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Microresonator dynamics with frequency-dependent Kerr nonlinearity
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We investigate the ultrafast nonlinear dynamics in a silica ringresonator composed of a silver-nanoparticle-
doped core that exhibits rapidly varying frequency-dependent Kerr nonlinearity that even changes sign across a
specific frequency, defined as zero-nonlinearity frequency. We model optical propagation in such a resonator
through a modified Lugiato-Lefever equation, revealing that the formation of bright cavity solitons can be
possible in both positive and negative nonlinearity domains. The intrapulse Raman scattering along with the
frequency-dependent Kerr nonlinearity modify the stability and the dynamics of cavity solitons, which we
analyze using a bistability analysis, intracavity modulation-instability analysis, and semianalytical variational
approach. Our derived analytical results agree well with the direct numerical solutions of the Lugiato-Lefever
equation. The generation of a dispersive wave from a cavity soliton encountering higher-order dispersion is also
influenced by the location of the zero-nonlinearity frequency, which we describe by providing a modified phase
matching equation. Our results and analysis provide a framework for better understanding the dynamics of cavity
solitons and their interactions in two different bright-solitonic domains with possible applications in dual-pump
spectroscopy, formation of soliton molecules, and counterpropagating solitons to other fields.
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I. INTRODUCTION

Microresonators are versatile photonic platforms that sup-
port stable optical pulses that round trip indefinitely, known
as optical cavity solitons (CSs) [1]. These CSs are ideal
candidates for generating frequency combs with applications
ranging from optical frequency measurement, spectroscopy,
atomic clocks, and astronomy to other fundamental areas of
physics [2,3]. As the CSs are the extension of optical soli-
tons in the nonconservative dissipative systems, they emerge
through a double balance mechanism between the group-
velocity dispersion (GVD) and Kerr nonlinearity, and between
losses and continuous-wave (cw) coherent external pump-
ing [1]. The evolution of CSs and the corresponding frequency
comb dynamics is described by the Lugiato-Lefever equa-
tion (LLE), a damped-driven nonlinear Schrödinger equation
(NLSE) [4], where the CSs arise when the system exhibits
subcritical instability [4–6]. Over the years, the research on
temporal CSs and microresonator-based frequency combs
has been carried out in investigating soliton molecules [7],
ultrafast soliton dynamics [8], symmetry breaking of coun-
terpropagating light [9], non-Hermitian optics [10], resonator
with quartic dispersion [11], Dirac solitons in microres-
onators [12], etc. Also, in silica resonators, the influence
of the Raman effect on Kerr domain walls and localized
structures has recently been investigated, revealing interesting
stabilization dynamics and bifurcation structure of the domain
walls and localized structures [13–15]. Most of the studies
of optical CSs are carried out in either anomalous dispersion
(AD) [16,17] or normal dispersion (ND) [18,19] domains
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with strict self-focusing (positive) Kerr nonlinearity. However,
engineered metamaterials [20–23] show promising avenues
to study optical pulse dynamics beyond self-focusing non-
linearity. In this case, self-defocusing (negative) nonlinearity
plays the central role, enabling the formation of stable optical
pulses and their manipulations in the ND domain [21,24–26].
In earlier works, the consequences of negative nonlinearity
have been reported in both spatial and temporal domains,
where the formation of stable structures and their dynam-
ics are studied [27–30]. However, most of the studies on
microresonator-based frequency combs are limited to the self-
focusing nonlinearity.

This paper studies the nonlinear optical pulse dynamics
and the corresponding frequency combs in a passive silica
microresonator whose core is doped with silver nanopar-
ticles [21,31]. For such a doped fiber, the optical Kerr
nonlinear parameter varies rapidly with frequencies (wave-
lengths) and can have positive as well as negative values
across a zero-crossing point of the frequency axis, defined
as zero-nonlinearity frequency (ZNF). In such an optical
medium, the relative locations of zero-dispersion frequency
(ZDF) and ZNF lead to four different optical domains; among
them, two are solitonic (dispersion and nonlinearity with
opposite signs) and two are nonsolitonic (dispersion and non-
linearity with the same signs). In this work, we study the comb
dynamics in two bright-solitonic domains and investigate how
this frequency-dependent nonlinearity affects the stability and
existence of CSs. We theoretically investigate the stabil-
ity criteria and complex dynamics of the CS under various
perturbations using Lagrange’s variational method [32–36],
where we consider an ansatz whose parameters are allowed
to evolve over round trips. The underlying physics of com-
plex cavity dynamics of CSs can be revealed through Ritz’s
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FIG. 1. (a) Schematic diagram of a silica ringresonator with a
single bus waveguide with power reflection and transmission coef-
ficients of ρ and �. The zoomed cross section of the fiber ring is
depicted at the top. (b) The GVD and nonlinearity profiles of the
fundamental mode of the doped fiber are shown by the solid blue and
red lines, respectively, for a filling fraction of f = 6 × 10−3 [21]. The
GVD and nonlinearity profiles of the undoped fiber with the same
geometry are also depicted by light dashed lines. The locations of
the ZNF and ZDF are denoted by circles. The location of two inputs
are indicated by ©1 (for λ0 = 1.08 μm) and ©2 (for λ0 = 1.55 μm).

