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Imaging by intensity interferometry of x-ray fluorescence at a compact x-ray free-electron laser
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A semiclassical theory of incoherent diffractive imaging is given, based on the Hanbury Brown and Twiss
effect when used to image inner-shell x-ray fluorescence from heavy atoms excited by the femtosecond pulses
of an x-ray laser. Interference between emission from different atoms is expected when the pulse duration is
shorter than the fluorescent lifetime. Simulations for atoms at the vertices of an icosahedral virus capsid are
given, and reconstructions are presented based on phasing of the pair correlation function between photons
emitted independently from many different atoms at two different detector pixels. The dependence of the pair-
correlation function on the fluorescence lifetime relative to the pulse duration of the x-ray free-electron laser
(XFEL) is computed, and a simple expression is obtained for the contrast of incoherent diffractive imaging
speckles as a function of the XFEL’s flux and lifetime. This indicates that compact XFELs, with reduced flux
but sub-femtosecond pulses, should be ideally suited to atomic-resolution three-dimensional mapping of heavy
atoms in materials science, chemistry, and biology.
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I. INTRODUCTION

As a result of their war-time experience with radar and
the early development of radio astronomy, Hanbury Brown
and Twiss (HBT) established (amongst much controversy)
that there exists a correlation in the intensity fluctuations of
radiation from a partially coherent source, detected at two
different places. Since the degree of coherence also depends
on source size, this “intensity interferometry” at first provided
a method of measuring the angular diameter of the sun and of
some radio stars. The first test of the idea using light appeared
later in 1956 [1]. The correlation function is formed from a
time average of the intensities at two different points after
forming their product and is proportional to the second-order
degree of coherence. This gives the probability of detecting a
photon at one detector pixel given that one has been detected
at another. From this, the modulus of the first-order degree
of coherence may be obtained. Quantum treatments of this
problem lead to the birth of quantum optics [2]. (For a review,
see Ref. [3].)

Their result may be applied to a continuous distribution
of sources and so can be used to reconstruct an image of
the source from intensity correlations in the emitted light.
In the two-dimensional case, the complex first-order degree
of coherence is related by a Fourier transform to the source
intensity distribution (van Cittert–Zernike theorem). Imaging
using the HBT effect in which intensity correlations are mea-
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sured then requires a solution to the phase problem to obtain
the complex degree of coherence. This method of imaging
an incoherent (self-luminous) object has been analyzed and
demonstrated by several groups to provide super-resolution,
in some cases using triple correlations to solve the phase
problem [4–6].

It has recently been proposed [7] that this method (known
as incoherent diffractive imaging or IDI) might be applied
to the inner-shell characteristic emission from atoms in a
sample excited by an x-ray free-electron laser (XFEL). HBT
imaging using vacuum ultraviolet (vuv) XFEL radiation with
a masklike object and diffuser (to degrade coherence) has
been demonstrated [8], and the coherence properties of a hard
x-ray XFEL have been studied using HBT intensity interfer-
ometry [9]. For the simple case of two emitting atoms, their
x-ray fluorescence will then be coherent within the emission
lifetime (coherence time) if the XFEL pulse is briefer than
this lifetime. (The situation is akin to interference effects
observed between two different lasers when the detection time
is shorter than the reciprocal of their frequency difference.)
X-ray interference fringes, akin to Young’s fringes, would
then be detected, but would be different for each XFEL shot
due to random emission phases at each atom. However a stable
pattern appears in the visibility of the intensity correlation
function or the second-order coherence function, which is not
isotropic.

An x-ray imaging method based on this effect would
benefit from the much larger cross section for inner-shell
fluorescence than for the elastic scattering used for coherent
diffractive imaging (CDI). In addition, fluorescence (normally
isotropic) may be detected over a very wide range of angles
and so eliminates the “beam-stop” problem in CDI, while also
offering the possibility of super-resolution imaging, together
with the chemical species selectivity of inner-shell fluores-
cence.

2469-9926/2021/104(2)/023514(10) 023514-1 Published by the American Physical Society

https://orcid.org/0000-0003-0509-9073
https://orcid.org/0000-0002-4209-2949
https://orcid.org/0000-0001-7197-3086
https://orcid.org/0000-0002-6634-0548
https://orcid.org/0000-0002-1597-9835
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.023514&domain=pdf&date_stamp=2021-08-19
https://doi.org/10.1103/PhysRevA.104.023514
https://creativecommons.org/licenses/by/4.0/


ANDREW S. H. SHEVCHUK et al. PHYSICAL REVIEW A 104, 023514 (2021)

In this paper we provide a semiclassical theory and simu-
lations for this scheme, and we examine the use of the unique
properties of patterned inverse Compton compact XFEL radi-
ation in this method. Our aim is to calculate the resolution and
contrast of reconstructed three-dimensional images of biopar-
ticles, such as viruses, and proteins containing fluorescent
heavy atoms, as a function of the ratio of the XFEL pulse
duration to the lifetime of the inner-shell fluorescence. We
use the method of iterated projections to address the phase
problem (see Ref. [10] for a review). Where applicable, our
calculations are done in Heaviside-Lorentz units.

