obtained by
solving the weak form of the Helmholtz equation. With the
sampling density being less than ten points per wavelength,
the accuracy of the SEM reaches a level that the relative
error is smaller than 1e-3 [79]. The reflectance is obtained
by comparing the Poynting vector of the scattering field and
the incident field. The reflectance spectra calculated by the
SEM and the RCWA are nearly the same. The comparison
between them is provided in Appendix A. Based on the SEM
[74–79], the electric field distributions (|Ey|) at the corre-
sponding reflectance peaks are plotted in the insets of Fig. 3.
The magnitude of the incident electric field is normalized
(|Ey| = 1). Owing to the GMR effect, the reflectance spec-
tra exhibit asymmetric Fano line shapes. When α = 1, the
reflectance peak is located at the wavelength λ = 881.0 nm,
which slightly deviates from the ±1st order resonant wave-
length λ±1 = 876.6 nm predicted by the GMR condition. The
reason is that the grating layer above the waveguide layer
will slightly affect the propagating constant of the guided
mode in the waveguide layer [17]. In addition, owing to the
GMR effect, the electric field at the reflectance peak within
the waveguide layer is enhanced. As α gradually decreases
from unity to near zero, the resonance width of the reflectance
peak reduces dramatically due to the decreased coupling be-
tween the ±1st order evanescent diffraction field and the leaky
guided mode [80]. Meanwhile, the electric field becomes
more localized in the waveguide layer, which also indicates
that the resonance becomes stronger. As α decreases to zero,
the resonance width vanishes completely since the ±1st order
resonant guided mode A±1 cannot be excited, which indicates
that a single BIC appears.

Then, we discuss the case of dual BICs under oblique
incidence. The incident angle is arbitrary selected as θ = 3◦.

FIG. 4. GMR in the compound grating waveguide structure
under oblique incidence (θ = 3◦). (a) Dispersion relations in the
waveguide layer (TE0 guided mode) kx = β (blue solid line), in the
incident medium (air) kx = k0x = k0sinθ (black solid line), and kx =
kx,i = k0x − i · 2π/� (i = ±1, ±2) in the grating layer (for α �= 0)
(dashed and dotted lines). (b) Dispersion relations in the waveguide
layer (TE0 guided mode) kx = β (blue solid line), in the incident
medium (air) kx = k0x = k0sinθ (black solid line), and kx = k′

x,i =
k0x − i′ · 4π/� (i′ = ±1) in the grating layer (for α = 0) (dashed
and dotted lines).

Different from normal incidence, the dispersion relation in
the incident medium (air) now becomes kx = k0x = k0sinθ �=
0, as shown by black solid lines in Fig. 4. The dispersion
relations of the TE0 guided modes in the HfO2 waveguide
layer based on Eq. (2) are also shown by blue solid lines
in Fig. 4. For α �= 0, the dispersion relations in the grating
layer kx = kx,i = k0x − i · 2π/� (i = ±1,±2) is also shown
by dashed and dotted lines in Fig. 4(a). The dashed lines rep-
resent kx = kx,i (i = −1,−2) while the dotted lines represent
kx = kx,i (i = +1,+2). One can see that there are four cross-
ing points: A−1, A−2, A+1, and A+2. Under oblique incidence,
the degeneracy of the forward and backward propagating
resonant guided modes is eliminated since k0x �= 0, which
is the key for realizing dual BICs. The GMR angular fre-
quencies now becomes four values: ω−1 = 0.317ω0 (λ−1 =
851.7 nm), ω+1 = 0.301ω0(λ+1 = 897.0 nm), and ω−2 =
0.590ω0 (λ−2 = 457.6 nm), and ω+1 = 0.561ω0 (λ+2 =
481.3 nm), respectively.

When the asymmetric geometric parameter α = 0, the
dispersion relations in the grating layer become kx = k′

x,i =
k0x − i′ · 4π/� (i′ = ±1,±2, . . .). Now the new dispersion
relation k′

x,m is completely identical with the previous
even-order dispersion relation kx,2m (m = ±1,±2, . . .). For
example, k′

x,−1 is identical with kx,−2 and k′
x,+1 is identical

with kx,+2 . In Fig. 4(b), red dashed and dotted lines represent
k′

x,−1 and k′
x,+1 . One can see that only two crossing points

A′
−1 (previous A−2) and A′

+1 (previous A+2) are remained.
As the asymmetric geometric parameter α changes from a
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FIG. 5. TE reflectance spectra (zero-order diffraction) around
λ−1 = 851.7 nm and λ+1 = 897.0 nm of the proposed structure for
different values of α under oblique incidence (θ = 3◦). The insets
represent the electric field distributions (|Ey|) at the corresponding
reflectance peaks.

nonzero value to zero, both −1st and +1st order resonant
guided modes (A−1 and A+1) cannot be excited and become
two dark modes (correspond to dual BICs) whereas both −2st
and +2st order resonant guided modes (A−2 and A+2) can still
be excited.