optimization principle, which leads us to the equation of
motion of different pulse parameters. Exploiting the cw bista-
bility analysis [37,38] and intracavity modulation-instability
(MI) analysis [39], we further get into the detail of modi-
fied stability conditions under perturbations. Also, in a silica
resonator, the interplay between ZNF and intrapulse Raman
scattering (IRS) leads to the control and manipulation of CS
dynamics. We provide a detailed theoretical analysis revealing
the properties of CSs in such a frequency-dependent Kerr
nonlinear medium, both numerically and analytically, and
compare the results. In this context, the interplay between the
ZDF and ZNF leads to the manipulation of the dynamics of
CS-mediated dispersive waves (DWs). We provide a modified
phase matching (PM) equation that accurately predicts the
spectral location of the DW in the presence of the ZNF.

II. SETUP

To study the nonlinear pulse dynamics in a fiber res-
onator with frequency-dependent Kerr nonlinearity (FDKN),
we consider a realistic single-mode silica fiber [40] whose
core is doped with silver nanoparticles [schematically shown
in Fig. 1(a)] [21,25,41]. For such a doped fiber, the frequency-
dependent third-order optical Kerr nonlinear parameter
[γeff (ω)] with a zero-crossing frequency (defined as ZNF) is
depicted in Fig. 1(b). γeff (ω) is calculated from the Maxwell-
Garnett theory [42] in the framework of the theory of effective
composite medium [43], the specifics of which can be found
in Refs. [21,25,31]. Earlier experimental studies have con-
firmed the existence of frequency-dependent nonlinearity, as
well as the presence of ZNF in metal-nanoparticle-doped
composite media [44,45]. In addition, the experimentally
measured Raman gain spectrum in silver-nanoparticle-doped
silica fiber indicates that the doping of nanoparticles does not
change the gain spectrum from that of the undoped silica
fiber [31], suggesting that nanoparticle doping only affects
the Kerr term. On the basis of these experimental findings,

ultrashort optical pulse propagation in such a doped fiber
is modeled as follows [25,46]: i∂zA + i(αl/2)A + D̂(i∂t )A +
F̂[γeff (ω)](1 − fR)|A|2A + F̂[γ (ω)] fR hR⊗|A|2A = 0, where
A(z, t ) is the optical pulse envelope, αl is the linear loss
coefficient, D̂ is the dispersion operator, and F̂ denotes the
inverse Fourier-transform operator. Also, γ (ω) defines the
third-order nonlinear parameter of undoped SiO2 of the same
geometry that contains an additional self-steepening term.
Further, hR represents the usual time-domain description of
the Raman response function, with a fractional Raman contri-
bution of fR [47]. Like the GVD parameter, γeff also contains
all the higher-order terms defined from the Taylor series ex-
pansion around a central frequency ω0. While γeff shows a
rapid variation with frequency and changes its numeric signs
across a ZNF (the analogy is the same as that of the ZDF),
γ (= γundoped ) is strictly positive [schematically depicted in
Fig. 1(b)]. For such a doped fiber resonator [Fig. 1(a)] with
power reflection and transmission coefficients ρ and �, the
intracavity round-trip boundary condition [1] [A(m+1)(0, τ ) =√

1 − � A(m)(0, τ ) ei
0 + √
� Ain(τ )] along with the modi-

fied NLSE [25] describe the evolution equation for CSs,
formally known as the mean-field LLE.

In a very recent work [48], a more appropriate description
of the NLSE-type model equation has been proposed in the
context of FDKN, which describes the similar pulse dynamics
as predicted by our adopted model [25] with additional photon
number conservation. However, the mathematical form of the
proposed equation is not simple in terms of ansatz functions
and nonlinearity, and it is not possible to deduce the mean-
field LLE. The implication of the variational method is also
difficult in this case. For these reasons, we rely on the old
model equation for FDKN, as these two models predict the
similar pulse propagation behavior in both domains. More-
over, under suitable approximation, these two models give a
similar mathematical form under positive nonlinearity [49].