II. A SEMICLASSICAL MODEL FOR IDI

Fluorescence observed in the far field is dominated by the
dipole term in Maxwell’s equations. We therefore approxi-
mate the emitters in the sample by an array of n pointlike,
damped dipole radiators each defined by a time-dependent
vector:

pn(t ) = pn0 e−�(t−tn )/2 sin (ω0t + φn)�(t − tn). (1)

Here pn0 is a constant dipole-moment vector that spatially
orients the emitter and the fluorescence occurs at time tn with
the mean angular frequency ω0 and the initial phase φn, where
the latter is defined such that it absorbs a term of the form
ω0tn. The damping coefficient � is the Einstein coefficient
for spontaneous emission and the inverse of the decay time
of the excited state. It defines the half width at half maxi-
mum of a Lorentzian line profile governed purely by radiative
broadening, which we assume to be the dominant effect on the
linewidth.

We also assume that the complicated intra-atomic physics
between photoionization and fluorescence happens on a
timescale much shorter than the fluorescence lifetime and
can be safely be ignored. Therefore, tn in our model is also
when the atom is photoionized and the step function �(t − tn)
ensures that emitters only contribute postexcitation. The initial
parameters pn0 , tn, and φn are treated as random variables for
each value of n as discussed in Secs. II A–II C.

From (1), we define the resulting polarization density
Pn(t ) = pn(t )δ3(r − rn) for the emitter with position rn so
that it contributes an electromagnetic current density:

Jn(r, t ) = dPn(r, t )

dt

= ω0pn0 e−�(t−tn )/2 cos (ω0t + φn)δ3(r − rn)�(t − tn).

(2)

For inner-shell x-ray fluorescence, ω0 � �, and we hence-
forth discard all terms of order �/ω0 as they arise in our
calculations.

Maxwell’s equations expressed in potential form, assuming
the Lorenz gauge, are

∂2�(r, t )

c2∂t2
− ∇2�(r, t ) = ρ(r, t ), (3)

∂2A(r, t )

c2∂t2
− ∇2A(r, t ) = 1

c
J(r, t ). (4)

Using (2), the general solution for the retarded vector potential
generated by the nth emitter is

An(r, t ) = 1

4πc

∫
Jn(r′, t − |r − r′|/c)

|r − r′| d3r′

= ω0pn0

4πc|r − rn|e−�(t−tn−|r−rn|/c)/2

× cos [ω0(t − tn − |r − rn|/c) + φn]

×�(t − tn − |r − rn|/c). (5)

We assume the sample’s diameter is much smaller than the
distance to the detector and that the sample is near the origin
of our coordinate system. The far-field approximation then
simplifies the term in the denominator to |r − rn| ≈ |r| =
r and the terms in the numerator to |r − rn| ≈ r − r̂ · rn.
Defining for notational clarity Tn = tn + c−1r − c−1r̂ · rn, (5)
becomes

An(r, t ) = ω0pn0

4πcr
e−�(t−Tn )/2

× cos [ω0(t − Tn + tn) + φn]�(t − Tn). (6)

From this, the vacuum form of (4) simplifies to ∂En(r,t )
c∂t =

∇ × [∇ × An(r, t )]. Substituting (6), the electric field of the
fluorescence is

En(r, t ) = ω2
0

4πc2r
[pn0 − (pn0 · r̂)r̂]e−�(t−Tn )/2

× sin [ω0(t − Tn + tn) + φn]�(t − Tn). (7)

As a consistency check, the vacuum relation Bn(r, t ) = r̂ ×
En(r, t ) yields the same result as Bn(r, t ) = ∇ × An(r, t ).

The total energy radiated by a single emitter located at rn

and fluorescing at time tn is the integral of the Poynting vector
Sn = En × Bn over a closed surface S with normal vector n̂
for all t > tn:

Wn =
∫ ∞

Tn

∫
S

c[En(r, t ) × Bn(r, t )] · dn̂dt

=
∫ ∞

Tn

∫
S

c{En(r, t ) × [r̂ × En(r, t )]} · dn̂dt

=
∫ ∞

Tn

∫
S
|En(r, t )|2r2cd�dt

=
∫ ∞

Tn

∫
S

ω4
0|pn0 |2

32π2c3

[
p̂2

n0
− (p̂n0 · r̂)2

]
e−�(t−Tn )

×�(t − Tn)d�dt

= ω4
0|pn0 |2

12πc3�
. (8)

The right-hand expression in the second line of (8) is the
cycle-averaged intensity, and the integral over the solid angle
makes use of the identity

∫
(a · p̂)(b · p̂)d�p̂ = 4π (a · b)/3.