Based on the RCWA [73], we calculate the TE reflectance
spectra (zero-order diffraction) around λ−1 = 851.7 nm and
λ+1 = 897.0 nm of the proposed structure as the geometric
parameter α decreases from 1 to 0 under oblique incidence
(θ = 3◦), as given in Fig. 5. The reflectance spectra can also
be calculated by the SEM [74–79], as shown in Appendix A.
The reflectance spectra calculated by the RCWA and the SEM
are nearly the same. Based on the SEM [74–79], the electric
field distributions (|Ey|) at the corresponding reflectance peaks
are plotted in the insets of Fig. 5. The magnitude of the
incident electric field is normalized. When α = 1, one can
see that there are two Fano-type reflectance peaks. The left

reflectance peak is located at the wavelength λ1 = 856.1 nm,
which slightly deviates from the −1st order resonant wave-
length λ−1 = 851.7 nm predicted by the GMR condition.
The right reflectance peak is located at the wavelength λ2 =
902.2 nm, which slightly deviates from the +1st order res-
onant wavelength λ+1 = 897.0 nm predicted by the GMR
condition. In addition, owing to the GMR effect, the electric
fields within the waveguide layer at two reflectance peaks
are both enhanced. It should be noted that the electric field
distribution is quite different from that under normal incidence
since the spectrum of the one-dimensional subwavelength
grating is angle sensitive [69,81]. As α gradually decreases
from unity to near zero, both the resonance widths of two
reflectance peaks reduces dramatically due to the decreased
coupling between the ±1st order evanescent diffraction field
and the leaky guided mode [80]. Meanwhile, the electric fields
become more localized in the waveguide layer, which also
indicates that the resonances become stronger. As α decreases
to zero, both the resonance widths of two reflectance peaks
vanishes completely since the −1st and +1st order resonant
guided modes A−1 and A+1 cannot be excited, which indicates
that dual BICs appear.

Furthermore, we calculate the Q factors of two reflectance
peaks as a function of the asymmetric geometric parameter α,
as, respectively, shown in Figs. 6(a) and 6(b). The Q factor is
calculated by Q = fPeak/� f , where fPeak is the frequency of
the reflectance peak and � f is the full width at half maximum.
Owing to the geometric symmetry of the structure (see Fig. 1),
the Q factor for α is identical to that for −α. When α = ±1,
the Q factor of the left reflectance peak is only 9.5 × 102. As
α gradually approaches to near zero, the Q factor increases
rapidly. For example, the Q factor reaches 2.8 × 105 in the
case of α = ±0.05. When α is equal to zero, the resonance
width vanishes completely and the Q factor becomes infinite,
corresponding to a BIC. This BIC can be denoted by BIC 1.
When α = ±1, the Q factor of the right reflectance peak is
only 8.3 × 102. As α gradually approaches to near zero, the
Q factor increases rapidly. For example, the Q factor reaches
3.5 × 105 in the case of α = ±0.05. When α is equal to zero,
the resonance width vanishes completely and the Q factor
becomes infinite, corresponding to another BIC. This BIC can
be denoted by BIC 2.

FIG. 6. Q factors of (a) the left reflectance peak and (b) the right one as a function of the asymmetric geometric parameter α.

023518-5



FENG WU et al. PHYSICAL REVIEW A 104, 023518 (2021)

FIG. 7. Wavelengths of BICs as a function of the incident angle.

To sum up, as the incident angle increases from zero
degrees, the single BIC turns into dual BICs since the de-
generacy of the forward and backward propagating resonant
guided modes is eliminated. Figure 7 gives the wavelengths
of BICs as a function of the incident angle. When θ = 0◦,
the single BIC is located at 876.0 nm. As the incident angle
increases, the single BIC turns into dual BICs. In detail, BIC
1 shifts towards shorter wavelengths while BIC 2 shifts to-
wards longer wavelengths. When θ = 5◦, BIC 1 is located at
841.3 nm while BIC 2 is located at 918.1 nm. As the incident
angle increases, the difference between the wavelengths of
BIC 1 and BIC 2 becomes larger.