III. MEAN-FIELD MODEL

The passive cavity dynamics in the presence of FDKN in a
silica microresonator with intracavity field amplitude u(t, τ )
is mathematically modeled by the dimensionless mean-field
LLE [1,4] which includes self-steepening, IRS, higher-order
dispersion (HOD), and frequency-dependent nonlinear effects
(up to first order) in the long pulse domain as

∂u

∂t
=

[
−(1 + i �) + i

∑
n�2

δn

(
i

∂

∂τ

)n
]

u + S

+ i

[
a(1 − fR)|u|2u + iμ1eff (1 − fR)

∂ (|u|2u)

∂τ

+ 
 fR

(
1 + iτsh

∂

∂τ

)
|u|2u − 
τRu

∂ (|u|2)

∂τ

]
, (1)

where a = sgn(γ0eff ), 
 = γ0/|γ0eff |. Also, at an operating
frequency ω0 near to the ZNF, γeff (ω) ≈ γ0eff + γ1eff (ω − ω0)
and γ (ω) ≈ γ0 + γ1(ω − ω0). Note that γ1eff is the slope of
the rapidly varying nonlinearity profile of the nanoparticle-
doped composite fiber that gives the location of the ZNF,
while γ1 is the usual self-steepening in the undoped conven-
tional fiber. The calculated values of these parameters and
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TABLE I. The rescaling of the parameters of Eq. (1) are adopted
from Refs. [38,50]. L, tR, and αt = (αl L + �)/2 are the cavity round-
trip length, cavity round-trip time, and total cavity loss, respectively.
Here, � = 0.1 for a 90/10 coupler, and the experimentally mea-
sured linear loss of the doped fiber in the working wavelengths is
αl ≈ 2 dB/m [31]. At λ0 = 1.08 μm: γ0eff = −8.839 W−1 km−1,
γ1eff = −7.936 × 10−2 W−1 km−1 ps, γ0 = 4.083 W−1 km−1, γ1 =
3.713 × 10−3 W−1 km−1 ps, β2 = 36.506 ps2/km, and β3 = 7.307 ×
10−2 ps3/km. At λ0 = 1.55 μm: γ0eff = 2.915 W−1 km−1, γ1eff =
−2.280 × 10−4 W−1 km−1 ps, γ0 = 2.156 W−1 km−1, γ1 = 3.537 ×
10−3 W−1 km−1 ps, β2 = −18.598 ps2/km, and β3 = 1.647 × 10−1

ps3/km.

Description Rescaled/normalized as

Slow time t αt t/tR → t
Fast time τ τ

√
2αt/[|β2(ω0)|L] → τ

Fast time normalization
timescale τs τs = √|β2(ω0)|L/(2αt )
Intracavity field
amplitude A u = A

√|γ0eff |L/αt

Driving field
strength Ain S = Ain

√|γ0eff |L�/α3
t

Phase detuning δ0 � = δ0/αt

nth-order dispersion
parameter βn(ω) δn = 2βn(ω)/

[
n!|β2(ω0)|τ n−2

s

]
Slope of the rapidly
varying γeff (ω), γ1eff μ1eff = γ1eff/[γ0eff (ω0)|τs]
IRS parameter TR τR = TR/τs

Self-steepening parameter τsh = γ1/[γ0(ω0)τs]

the other rescaled parameters are given in Table I. Here
we consider both the bright-solitonic domains (β2 × γeff < 0)
according to the launching conditions λ0 = 1.08 μm (ND
with self-defocusing nonlinearity) denoted by 1© and λ0 =
1.55 μm (AD with self-focusing nonlinearity) denoted by
2©, and study the individual intracavity field dynamics. For

that, we first solve the LLE [Eq. (1)] numerically without
extra perturbations, i.e., in the absence of HOD (δn > 2 = 0),
self-steepening (τsh = 0), IRS (τR = 0), and ZNF (μ1eff = 0).
This brings Eq. (1) to the unperturbed LLE, whose tempo-
rally localized and steady-state solution is disclosed by the
unperturbed CS. The dotted trace on the top of each panel
in Fig. 2 shows unique features of the unperturbed CS. In
the time domain, it comprises an ultrashort pulse that sits
on top of a nonzero cw background field with remarkable
stability and has two side lobes. In the frequency domain,
the relatively broadband comb wings indicate the presence
of a short pulse. The numerical solution also reveals that
the existence of bright CSs in 1© is strictly limited by the
negative detuning (cold detuning) (i.e., −�). In contrast, 2©
follows the usual conventional case (warm detuning) [38].
The numerical solution of Eq. (1) is obtained by a split-step
Fourier method [47] with a fourth-order Runge-Kutta algo-
rithm embedded in it [51]. For our simulation, we consider
the characteristic pulse duration of τs = 100 fs. In Figs. 2(a)
and 2(b), we plot the evolution of a CS in temporal and spec-
tral domains, respectively, for 1© under the effect of FDKN
with all perturbations present in the system (i.e., δ3 = 0.0067,
fR = 0.245, τR = 0.03, τsh = 0.0091, and μ1eff = −0.0898).

FIG. 2. (a) Temporal (τ ) and (b) spectral [� = (ω − ω0)τs] evo-
lution of a CS over t for ©1 with X = 4.5, � = −3. (c) and
(d) describe the same for ©2 with X = 4.5, � = 3. The other realis-
tic parameters are defined in the main text. The temporal and spectral
profiles of the unperturbed (dotted trace) and perturbed (solid line)
CSs at the output are also depicted on the overhead of each panel.