The magnitude of the dipole moment vector is normalized
to

|pn0 | =
√

12π h̄c3�

ω3
0

(9)

by requiring that a single photon has the energy Wγ = h̄ω0.
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From (8), it is clear that Tn can be interpreted as the time
fluorescence from the nth emitter takes to reach a point on
an integrating detector. The cycle-averaged intensity of an
ensemble of N emitters observed at the surface of a detector
in the direction k = ( ω

c )r̂ is

Ī (k, t ) =
N∑

m,n

Em · En

=
N∑

m,n

3h̄ω0�

8πcr2

[
p̂m0 · p̂n0−

(
p̂m0 · k̂

)(
p̂n0 · k̂

)]
× e−�(2t−Tm−Tn )/2

× ei[k·(rm−rn )+φm−φn]�[t − max(Tm, Tn)], (10)

where the normalization (9) has been included and we have
converted to reciprocal space coordinates for use at the detec-
tor. The total fluence (energy per pulse per unit area) in the k
direction is then

I (k) =
∫ ∞

∞
Ī (k, t )cdt

=
N∑

m,n

3h̄ω0

8πr2

[
p̂m0 · p̂n0 − (

p̂m0 · k̂
)(

p̂n0 · k̂
)]

e−�|Tm−Tn|/2

× ei[k·(rm−rn )+φm−φn]. (11)

This expression measures the integrated intensity at a point
on the detector and captures the interference of the electric

fields, which only overlap significantly if the waves arrive at
the same pixel within the coherence time τc = 2/�. As (10)
has an exponential falloff in t with a coherence time much
shorter than the exposure length, integrating over all future
time closely approximates a snapshot in essentially all cases.
The appearance of the |Tm − Tn| term occurs because the wave
fronts can arrive at a point on the detector in either order, but
the cross terms in m and n will not contribute to (11) until both
wave fronts have arrived at that point. The integration variable
can be redefined as t� = t − max(Tm, Tn), which is the time of
the later arrival, and integrated from zero to infinity.

Unlike coherent diffractive imaging, in an intensity inter-
ferometry experiment the observable quantity is the second-
order degree of coherence in the field amplitudes:

γ (2)(q) =
∑
i, j

γ (2)(ki, k j ) =
∑
i, j

〈I (ki )I (k j )〉
〈I (ki )〉〈I (k j )〉 , (12)

where the angle brackets represent the average over an ensem-
ble of exposures and q is the set of all qi j = ki − k j for each
pair of detector pixels (i, j). In our dipole model we consider
the polarization direction, the phase, and the ionization and
emission times as the variables of the ensemble that are ran-
domized from exposure to exposure. Importantly, the random
ionization times tn, the phases φn, and the dipole moments
pn0 for all N emitters are assumed to be uncorrelated with
each other and the average product of intensities takes the
form

〈I (ki )I (k j )〉 =
N∑

m,n,m′,n′

9h̄2ω2
0

64π2r4

〈[
p̂m0 · p̂n0 − (

p̂m0 · k̂i
)(

p̂n0 · k̂i
)][

p̂m′
0
· p̂n′

0
− (

p̂m′
0
· k̂ j

)(
p̂n′

0
· k̂ j

)]〉
�

× 〈
e−�(|Tmi−Tni|+|Tm′ j−Tn′ j |)/2

〉
t

〈
ei[ki ·(rm−rn )+φm−φn]e−i[k j ·(rm′−rn′ )+φm′ −φn′ ]〉

φ
. (13)

The bracket subscripts �, t , and φ indicate that these terms
are respectively averaged over the solid angle, the ionization
time, and the phase. The quantity Tmi is the same shorthand
expression defined before (6) but now adapted to the direction
of the ith pixel. Additional uncorrelated parameters can be
added to the model as factors to average over in this expres-
sion, including degrees of freedom for the overall position and
orientation of the ensemble of emitters, and for whether or not
the emitter relaxes through the desired fluorescence channel.
The fact that we are assuming the orientation of the sample
to be constant in each shot makes our present treatment best
suited to the study of fixed targets, but it also applies to any
subset of shots collected from randomly oriented samples that
have been indexed to have substantially the same orientation.
We shall compute the dipole moment and phase averages
presently and defer the computation of the emission time
average to Secs. II B and II C.

A. Ensemble averaging

The behavior of the phase factors in the average is the key
to achieving nonzero intensity correlations. In computing the

average intensity 〈I (ki )〉 the phase term
N∑

m,n

〈
ei[k·(rm−rn )+φm−φn]

〉
φ

=
N∑

m,n

1

4π2

∫ 2π

0

∫ 2π

0
ei[k·(rm−rn )+φm−φn]dφmdφn (14)

vanishes for all m 	= n, and the average intensity simplifies to

〈I (ki )〉 = 3Nh̄ω0

8πr2

〈
p̂2

0 − (p̂0 · k̂i )
2
〉
�

= Nh̄ω0

4πr2
, (15)

where the integral over the solid angle is the normalized
version of the one evaluated in (8). However, the phase term
in (13) is

N∑
m,n,m′,n′

〈
ei[ki ·(rm−rn )+φm−φn]e−i[k j ·(rm′−rn′ )+φm′ −φn′ ]〉

φ

=
N∑

m,n,m′,n′

1

16π4

∫ 2π

0

∫ 2π

0

∫ 2π

0

∫ 2π

0
ei[ki ·(rm−rn )−k j ·(rm′−rn′ )]