IV. LARGE POSITIVE AND NEGATIVE GH SHIFTS
ASSISTED BY DUAL QUASI-BICS

In this section, we utilize dual quasi-BICs to achieve large
positive and negative GH shifts. The asymmetric geometric
parameter is selected as α = 0.25. From Fig. 5, two quasi-
BICs are located at λ1 = 856.1 nm and λ2 = 902.7 nm under
oblique incidence (θ = 3◦), respectively. We calculate the cor-
responding TE reflectance angular spectra based on RCWA
[73], as shown in Figs. 8(a) and 8(d), respectively. Owing
to the strong resonance property of quasi-BIC and the angle-
sensitive property of the grating, the “resonance width” in the
angular spectrum is also ultranarrow, which can be utilized
to greatly enhance the GH shift. According to the stationary
phase method, for an incident light beam whose waist width
is much larger than the width of resonance, the GH shift can
be approximately calculated by [51,64]

SGH = − λ

2π

∂ϕr

∂θ
, (4)

where ϕr represents the reflection phase. In Figs. 8(b) and
8(e), we calculate the corresponding TE reflection phase angu-
lar spectra, respectively. Based on Eq. (4), the corresponding
GH shift angular spectra are also given in Figs. 8(c) and
8(f), respectively. The black dashed lines represent SGH =
0. One can see that the reflection phase changes smoothly
when the incident angle is away from the resonance angle
θ = 3◦. However, the reflection phase changes dramatically
around the resonance angle θ = 3◦, leading to a large GH
shift. Interestingly, assisted by quasi-BIC 1 which corresponds
to −1st order forward propagating resonant guided mode
(β > 0), the sign of the GH shift is positive and the value
of the GH shift is greatly enhanced to larger than three

FIG. 8. TE reflectance angular spectra for (a) quasi-BIC 1 λ1 = 856.4 nm and (d) quasi-BIC 2 λ2 = 902.7 nm. (b) and (e): corresponding
TE reflection phase angular spectra. (c) and (f): corresponding GH shift angular spectra. Black dashed lines represent SGH = 0. The asymmetric
geometric parameter is selected to be α = 0.25.
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FIG. 9. Maximum GH shifts assisted by (a) quasi-BIC 1 and (b) quasi-BIC 2 as a function of the asymmetric geometric parameter α.

orders of wavelength (SGH ≈ 1581λ1). Nevertheless, assisted
by quasi-BIC 2 which corresponds to +1st order backward
propagating resonant guided mode (β < 0), the sign of the
GH shift is negative and the value of the GH shift is also
greatly enhanced to larger than three orders of wavelength
(SGH ≈ −1794λ2). Assisted by dual BICs, we simultane-
ously achieve large posit ive and negative GH shifts. At the
wavelength of quasi-BIC 1, the large positive GH shift can
be utilized to realize high-performance sensing [55,56] and
wavelength division (de)multiplexing [57]. At the wavelength
of quasi-BIC 2, the large negative GH shift can be utilized
to realize light stopping [58–60]. Also, different from the
large GH shift enhanced by conventional transmission-type
resonance [46–54], here the maximum GH shifts assisted by
dual quasi-BICs are both located at the reflectance peak with
100% reflectance, which can be more easily detected and
utilized.

It should be noted that the calculated maximum GH shifts
assisted by dual quasi-BICs are quite large (on the order of
103λ). In experiments, the light source is usually a Gaussian
beam with a certain waist width, leading to the reduction of
the GH shift. The full-wave simulations in previous research
showed that when the waist width of the incident Gaussian
beam is on the order of the calculated GH shift, the simulated
GH shift will be on the order of the calculated GH shift
[52]. In Appendix B, we do the full-wave simulation based
on the finite element method to confirm this phenomenon.
Considering the limitation of the computer memory, we finally
choose a moderate GH shift with the asymmetric geometric
parameter α = 1 to do the full-wave simulation. In other
words, in order to obtain a large GH shift on the order
of 103λ in experiments, as we calculated by Eq. (4) in
Figs. 8(c) and 8(f), the waist width of the incident Gaussian
beam should also be on the order of 103λ. Although we
cannot do the full-wave simulation for such large waist width
of the incident Gaussian beam due to the limitation of the
computer memory, it is possible to be realized in experiments.
Under the current experimental conditions, it is not difficult to
create an incident Gaussian beam with a waist width on the
order of 103λ [82–84]. Therefore, we believe that the large
GH shift on the order of 103λ is possible to be realized in
experiments.

Actually, the value of the maximum GH shift is determined
by the asymmetric geometric parameter α. As the asymmetric
geometric parameter becomes smaller, the resonance becomes
stronger and leads to a larger GH shift. Figures 9(a) and
9(b) give the maximum GH shifts assisted by quasi-BIC 1 and
quasi-BIC 2 as a function of the asymmetric geometric pa-
rameter α. Owing to the geometric symmetry of the structure
(see Fig. 1), the maximum GH shift for α is identical to that
for −α. One can see that the maximum GH shift assisted by
quasi-BIC 1 is always positive while the one assisted by quasi-
BIC 2 is always negative. When α = ±1, the maximum GH
shift assisted by quasi-BIC 1 is only 1.3 × 102λ1. As α gradu-
ally approaches to near zero, the maximum GH shift increases
rapidly. For example, the maximum GH shift is enhanced to
larger than four orders of wavelength (reaches 3.8 × 104λ1)
in the case of α = ±0.05. When α = ±1, the maximum GH
shift assisted by quasi-BIC 2 is only −1.1 × 102λ2. As α

gradually approaches to near zero, the maximum GH shift
increases rapidly. For example, the maximum GH shift is
enhanced to larger than four orders of wavelength (reaches
−4.5 × 104λ2) in the case of α = ±0.05. It is seen that the
dependence of the maximum GH shift on α is quite similar
to that of the Q factor on α [see Figs. 6(a) and 6(b)] because
the enhancement of the GH shift is closely related to the Q
factor of the resonance. It should be noted that the giant GH
shift on the order of 104λ is not quite easy to be realized
in experiments since it requires an extremely wide incident
Gaussian beam.