Similarly, in Figs. 2(c) and 2(d), we plot the same for 2©
with the parameters of δ3 = 0.0295, fR = 0.245, τR = 0.03,
τsh = 0.0164, and μ1eff = −7.8212 × 10−4. In both cases,
IRS leads to frequency redshifting. As a result of this fre-
quency shift, the CS accelerates in the ND domain and slows
down in the AD domain. The resulting combined role of the
ZNF (μ1eff ) and self-steepening (τsh) also controls the CS
dynamics and introduces an asymmetry in the comb spectrum.
Note that in both cases, the impact of small δ3 on the CS is
not significant and a signature of DW is not evident in Fig. 2.
However, a relatively strong δ3 perturbs the CS to generate
DW across the ZDF. The impact of ZNF on the CS-mediated
DW is discussed in Sec. VII. The numerical solution also
reveals that the generation of CS is limited by a certain range
of controlling parameters (S,�) outside of which CS cannot
be excited. This range depends on the physical perturbations
present in the system. Further, it also reveals that for a fixed
set of S and �, selective excitation and deexcitation of CSs
are possible by changing the location of the ZNF. In the
following sections, we try to understand how the CS dynamics
are affected by various physical processes using steady-state
cw bistability analysis, MI analysis, and variational analysis.

IV. HOMOGENEOUS STEADY-STATE SOLUTIONS
AND CW BISTABILITY ANALYSIS

CW bistability analysis in passive Kerr resonators is an
analytical tool that helps us to understand the stability of the
homogeneous solutions of the intracavity field with respect
to the control parameters of the system [1,37]. This analysis is
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FIG. 3. (a) Kerr bistability curves in (�,Y ) parameter space from Eq. (5) and (b) cw bistability S curves in (X,Y ) from Eq. (2) for two
launching conditions. The dashed portions indicate the cw-unstable solutions. The turning points in (b) are indicated by X f

±. (c),(e) Kerr
bistability curves are mapped with (d),(f) the corresponding intracavity MI regions. The dashed curves in (c) and (e) are MI-unstable solutions,
and the shaded areas in (d) and (f) indicate the MI-unstable regions. (g) MI gain spectrum �f (�) in the presence of FDKN for two launching
conditions with Y = 3.5. (h) The intracavity cw solutions (black curve), peak intensity of the MI branch (dashed blue curve), and peak intensity
of the CSs (solid green curve) as a function of � under FDKN. The transition points from cw to MI to CS are indicated by �f

MI, �f
↑, and �f

max,
respectively.

very useful in retrieving the threshold values of system param-
eters that initiate the time-stationary pattern structures [38].
Importantly, this study also facilitates insight into the impact
of various physical processes on the steady-state solution of
the LLE, as pattern structures and cw solutions coexist to
form the CS [1]. In the presence of FDKN, the steady-state
(∂u/∂t = 0) and homogeneous (∂u/∂τ = 0) solution of the
intracavity field amplitude us of Eq. (1) that satisfies the cubic
equation is

X = α2Y 3 − 2α�Y 2 + (�2 + 1)Y, (2)

where α = sgn(γ0eff ) + [
 − sgn(γ0eff )] fR, with Y = |us|2
and X = |S|2 being the normalized intracavity field power and
driving field power, respectively.

Exploiting the bistability equation [Eq. (2)], we calculate
an analytical expression of the steady-state intracavity power
Y± for FDKN by setting dX/dY = 0,

Y f
± = 2� ± √

�2 − 3

3α
. (3)

Equation (3) reveals the values of threshold detuning �f
c =

−√
3 for launching 1© and �f

c = +√
3 for launching 2© be-

yond which bistability emerges, and Eq. (2) yields three
solutions for Y for each case. Also from Eqs. (2) and (3), the
turning points (X±) of the input power on the bistability curve
for a fixed � can be calculated as

X f
± = 2

27α

[
�(�2 + 9) ±

√
�2 − 3

3]
. (4)

It is also conceivable that Eq. (2) can be interpreted in an
alternative yet similar way in terms of � as

�f = αY ±
√

X/Y − 1. (5)

Note that in the absence of FDKN [
 = 1, and sgn(γ0eff =
γ0undoped ) = +1; i.e., α = 1], Eqs. (2)–(5) reduce to the
well-known expressions of Kerr optical bistability for the
unperturbed LLE [38].

In Figs. 3(a) and 3(b), we plot the steady-state cw response
in (�,Y ) and (X,Y ) parameter space for two launching con-
ditions ©1 and ©2 , where negative and positive Kerr tilts are
evident in Fig. 3(a). Case ©1 shows that cw bistability occurs
only for the negative detuning, suggesting the existence of CS
with negative � only [shown in Fig. 2(a)]. The cw-bistability
S curve is shown in Fig. 3(b) with the turning points X f

± that
separate the lower and upper stable branches (solid portion)
from the unstable intermediate branch (dashed portion) that
does not support any stable solution. The interpretation of the
unstable branch can be understood from the MI analysis. It
is important to note that while μ1eff and τsh do not contribute
to the steady-state solution, they have a direct impact on the
MI gain. In this context, although δ3 has no effect on the
frequency of MI [52], it does affect the stability of the Kerr
frequency combs induced by MI in resonators [53]. Further-
more, it has been well established that IRS has no effect on
the homogeneous steady-state solution or the MI gain, but it
stabilizes the traveling localized structures [5,13,14]. All these
perturbations, however, affect the stability of the CS and limit
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the dynamics over the parameters set (X, �), which we try to
analyze using the variational method.