× ei(φm−φn−φm′ +φn′ )dφmdφndφm′dφn′ . (16)
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Clearly, (16) vanishes unless the phase terms cancel and this
only happens in three cases: when m = n = m′ = n′, when

m = n and m′ = n′, but m 	= m′, and when m = m′ and n = n′,
but m 	= n. Simplifying terms, we have

〈I (ki )I (k j )〉
〈I (ki )〉〈I (k j )〉 =

N∑
m

9

4N2

〈[
1 − (

p̂m0 · k̂i
)2]2〉

�
+

N∑
m 	=m′

9

4N2

〈[
1 − (

p̂m0 · k̂i
)2][

1 − (
p̂m′

0
· k̂ j

)2]〉
�

+
N∑

m 	=n

9

4N2

〈[
p̂m0 · p̂n0 − (

p̂m0 · k̂i
)(

p̂n0 · k̂i
)][

p̂m0 · p̂n0 − (
p̂m0 · k̂ j

)(
p̂n0 · k̂ j

)]〉
�

× 〈
e−�(|Tmi−Tni|+|Tm j−Tn j |)/2

〉
t e

iqi j ·(rm−rn ). (17)

The phase averaging expresses the ergodic principle. The
photon phases are taken to be constant once they are generated
during a given exposure. However, they are randomized for
each subsequent exposure and can be considered fixed on
a timescale longer than the exposure time, but shorter than
the time between exposures. The limit of an average over
infinitely many exposures then yields the same result as av-
eraging the phases over an infinitely long time.

We can make the same argument for the polarization of the
emitters. After further averaging the dipole moments over the
angle and making use of the angular integral identity before
(9) as well as the identity∫

(a · p̂)(b · p̂)(c · p̂)(d · p̂)d�p̂

= 4π

15
[(a · b)(c · d) + (a · c)(b · d) + (a · d)(b · c)],

we have
〈I (ki )I (k j )〉

〈I (ki )〉〈I (k j )〉

= 9

10N

[
1 + 1

3
(k̂i · k̂ j )

2

]
+ 1 − 1

N

+
N∑

m 	=n

1 + (k̂i · k̂ j )2

4N2

〈
e−�(|Tmi−Tni|+|Tm j−Tn j |)/2

〉
t
eiqi j ·(rm−rn ).

(18)

Finally, we can write the last term as a double sum with the
m = n contribution subtracted off. Simplifying yields

〈I (ki )I (k j )〉
〈I (ki )〉〈I (k j )〉

= 1 − 7

20N

[
1 − 1

7
(k̂i · k̂ j )

2

]

+
N∑

m,n

1 + (k̂i · k̂ j )2

4N2

〈
e−�(|Tmi−Tni|+|Tm j−Tn j |)/2

〉
t e

iqi j ·(rm−rn ).

(19)

The last two terms of (19) make up the normalized correla-
tion of the intensity fluctuations at two pixels on the detector,
〈�I (ki )�I (k j )〉/〈I (ki )〉〈I (k j )〉, which in a traditional HBT
experiment contains information about the geometry of the
source. Indeed, to the extent that the term averaging over
the ionization times is effectively independent of the emitter

positions (which are analyzed in Sec. II B), we observe that
the double sum factors to |∑N

m eiq·rm |2 = |S(q)|2, the square
of the magnitude of the structure factor familiar from crystal-
lography. From |S(q)|2, the real-space charge density can be
reconstructed after solving the phase problem. This may be
done using iterative methods to obtain the complex structure
factors [11]. We note, however, that the vectors qi j have a
different interpretation from conventional diffraction experi-
ments such as CDI or small-angle x-ray scattering—they are
defined here for every pair of pixels and not relative to the inci-
dent direction of the radiation as they are in the case of elastic
scattering. Each shot spans a set q of vectors qi j that fill in a
three-dimensional (3D) volume rather than a two-dimensional
Ewald sphere, and the largest |qi j | extends to a resolution
higher than that of a typical coherent diffraction pattern. In
the special case of only two emitters, |S(q)|2 simplifies to 2 +
2 cos[q · (r2 − r1)] = 4 cos2[q · (r2 − r1)/2] and the brief in-
terference has the form of the Young’s fringes generated by
two coherent point sources. Figure 1 presents a standard pic-
ture of how interference arises in this simplified case.

We note that our results are similar to the simplified quan-
tum formulation of Ref. [7] for single-photon emitters in that
we recover a unit term, a term O(1/N ) to be subtracted, and
a term dependent on q. However, (19) includes the contri-
bution of the m = n = m′ = n′ term that is absent in their
expression. Physically, this term describes the contribution
of two photons from the same atom to the pair correlation
and should be excluded when considering data generated by
single-photon emitters. Subtracting off the contribution of this
term in our model would modify the second term in (19) to be
− 5

4N [1 + 1
5 (k̂i · k̂ j )2]. The intensities in our semiclassical for-

malism are generated by spherical wave packets and therefore
each emitter effectively contributes signal to every pixel, as
though it were simultaneously emitting many identical pho-
tons. As such the m = n = m′ = n′ term contributes in our
model and in the simulations of Sec. III based on it, but not to
the photon correlations measured in an IDI experiment based
on inner-shell fluorescence generated by an XFEL pulse.