In experiments, the Q factor of the quasi-BIC is heavily
affected by the fabrication quality and finiteness of the sample
[32]. Under the current fabrication technique, the experimen-
tally measured Q factor of the subwavelength grating can
reach the order of 104 [16,22]. Figures 10(a) and 10(b)
give the maximum GH shifts assisted by quasi-BIC 1 and
quasi-BIC 2 as a function of the Q factor, respectively. The
black lines represent the linear fitting lines. One can see that
both the maximum GH shifts assisted by quasi-BIC 1 and
quasi-BIC 2 are nearly proportional to the Q factor. Substitut-
ing the experimental Q factor 1.85 × 104 [16] into the linear
fitting results, one can obtain the maximum GH shifts assisted
by quasi-BIC 1 and quasi-BIC 2, which still reach 2.5 × 103λ1

and −2.4 × 103λ2, respectively.
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FIG. 10. Maximum GH shifts assisted by (a) quasi-BIC 1 and (b) quasi-BIC 2 as a function of the Q factor.

V. CONCLUSIONS

In summary, we realize dual BICs in the compound struc-
ture composed of a four-part periodic grating layer and a
waveguide layer based on the selective excitations of the
forward and backward propagating resonant guided modes.
Assisted by quasi-BIC 1 corresponding to −1st order forward
propagating resonant guided mode, the sign of the GH shift
is positive and the value of the GH shift can be greatly en-
hanced. Nevertheless, assisted by quasi-BIC 2 corresponding
to +1st order backward propagating resonant guided mode,
the sign of the GH shift is negative and the value of the GH
shift can also be greatly enhanced. In addition, the maximal
GH shift is located at the reflectance peak with 100% re-
flectance, which can be easily detected and utilized. Based on
the dual-BICs-assisted large positive and negative GH shifts
with perfect reflection, high-performance sensors, wavelength
division (de)multiplexers and light storage devices could be
further designed.
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APPENDIX A: COMPARISON BETWEEN REFLECTANCE
SPECTRA CALCULATED BY RCWA AND SEM

In this section, we give the comparison between the TE
reflectance spectra (zero-order diffraction) of the proposed
structure calculated by the RCWA [73] and the SEM [74–79].
Figures 11(a) and 11(b) correspond to the cases under normal
incidence (θ = 0◦) and oblique incidence (θ = 3◦), respec-
tively. One can see that the reflectance spectra calculated by
the RCWA and the SEM are nearly the same.

FIG. 11. TE reflectance spectra (zero-order diffraction) of the proposed structure for different values of α calculated by the RCWA and the
SEM under (a) normal incidence (θ = 0◦) and (b) oblique incidence (θ = 3◦).
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APPENDIX B: FULL-WAVE SIMULATION UNDER
INCIDENCE OF GAUSSIAN BEAM

In this section, we compare the calculated GH shift to
the simulated one under the incidence of a Gaussian beam
with a finite waist width. Considering the limitation of the
computer memory, here we choose a moderate GH shift with
the asymmetric geometric parameter α = 1 to do the full-
wave simulation. Figure 12(a) gives the calculated GH angular
spectrum at λ1 = 856.1 nm. The calculated maximum GH
shift is SGH ≈ 132λ1 at θ = 3◦. Then, we do the full-wave
simulation based on the finite element method under the
oblique incidence (θ = 3◦) of a Gaussian beam with a waist
width 100λ1. The simulated electric field distribution |Ey| is
shown in Fig. 12(b). The red arrows represent the central
axes of the incident and reflected beams. One can see that the
simulated GH shift reaches SGH ≈ 60λ1, which is on the order
of the calculated one (about 0.45 times). Also, the electric field
is strongly concentrated within the waveguide layer, which
confirms the GMR effect. Finally, the electric field of the
reflected beam is strong, which indicates that the reflectance is
high.

FIG. 12. (a) Calculated GH shift angular spectrum at λ1 =
856.1 nm. (b) Simulated electric field distribution under the
oblique incidence (θ = 3◦) of a Gaussian beam with a waist
width 100λ1. The asymmetric geometric parameter is selected to
be α = 1.
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