V. INTRACAVITY MODULATION-INSTABILITY
ANALYSIS

In the context of nonlinear optics, MI arises due to the
interplay between dispersion and the nonlinear Kerr effect. In
this process, a homogeneous field spontaneously breaks up
into a periodic structure. In microresonators, the intracavity
MI leads to time stationary periodic structures generated from
the breaking of a homogeneous wave [39,54]. The MI anal-
ysis is performed by introducing the ansatz to Eq. (1) of the
form u(t, τ ) = us + a+(t )ei�τ + a−(t )e−i�τ , where us is the
steady-state cw solution of Eq. (1) which follows from the
bistability analysis, and a± are the two small side-band ampli-
tudes with normalized side-band frequency �. This analysis
leads to the set of coupled differential equations for a±, which
upon linearization have the form (excluding the τR term)

∂

∂t

[
a+
a∗

−

]
=

[
a1 + a2 (a3 + a4)u2

s

(a3 − a4)u∗2
s a1 − a2

][
a+
a∗

−

]
≡ M

[
a+
a∗

−

]
,

(6)

where a1 = −1 − i2Tsh�Y − iδ3�
3, a2 = i(2αY −

� + δ2�
2), a3 = −iTsh�, and a4 = iα, with Tsh =

μ1eff (1 − fR) + 
τsh fR. This matrix equation contains all
the perturbations associated with the system. The intracavity
MI gain can be calculated by evaluating the eigenvalues of
the matrix equation |M − �I| = 0, which in this case takes
the form

�f = −1 ±
√

Y 2
(
α2 − T 2

sh�
2
) − δ̃2

f , (7)

where δ̃f = (2αY + δ2�
2 − �). Equation (7) implies that a

real positive value of �f leads to instability. In the case
of cw perturbations (� = 0), this leads to the condition√

4αY � − �2 − 3α2Y 2 � 1, which is simply the negative
slope of the bistability S curve (intermediate unstable branch)
[Fig. 3(b)]. Therefore, this analysis concludes that the upper
and lower branches are always stable against steady-state cw
perturbations, while the middle branch is always unstable.
This stability condition, however, is modified when a peri-
odic perturbation is present (i.e., � 	= 0). For that, we first
calculate the threshold conditions of intracavity MI by setting
�f = 0 and analyze the stable and unstable regions in both
©1 (δ2 = +1) and ©2 (δ2 = −1). In the case of Tsh = 0, the
threshold conditions take the form

Y � 1/|α| and Y � �/(2α). (8)

In Figs. 3(c) and 3(e), we plot the bistability S curve in
(X,Y ) for ©1 (with � = −3.5 and α = −0.6418) and for
©2 (with � = 3.5 and α = 0.9362), respectively. The modu-
lationally unstable regions (shaded areas) followed by Eq. (8)
are plotted in Figs. 3(d) and 3(f) and are mapped with the
corresponding (X,Y ) plots. This mapping indicates that un-
like cw perturbations, periodic perturbations make the upper
branch unstable [dashed portion of the S curves in Figs. 3(c)
and 3(e)]. From Eq. (5), the minimum detuning that initiates
intracavity MI is expressed using the threshold MI condi-
tions as �f

MI = sgn(α)(1 − √|α|X − 1). Also, in between

the wavelength range of ZNF and ZDF (β2 > 0, γeff > 0) in
Fig. 1(b) and another region when ZDF is located at the left
side of the ZNF (β2 < 0, γeff < 0), the threshold conditions
of MI become 1/|α| � Y � �/(2α) and � � 2α/|α|. Note
that in self-focusing nonlinearity, the intracavity MI occurs
for both the ND and AD regimes with different threshold
conditions [1]. Here, in the case of FDKN, due to the reversal
of the sign of nonlinearity, we have the same type of threshold
conditions, albeit with a different range of parameters. Also,
we can calculate the transition detuning from MI to CS (�f

↑)
from Eq. (5) by setting d�/dY = 0 and substituting the Y
values back into Eq. (5), which is the same procedure as
getting Eq. (4) from Eq. (2). In Fig. 3(g), we plot the MI gain
spectrum [�f (�)] at Y = 3.5 for both ©1 and ©2 . The MI gain
spectrum is both dispersion and nonlinearity dependent owing
to the FDKN. As a result, the phase mismatch can be canceled
in both AD and ND domains, which leads to the MI gain at
low threshold power. Now, in the presence of perturbations,
the maximum MI gain occurs (d�f/d� = 0) when � satisfies
the relation δ2�

2
max = � − 2αY − T 2

shY 2/(2δ2). In this case,
� is real as long as T 2

sh � 2δ2(� − 2αY )/Y 2. This analytical
expression provides a cutoff value for the strength of Tsh

required for MI to occur or, in other words, it gives a threshold
range of � to observe MI for a fixed Tsh. Also, the maximum

gain can be calculated as �f
max = −1 +

√
α2Y 2 − T 2

shY 2�2
max.