B. Experimental geometries for IDI

We now focus on computing the average over the initial
ionization and emission times in the last term of (19),

V = 〈
e−�(|Tmi−Tni|+|Tm j−Tn j |)/2

〉
tm,tn

, (20)
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FIG. 1. How can the measurements of two photons be correlated
if they are both emitted and detected independently of each other?
The reason is that the uncertainty principle forces the observer to
trade resolution in time for resolution in energy. If photons emitted
at “a” and “b” with frequency difference �ω (in our case the fluores-
cence linewidth) have optical path differences to each of detectors
“A” and “B” within a time �τc of each other (the fluorescence
coherence time), the observer cannot distinguish the photons when
�ω�τc < 1/2. Consequently, the two photons could have taken
either set of colored paths in the image to the left to arrive at the
detectors, and so they are coherent and briefly produce interference
fringes. Each path arriving at a detector considered in isolation only
contributes to the homogeneous background (since this definitively
selects whether the red (top and bottom arrows) or the blue (crossed
arrows) paths were followed). Only when the paths are considered
as pairs, meaning the joint probability of detecting the photons is
considered, does the interference emerge, and with it the ability to
extract structural information from the coherence function. We note
that this picture only makes sense in the far-field limit, where the
spatial modes are indistinguishable.

where we have used the symbol V because this term functions
as the interferometric visibility of the correlation between
two pixels. The terms in the exponent of (20) are the time
differences for the wave fronts emitted at times tm and tn from
emitters located at rm and rn to respectively reach pixels i
and j. We can effectively think of V as containing all the
information about the temporal coherence of the fluorescence,
whereas the eiqi j ·(rm−rn ) term it multiplies just contains infor-
mation about the spatial coherence of the fluorescence across
the detector.

The importance of V is that it is a figure of merit for an
IDI experiment, so we devote the remainder of Sec. II to
studying how to maximize it. This will provide insight on how
to optimize the design of future experiments.

First we examine the “ideal” case of a plane-wave pulse
that instantaneously ionizes an atom as it sweeps across the
sample. The time difference between two emissions for such
a pulse is just the projection of the atomic separation along
the beam direction (taken to be the z axis): tm − tn = ẑ · (rm −
rn)/c. Then the “ideal” visibility simplifies to

V = e−�[|qi·(rm−rn )|+|q j ·(rm−rn )|]/(2ω0 ), (21)

where we have defined qi = ω0(k̂i − ẑ)/c. The reader should
note the vectors qi are precisely those familiar from elastic
scattering. They are measured relative to the incident radiation
and are fixed to be on the Ewald sphere. The relation between
the IDI vectors qi j and the elastic scattering vectors qi is just
qi j = qi − q j .

We can now identify two important and experimentally
useful limiting cases that maximize (21):

(i) choose a small sample so that rm − rn → 0,
(ii) place detectors toward the forward direction so that

qi, q j → 0.
While the first criterion is somewhat obvious and includes

many interesting samples (since the coherence length cτc for
the fluorescence is optimally of order 100 nm), only by plac-
ing the detector in the forward direction can we generally
maximize V and observe correlations between the fluores-
cence emitted at separations much greater than cτc. This result
is nontrivial and indicates that while the fluorescence itself is
isotropic, the intensity correlations in the fluorescence are not.
Instead, they are strongest in the same direction as the elastic
scattering.

Figure 2 demonstrates (21) visually and how the magnitude
of the path length difference varies under these ideal pulse
conditions for a few simple geometries. Due to the exponential
dependence in (21), small changes in the relative path length
cτ due to changes in geometry produce a large change in
the signal when the path differences are comparable to the
coherence length of the fluorescence. Detecting fluorescence
in the direction along the beam has a clear advantage. In effect,
forward-directed fluorescence is chasing the x-ray pulse as it
sweeps through the sample and so will easily interfere with
other forward-directed fluorescence produced at earlier and
later times. This makes the coherent volume of the sample
very large. Consequently, an IDI experiment at an XFEL
looking to image samples larger than the coherence length of
the fluorescence should cover as large a solid angle as possible
in the forward direction and must filter the elastic scattering.
Since the elastic scattering itself is useful for determining
which shots are hits and in indexing patterns to find the sample
orientation, a geometry in which the fluorescence is detected
separately at a low angle off the beam axis is most practical
with current detectors.

Furthermore, we see crucially that V is not independent of
the emitter positions, so we cannot simply factor it out of the
double sum over emitters to isolate the square of the structure
factor and reconstruct the sample geometry. However, we have
already established that �/ω0 is quite small for the lines we
are interested in, and if we consider experiments that imple-
ment one of the above criteria to maximize V , then to zeroth
order we have V ≈ 1.

C. IDI at a compact XFEL

The previous analysis showed how to optimize the IDI
experimental geometry assuming an ideal plane-wave x-ray
pulse where ionization occurs instantaneously. In practice,
x-ray pulses have a finite duration with some probability to
ionize atoms over the length of the pulse and this also affects
the visibility. In this section we show that V as derived in
(21) is supplemented by an additional factor accounting for
the pulse envelope.

Assume for simplicity a monochromatic, plane-wave x-ray
pulse with a time-dependent intensity I0(t ) (in photons per
unit area per unit time) is incident on a sample. The photoion-
ization rate of an atom in the sample,

�0(t ) = I0(t )σ, (22)
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FIG. 2. Four different experimental geometries for IDI are shown for a pair of fluorescence emitters, as are the respective path length
differences cτ (shown by the length of the purple bar) that a photon pair’s wave functions are delayed when arriving at one of the pixels on
a detector in the far field. This length is the magnitude of the difference in the lengths of the blue and red quantities. In each case the x-ray
pulse is taken to originate from the left and is instantaneously ionizing. Notice the distinction in cτ between the detectors placed way off-axis
(top) and those placed slightly off-axis (bottom). Because of the exponential dependence of the visibility on cτ , even a small change in this
quantity due to a variation of the geometry can produce a dramatic change in the signal when it is comparable to the coherence length of the
fluorescence. Detecting fluorescence in the direction along the beam has a clear advantage over that transverse to the beam.

is determined by the pulse intensity and the atomic photoion-
ization cross section σ at the energy of the x-ray photons. We
assume that atoms are ionized at most once over the duration
of the x-ray pulse. The probability Pn(t + �t ) that the pulse
has ionized the nth atom by a time t + �t for some small
interval �t is

Pn(t + �t ) = Pn(t ) + [1 − Pn(t )]�0(t )�t . (23)

The first term is the the probability that the nth atom has been
ionized by time t and the second term is the probability that
it has not been ionized by time t , but is ionized in the small
subsequent interval �t with the ionization probability density
given by the rate �0(t ). Rearranging to form a difference
quotient and taking the limit as �t → 0 yields a differential
equation for the ionization probability:

dPn(t )

dt
= �0(t )[1 − Pn(t )]. (24)

Pn(t ) is interpretable as the cumulative distribution function of
possible ionization times for the nth atom. Its general solution
is

Pn(t ) = 1 − e
∫ t

0 �0(t ′ )dt ′
. (25)

In the simple case of a rectangular x-ray pulse of length T
and constant intensity I0(t ) = I0, we have Pn(t ) = 1 − e−�0t .
The ionization time of the nth emitter is given by tn = t0 + t ,
where t0 is the time the pulse reaches the nth atom and tn < T .
While an atom will fluoresce some time after tn, we take the
timescale that the ion lives in an excited state to be negligible,
so that tn is also the time at which the nth atom emits a photon
in our model. This simplification directly links the temporal

coherence of the fluorescence to the properties of the XFEL
beam.

Considering a plane-wave pulse of constant intensity I0 and
duration T , it is possible to show that the average over tm and
tn yields

V =
(

U (1 − e−(U+V ) )

(U + V )(1 − e−U )

)2

e−�[|qi·(rm−rn )|+|q j ·(rm−rn )|]/(2ω0 ).

(26)

Here U = �0T and V = �T are two dimensionless parame-
ters relating the characteristic timescales in the system. The
interpretation of U is that it is the average number of photons
absorbed per emitter per pulse (under the assumption that the
emitter could continually absorb x rays without exhausting
its inner-shell electrons). From this model we can directly
estimate the overall amplitude of the expected visibility in
an IDI experiment. As described in the previous section, if
the sample is substantially smaller than cτc or the detector
is placed in the forward direction, the geometric factor (the
exponential term) in (26) is close to unity. Then the magnitude
of the visibility is controlled purely by the values of U and V .

For clarity, Fig. 3 plots the U and V dependencies in (26).
The key relationship is that even a reduction of many orders
of magnitude in pulse intensity over that available at current
XFELs (the limit of small U ) has very little adverse impact on
the visibility so long as the pulse duration is of the order of the
coherence time or briefer (V is of the order of unity or less).
To put it another way, we can trade a signal of many weakly
correlated photons for one with far fewer strongly correlated
photons to achieve the same visibility.
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FIG. 3. The prefactor of the visibility function (26) for a rect-
angular plane-wave pulse is plotted as a function of the ratio of the
duration of the XFEL pulse to the lifetime of the atomic inner-shell
emission (labeled V ) and the ratio of pulse duration to the inverse
ionization rate (labeled U ). For small U , the visibility remains high
so long as V � 1. In other words, short pulses produce strong corre-
lations even if they are at low intensity. All axes are dimensionless.