This �f
max indicates that in both the launching conditions

©1 and ©2 , the nature of the MI gain curves is similar, as
seen from Fig. 3(g). From the expression of �f

max, one can
calculate the condition of the steady-state solution that is

always stable for Y � 1/

√
α2 − T 2

sh�
2
max, which provides the

minimum intracavity intensity to initiate the MI. In order to
get complete dynamics, in Fig. 3(h) we plot intracavity cw
solutions (black curve), the peak intensities of MI patterns
(blue dashed line), and the CS branch (solid blue line) as a
function of �. In this case, our calculated value of Ymin = 1.57
matches with the numerical value of Y ≈ 1.6 to trigger the MI.
We also indicate the transition detuning point of MI from cw
solutions, �f

MI = 0.374 (numerically: � ≈ 0.37), the onset
detuning �f

↑ = −2.373 (numerically: � ≈ −2.387), and the
numerical value of maximum detuning �f

max = −3.029 of the
CS branch [38]. In the next section, the analytical expression
of �f

max is calculated using the variational method.

VI. PERTURBATIVE ANALYSIS: VARIATIONAL METHOD

The LLE describing the nanoparticle composite microres-
onator with FDKN includes all the perturbations, i.e., linear
loss, ZNF, self-steepening, and IRS, and the effects are in-
vestigated numerically by directly solving Eq. (1). However,
this numerical solution does not provide detailed information
about exactly how these perturbations affect the CS parame-
ters. To get deeper insights into these perturbations, we adopt
a semianalytic variational method. Even though the concept
of the variational principle is generally known in classical
mechanics, the use of the method has been extended in the
context of pulse propagation problems in nonlinear media
with excellent success [32,47,55]. In this work, for variational
analysis, we consider Eq. (1) as a perturbed field equation
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FIG. 4. The variation of (a) peak intensity (|u0|2), (b) temporal pulse width (τw = 2η−1), (c) frequency shift (�p), and (d) temporal delay
(τp) of a CS over the round-trip time t for ©1 . Similarly, (e)–(h) represent the same for ©2 . The closed form of the saturated frequency [Eq. (15)]
and corresponding temporal shift [Eq. (16)] are also plotted by dot-dashed lines.

as i ∂u
∂t − δ2

∂2u
∂τ 2 + a|u|2u − � u = iε(u), where ε(u) contains

all the first-order perturbations of the system: ε(u) = S −
u − i(a − 
) fR|u|2u − Tsh

∂ (|u|2u)
∂τ

− iTRu ∂|u|2
∂τ

. We define the
Lagrangian density (LD ) for such a system as LD = i

2 (u∗ ∂u
∂t −

u ∂u∗
∂t ) + δ2| ∂u

∂τ
|2 + a

2 |u|4 − � |u|2 − 2Re[iε u∗]. The given La-
grangian density is reduced as L(= ∫ ∞

−∞ LD dτ ) through the
general ansatz:

u(t, τ ) =
[

E (t )η(t )

2

]1/2

sech{η(t )[τ − τp(t )]}

× exp {iφ(t ) − i�p(t )[τ − τp(t )]}, (9)

where the pulse energy (E ), inverse of temporal pulse width
(η), temporal delay (τp), phase (φ), and frequency shift (�p)
are functions of round-trip time t . The Ritz’s optimization
procedure for L gives d

dt [ ∂L
∂Qt

] − ∂L
∂Q = 0, where the general

parameter Q corresponds to the different pulse parameters.
Hence, eventually we obtain a set of five coupled equations
describing the evolution equation of individual pulse parame-
ters as

dE

dt
= −2E + 2S

(
E

2η

)1/2

π sech(K/2) cos φ, (10)

dτp

dt
= 2δ2 �p + 1

2
TshEη, (11)

d�p

dt
= − 4

15
TREη3 − 2S

( η

2E

)1/2
K sech(K/2) cos φ, (12)

dφ

dt
= −� − δ2

(
�2

p − η2

3

)
+ 1

3
α ηE − 1

6
TshEη�p

− S

(
1

2Eη

)1/2

π sech(K/2) sin φ, (13)

η = − E

4δ2
(α + Tsh�p) − 3

2δ2η
S

(
1

2Eη

)1/2

× π sech(K/2)[1 − K tanh(K/2)] sin φ, (14)

where K = π �p/η. The set of equations is important in
understanding the dynamics of a CS under FDKN, which
facilitates exactly how TR, μ1eff , and τsh affect different
pulse parameters. For instance, TR appears in the frequency
equation with a negative sign, resulting in a spectral red-
shift irrespective of the launching condition. The contributions
from the FDKN (Tsh) directly appear in the equations for τp,
φ, and η. The presence of the δ2 factor in the equation for τp

immediately reveals that even though �p is negative, the tem-
poral CS either accelerates or decelerates depending on the
launching condition. However, to get the complete evolution
picture of individual pulse parameters, we solve these coupled
equations [Eqs. (10)–(14)] semianalytically, and the results
are shown by the solid lines in Fig. 4. Next, in order to validate
the variational results, we plot the pulse parameters from the
direct numerical simulation of Eq. (1). In Figs. 4(a), 4(e)
and 4(b), 4(f), we plot |u0|2 and τw over the round-trip time
t by dashed lines excluding the cw background because of
the fact that the ansatz [Eq. (9)] does not comprise any back-
ground field. In both cases, the variational method accurately
predicts the numerical results. The frequency shift �p and
temporal delay τp are plotted in Figs. 4(c), 4(g) and 4(d), 4(h),
both numerically (dashed lines) and variationally (solid lines),
where a slight deviation is observed at a longer t . This mis-
match appears because of our variational ansatz that does not
include the frequency chirp parameter. The chirp parameter
makes the LD nonintegrable, and we cannot get any closed-
form expressions out of it. Note that unlike the conventional
Kerr soliton, here the pulse parameters (|u0|2, τw, and �p)
oscillate at the very beginning of the evolution and saturate
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FIG. 5. Temporal evolution of the variational ansatz [Eq. (9)] for
(a) ©1 and (b) ©2 under the influence of perturbations, whose pulse
parameters are governed by Eqs. (10)–(14). The output pulse shapes
from the variational ansatz (solid blue curve) and the numerical CS
profile (red dotted curve) are shown on the top of each panel.

to steady values over the t . The variational method also cap-
tures this initial oscillation, where the phase (φ) stabilizes the
ansatz parameters via sin φ and cos φ terms associated with
the evolution equations. The steady-state saturated frequency
can be obtained from Eq. (12) by setting d�sat

p /dt = 0 and
assuming sech(Ksat/2) cos φ ≈ 1, which takes the form

�sat
p ≈ − 4

15

∣∣∣ α

δ2

∣∣∣TR
πS

u5
0 sat. (15)

This saturated frequency (�sat
p ) leads to a linear temporal shift,

which is obtained by integrating (11) as

τp(t ) ≈ (
2δ2 �sat

p + Tshu2
0 sat

)
t . (16)

In Figs. 4(c), 4(g) and 4(d), 4(h), we plot the approximate
analytical expressions of �sat

p and τp(t ) (dot-dashed lines) that
closely match both the numerical and full variational results.

The set of coupled equations is further analyzed to ob-
tain the analytical expression of the maximum detuning (in
magnitude) for the existence of CSs under FDKN. From
Eqs. (10), (13), and (14), the detuning can be derived as [1]
�f

max = π2αX/8. For a given X = 4.5 and at the launching
condition ©1 , the theoretical value is �f

max = −3.563. Numer-
ically, the value appears to be � ≈ −3.029, which is less than
the maximum theoretical limit, suggesting that the higher-
order perturbations reduce the range of parameters [50].

For a final check of the accuracy of the variational
method in the case of LLE, the trial ansatz [Eq. (9)], and
the derived set of coupled equations for pulse parameters
[Eqs. (10)–(14)], we plot the temporal evolutions in Figs. 5(a)
and 5(b) under perturbations. These figures show similar pulse
dynamics as obtained from the direct numerical solution of
Eq. (1) [Figs. 2(a) and 2(c)] excluding the HOD terms. As
previously mentioned, a slight difference in temporal position
between the sech ansatz and the CS is observed at the out-
put because the actual shape of the CS differs slightly from
the ansatz. However, as illustrated in Fig. 4, our variational
method accurately predicts the overall evolution dynamics and
other critical parameters.

VII. IMPACT OF THE ZERO-NONLINEARITY
FREQUENCY ON DISPERSIVE WAVES

In optical pulse propagation, while the interplay between
the GVD and nonlinearity stabilizes the formation of soli-
tonlike structures in both time and frequency, HOD leads to
significant temporal and spectral distortion. Third-order dis-
persion (TOD) is the first significant term to the HOD that
perturbs the soliton to emit dispersive radiation or DW by
transferring energy across a ZDF [56]. Such radiation in the
form of a plane wave is also known as the nonsolitonic or
Cherenkov radiation [57]. In the case of a microresonator with
a circulating CS pumped at near-zero-dispersion wavelength,
the DW formation results in the generation of broadband
frequency combs [58]. Here, the DW manifests as a stationary
localized oscillatory radiation tail attached to the temporal
CS [59]. Also, the IRS-induced self-frequency shift along
with the DW in a high-Q resonator plays an essential role
in comb dynamics, where the existence of frequency-locked
solitons is governed by the balance between Raman gain and
cavity loss [60]. In this context, the interplay of the broadband
Raman gain and HOD influence the existence and dynamics
of the CS. Here, we focus on the interplay between the HOD
and frequency-dependent nonlinearity to capture how the ZNF
influences dispersive radiation. Also, we try to capture the
efficient control of the radiation frequency of the DW through
the manipulation of ZNF. In a microresonator with FDKN, a
generalized PM equation gives information about the spectral
location of the DW in the presence of ZDF and the interaction
of it with ZNF. In dimensionless form, the generalized PM
equation is written as [58,59,61]