Since sub-femtosecond pulses are planned for compact
XFELs [12], these machines should be ideal for IDI of heavy
atoms provided that pulse fluences averaging roughly one
photon per photoabsorption cross section can be achieved
(that is, U = 1). With fluences lower than this, a significant
number of atoms will not fluoresce, which will reduce the
visibility by a factor proportional to the square of the prob-
ability of fluorescent emission. We estimate the flux from the
compact XFEL under construction at Arizona State University
(CXFEL, [13]) by assuming a peak current of 500 A for
500 as at an electron beam energy of 50 MeV to yield a
total stored energy of 12.5 μJ. The FEL process is approx-
imately 0.1% efficient, yielding a coherent x-ray output of
12.5 nJ or 107 7-keV photons per shot. As an example, Mn
has a K-edge (6.54 keV) photoabsorption cross section of
σ = 4.1 × 10−12 μm2, which would require a focus area of
approximately 4.1 × 10−5 μm2 (a diameter of roughly 8 nm).
A beam focus this narrow can be achieved by using a set of
multilayer Laue lenses, as described recently by Ref. [14].
Fluences that achieve U > 1 increase the likelihood that at
least one K-shell ionization occurs, but realistically we do
not expect more than one useful photon per emitter for IDI.
Therefore, there is a “sweet spot” for an IDI experiment
at a compact XFEL that achieves U � 1 and V � 1. At a
larger machine like LCLS or EuXFEL, V � 1 is unlikely to
be achievable and such experiments will need to compensate
with U � 1.

A natural extension of this model is to consider a series
of short rectangular pulses with a fixed spacing. In principle,
a series of Np pulses of duration T each separated by a time
Ts would add both intrapulse and interpulse correlations. The
latter could be possible if the pulses are sufficiently close
together so that Ts is not much larger than τc. Pulse trains are
currently in use at the European XFEL, although the spacing
of the pulses there, 222 ns, is too large to be useful for IDI. At
CXFEL, where sub-femtosecond pulse durations are planned,
such a pulse structure should be feasible [15]. The machine
is based on the inverse Compton effect and uses a form of
electron beam patterning to define the time structure of the

x-ray pulses. Electron diffraction at a membrane imposes a
spatial pattern across the beam which becomes its time struc-
ture after passing through an emittance exchange device. In
this way, the time structure may be customized, and temporal
coherence retained between groups of pulses.

Last, we note the consequences of the detailed analysis
of Ref. [16] studying the signal-to-noise ratio (SNR) of an
IDI experiment. The authors found that pairwise correlations
among the random phases contribute to the standard deviation
of the correlation function with a dependence on the mean
number of emitters (rather than the square root of the mean
as in the case of Poisson noise). As such, the SNR of an
IDI experiment is dominated by this “phase noise” for larger,
more complex samples and plateaus to a maximum value,
whereas it is dominated by Poisson noise for smaller numbers
of emitters. Consequently, using a high-intensity beam at a
large XFEL to excite a large sample is subject to diminishing
returns with IDI that are not present in the case of CDI, but
a tightly focused, sub-femtosecond beam that produces fewer
emitters overall, such as that of a compact XFEL, has more
favorable SNR characteristics.

III. SIMULATIONS

We define an ensemble of fluorescing zinc atoms at fixed
positions, assume at most one excitation per atom, and gen-
erate IDI snapshots by sampling randomized phases, dipole
moments, and ionization times, assuming an ionization rate
fixed by the elemental photoabsorption cross section and
beam intensity using the model of Sec. II C. The randomized
phases are sampled from a uniform distribution while the
dipole moment components are sampled from three Gaussian
normal distributions and the ionization times are sampled for
the cumulative distribution in (25) and are discarded if they
extend beyond the time the x-ray pulse interacts with the
sample. The incident energy (used for the ionization cross
section) is 9.65 keV, the energy of the zinc K edge, and the
fluorescence has energy 8.5 keV, the zinc Kα line. For our
compact XFEL simulation we target a 500-as pulse duration
and adjust the pulse intensity to be 2.1 × 1012 photons per
fs and μm2, which yields a value of U = 3 for the zinc K
shell. For LCLS we assume pulse durations of 3 fs and a
pulse intensity of 8.5 × 1011 photons per fs and μm2. This is
optimistic for the current machine parameters at LCLS absent
additional optics, but could be achieved with focusing from
multilayer Laue lenses. These two sets of parameters were
chosen so that they yield roughly the same visibility on both
machines.

We define a spherical detector of 48-by-48 pixels where po-
lar and azimuthal directions on the sphere are partitioned into
an equal number of pixels. The solid angle subtended by the
pixels determines the separation resolvable from interference
fringes across the detector. Since γ (2)(q) does not explicitly
depend on the detector distance, we leave it arbitrary and fix
the pixel solid angle instead of the pixel size. With a spherical
detector each snapshot captures the largest possible amount of
q-space data to be used for a reconstruction.

Using the formula for (11) and a specification of the emitter
positions, we compute the intensity at values located in the
center of each pixel on our spherical detector and then add
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FIG. 4. This figure shows a sample reconstruction of a “virus capsid” of zinc atoms in 3D (left) and projected into the x-z plane (right). The
simulation generated and averaged 10 000 patterns to compute the degree of coherence assuming emitters from the zinc K shell and instant
ionization. Snapshots are simulated as interference patterns on a spherical detector of size 48 × 48 pixels and averaged to compute γ (2)(q).
The q vectors fill a spherical region in q space (not shown). A flat detector also provides some 3D q-space data, despite spanning a plane in
real space, because the k vectors to each pixel have constant magnitude while their differences are not restricted to a surface. A cubic support
constraint was used for the phasing.