δ2�
2 + δ3�

3 − V � + 2(a + μ1eff�) − � + i = 0. (17)

Here, the group-velocity mismatch (βv) between the CS and
the driving field is rescaled as V = √

2α/(|β2|L)βv/α, which
can be calculated from the slope of the temporal shift of the
CS as V = dτp/dt . Equation (17) is different from the stan-
dard PM equation in the conservative soliton case [47], as it
includes additional terms related to microresonator properties,
i.e., �, 1 (rescaled loss) with imaginary i, and V , as well as
the sign and first-order slope of frequency-dependent non-
linear terms, i.e., a = sgn(γ0eff ) and μ1eff . The PM equation
[Eq. (17)] contains both real and imaginary (due to dissipative
terms) parts and may lead to complex frequencies. The real
solution of Eq. (17) gives the detuning frequency of radiation
�DW, which is the spectral location of the DW. The imaginary
part can be interpreted as the decaying tail of the temporal DW
structure [59]. In our case, the presence of the ZNF term in-
fluences the generated DW and modifies the spectral location.
In Figs. 6(a) and 6(b), we plot the spectral evolution of CSs in
two operational domains under the influence of strong TOD
perturbation (δ3 = 0.2) with all other parameters the same as
Fig. 2. The generation of the DW across a ZDF is evident as
a distinct spectral peak. In the same figure, we plot the PM
curve [Eq. (17)] as a function of frequency, the zero-crossing
point (solid circle) of which represents the �DW. In Fig. 6(c),
we plot �DW as a function of μ1eff (i.e., by varying ZNF) both
numerically as well as by solving the PM equation. For further
verification of the accuracy of our derived PM equation, we
plot the variation of �DW as a function of δ3 for fixed μ1eff in
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FIG. 6. (a),(b) Spectral evolution of CSs under the influence of
a strong TOD (δ3 = 0.2) for two launching conditions. The upper
panel corresponds to the output spectrum. The lower panel in each
plot represents the graphical solution of the PM equation [Eq. (17)]
with zero-crossing frequency that gives the location of the DW.
Variation of the radiation frequency with (c) μ1eff and (d) δ3 for two
launching conditions. All the other parameters are the same as in
Fig. 2.

Fig. 6(d). The PM equation (solid curves) accurately predicts
the numerical simulation data (solid circles). It is clear from
these plots that the ZNF appears to have a substantial role in
influencing the dynamics of the DW, and the location of the
DW is altered as a result of the interaction between the ZDF
and ZNF. So, we have two independent parameters that can
efficiently tune the spectral location of the DW. Furthermore,
unlike conventional fibers, where the GVD profile and the
ZDF can only be varied by changing the cross-sectional ge-
ometry or the materials, the ZNF of doped fiber can be easily
changed by changing the doping concentration.

VIII. CONCLUSIONS

In this paper, we study the dynamics of cavity solitons
under frequency-dependent Kerr nonlinearity in a silica res-
onator whose core is doped with silver nanoparticles. For such
a resonator, the modified mean-field Lugiato-Lefever equa-
tion contains higher-order nonlinear effects (intrapulse Raman
scattering, self-steepening, and zero-nonlinearity frequency)
that act as perturbations and influence the intracavity field
dynamics. Depending on the launching conditions and con-
trolling system parameters, it is possible to excite bright cavity
solitons in both solitonic domains. Exploiting the steady-
state continuous-wave bistability analysis and intracavity
modulation-instability analysis, we derive modified analytical
expressions of different stability regions and critical values of
system parameters for the existence of cavity solitons under
frequency-dependent Kerr nonlinearity. Further, we develop
a variational technique to capture the cavity-soliton dynam-
ics analytically. The phenomena of a cavity-soliton-mediated
dispersive wave and how the spectral location of it can be ma-
nipulated through the interplay between the zero-dispersion
frequency and zero-nonlinearity frequency are captured by
providing a modified phase matching equation. Our anal-
ysis provides a framework for a better understanding of
the insights into self-organized states of light. We envisage
that our results and methodology are applicable in differ-
ent microresonator-based frequency comb studies, such as
two-soliton interaction [7], dual-pump spectroscopy [62], for-
mation of frequency molecules [63], spectral extension of
frequency combs [64], and manipulation of counterpropagat-
ing solitons [65] in two-solitonic domains.
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