Poisson noise to these values. This is our “snapshot.” We then
compute γ (2)(q) by generating and summing 10 000 such
interference patterns. In the limit of many patterns, this is the
equivalent of averaging over all possible dipole moments, ion-
ization times, and relative phases. After computing the degree
of coherence, we bin all q vectors for every pixel pair into
voxels in q space. Last we implement the hybrid input-output
algorithm [11] with a feedback parameter of 0.7 to solve the
phase problem and generate a reconstruction.

In Figs. 4 and 5, we have reconstructed a 12-atom icosa-
hedral “virus capsid” of zinc emitters from our simulated
low-resolution IDI interference patterns with the abovemen-
tioned parameters. The oversampling ratio is roughly a factor
of 2. As noted above, our aim is to show that similar fidelity
can be achieved for the different experimental capabilities of
a traditional large XFEL and a compact XFEL. While these
simulations were done on a laptop computer as a proof of
concept and are rather artificial, full-scale IDI simulations
could be done in a dedicated high-performance cluster.

IV. DISCUSSION AND CONCLUSIONS

Given that the experiments of HBT have a well-established
methodology whereas x-ray IDI is new, it is useful to outline
some of the differences between the two types of experiments.
Both experiments measure correlated intensity fluctuations. In
an HBT-style experiment, the fluctuations arise as a result of
the narrowband frequency filter, which results in a correlation
timescale that is inversely proportional to the width of the
filter. The output currents of two phototubes are averaged
over the response time of the electronics, which is generally
longer than the time delay between the photons arriving at the
correlator. In an IDI-style experiment the emission signal is
gated by the x-ray beam rather than a filter, and exactly when
each photon arrives at the detector is unimportant so long as it

arrives during the same exposure. This is the value of having
an integrating detector over an averaging detector.

As we see from (21) and Fig. 2, the potential to measure
correlations over a large distance increases substantially as
the detector is placed closer to the forward direction, This is
particularly important if the coherence length of the radiation
is shorter than ideal due to additional line broadening. In a
recent experiment at SACLA [17], nontrivial intensity corre-
lations were observed in x-ray fluorescence with a detector
at 30◦ off-axis. Their sample was a copper sheet rather than a
biomolecule and they were primarily interested in determining
the x-ray pulse duration, but this is an important proof of
concept that IDI for biomolecular structure determination can
be done at XFELs.

Although the derivation of (26) was done using a semi-
classical model, we do not believe that a full treatment using
quantum electrodynamics would qualitatively change the lim-
iting behavior of the visibility for low-intensity, short-duration
pulses that is critical to the success of IDI at a compact XFEL.
We compared our results to the simple quantum description
given by Ref. [7] of single-photon emitters to show that we
recover the same general behavior as they do, but in their
model they do not calculate the effects of intensity, pulse
duration, and experimental geometry on the visibility of the
correlations.

The use of photoelectrons for IDI should also be pos-
sible, with the advantages of a direct interaction without
“afterglow” and strong signal, but requiring much more
complex angle-resolved, time-of-flight photoemission spec-
troscopy instrumentation. For photoelectrons the coherence
time is inversely proportional to the bandwidth of the excit-
ing XFEL beam, since the radiative decay time is negligible
for very narrow inner-shell bands from which these photo-
electrons originate. The relatively short inelastic mean free
path of photoelectrons would restrict the method to smaller
molecules, and multiple scattering of the photoelectrons may
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FIG. 5. Three reconstructions and a reference image of a 12-atom icosahedral zinc virus capsid are shown for different experimental IDI
parameters. Clockwise from the top left are the reference structure, a reconstruction assuming the ionization occurs instantaneously, an example
reconstruction with CXFEL parameters, and an example reconstruction with LCLS parameters. The pulse durations used for LCLS and CXFEL
were 3 fs and 500 as, respectively. For instant ionization the pulse is a Dirac δ function and as expected produces the best reconstruction. The
two bottom panels show that similar visibility can be achieved for a reconstruction at either large XFELs or compact XFELs, subject to making
the pulse duration as short as possible and focusing the beam with multilayer Laue lenses to achieve higher incident intensities on the sample.

also limit the sample size. Alternatively, multiple photo-
electron scattering events could provide additional structural
information not present in the photon case. One clear advan-
tage photoelectron IDI would have over x-ray fluorescence is
that detection of lighter elements would be possible because
the signal is not limited by their low fluorescence yield. To
weigh the various pros and cons, an extensive analysis of
the feasibility of IDI using photoelectrons instead of x-ray
fluorescence should be carried out.

In conclusion, compact XFELs and large XFELs are both
capable of performing IDI experiments despite their different
scales. We have shown through a semiclassical model of IDI
that fluorescence detected in the forward direction provides
the strongest intensity correlations. Additionally, we find that
the reduced pulse intensity available at compact XFELs can be

compensated by the use of the attosecond pulses comparable
in duration to the inner-shell fluorescence lifetime of heavy
atoms and the use of multilayer Laue lenses to focus the beam
onto the sample. With these advantages, IDI is a technique
well-suited to this new, smaller class of XFEL.
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