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Ground-state cooling of a mechanical oscillator via a hybrid electro-optomechanical system
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We present a scheme for ground-state cooling of a mechanical resonator by simultaneously coupling it
to a superconducting qubit and a cavity field. The Hamiltonian describing the hybrid system dynamics is
systematically derived. The cooling process is driven by a red-detuned ac drive on the qubit and a laser drive on
the optomechanical cavity. We have investigated cooling in the weak and the strong coupling regimes for both the
individual system, i.e., qubit assisted cooling and optomechanical cooling, and compared them with the effective
hybrid cooling. We show that in the weak coupling and resolved sideband regime, cooling is more efficient in
the hybrid case for a specific choice of parameters. On the other hand, in the strong coupling, the hybrid cooling
is found to be more effective compared to the individual cooling mechanisms in the resolved regimes.

DOI: 10.1103/PhysRevA.104.023509

I. INTRODUCTION

The realization of a macroscopic mechanical oscillator
in the quantum regime has a wide range of applications
in studying fundamental physics and developing quantum
technologies ranging from high-precision measurements to
quantum information processing [1–4]. For this, the mechan-
ical oscillator is cooled down to its quantum ground state.
This can be done by first cryogenically precooled to about a
few thousand initial phonons and then further cool down to
the ground state by coupling to external dissipation sources.
There are two particular sources of dissipation that are stud-
ied extensively, both theoretically and experimentally. One
source is contributed from interaction with a cavity field in
an optomechanical system, and the other one by coupling
with a Cooper-pair box (CPB) qubit. It may be noted that
notwithstanding the simplest variant of a Josephson circuit,
the CPB continually gets explored in various contexts, such as
Aharonov-Casher effect [5], topological Josephson junctions
[6], Cooper-pair transistor [7], and so on [8]. The cooling of
the mechanical oscillator either optomechanically [9–21] or
using superconducting qubit [22–25] has been studied previ-
ously by many researchers. However,very few studies have
been made to investigate the combined effect of these two
processes.

Cavity optomechanics is the study of light interacting with
a harmonically bound movable mirror placed inside a cavity
[1,2,26–28]. A basic cavity optomechanical experiment was
first conducted by Braginsky and coworker in the year 1967
[29,30] using a microwave cavity and later in the optical
domain by Dorsel and his team, 1983 [31]. The first experi-
mental radiation-pressure cooling of a mechanical oscillation
using optical feedback was demonstrated by Cohedon,
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Heidmann, and Pinard (1999) [9,10], and later cooled down
to much lower temperature using the same approach [11–13].
In 2006, radiation pressure cooling of a micromechanical
resonator down to an effective temperature of 10 K was re-
alized [14,15]. Cooling in the resolved sideband regime was
achieved in 2008 [16]. Cooling close to the ground state
under cryogenically precooled environment was later demon-
strated [19–21]. The other method of cooling a mechanical
resonator using a superconducting qubit is theoretically stud-
ied in Refs. [22–25]. It has been demonstrated in Refs. [32,33]
that it is possible to integrate a nanomechanical resonator
into a superconducting transmission line microwave cavity.
Coupling of a Cooper pair box superconducting qubit with
an on-chip superconducting transmission line resonator is
demonstrated in Refs. [8,34–36]. Capacitive coupling of a
micromechanical resonator and a Cooper pair box qubit is
realized in Ref. [37]. Ground-state cooling of mechanical res-
onators using two transmon qubits that rely on flux-mediated
interactions has been theoretically studied in Ref. [38]. More-
over, it is shown that cooling to the ground state is feasible,
even using just one transmon coupled to the mechanical os-
cillator in the ultrastrong coupling regime [39]. In a recent
experimental work, a superconducting qubit is used to cool a
drumhead mechanical oscillator close to its ground state [40].
Despite the above theoretical and experimental advancements,
the qubit-assisted ground-state cooling of a resonator still
remains a topic of deep interest. In this context, studies of
hybrid systems, comprised of optomechanical and electrome-
chanical systems, have got a lot of attention [41–45]. Recently
a detailed theoretical study of ground-state cooling of a radio
frequency (rf) resonator using an optoelectromechanical sys-
tem formed by an optical cavity, a mechanical oscillator and a
MHz rf resonator is reported in Ref. [46].

In this work, we study the ground-state cooling of a me-
chanical resonator by simultaneously coupling the resonator
to an optical cavity field via radiation pressure and to a CPB
qubit via a movable capacitive plate. A similar system where
the resonator is piezoelectrically coupled with the qubit is
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FIG. 1. Hybrid CPB qubit and optomechanical system.
(a) Schematic description of the hybrid system under study. A
split CPB electrostatically biased by voltages Vq and Vx and driven
by voltage Vd is capacitively coupled to a mechanical mode via
movable capacitor Cx (x). By applying external flux � and changing
the charging energy Ec, the energy levels of the CPB qubit can be
adjusted. The mechanical mode is coupled to an optical cavity field
(ωc ) formed by placing a partially reflecting mirror in front of the
movable capacitor plate. The optical cavity is driven by a bright
coherent light. (b) Schematic description of the cooling process. The
qubit and the optical cavity are red detuned. The qubit gets excited
by absorbing incoming photons from the external drive and phonons
from the mechanical oscillator. The optical photons enter the cavity
by absorbing a phonon from the oscillator.

demonstrated in Ref. [47]. It is also shown that a microwave
signal can be efficiently converted to an optical one [48,49].
We red detune the qubit and the optical cavity for cooling by
applying an external ac drive and shining with bright coherent
light, respectively. We find that the coupling between the qubit
and the resonator is affected due to the coherent drive. We
compare the individual cooling with the hybrid one for weak
and strong coupling. In the weak coupling condition, we study
cooling in the resolved and unresolved sideband regime. For
specific choices of parameters, we find more cooling in the
hybrid case.

The rest of the paper is organized as follows. In Sec. II, we
systematically derive the Hamiltonian of the hybrid system.
Then, we discuss the cooling scheme for both the weak and
the strong coupling regime in Sec. III. Concluding remarks
are given in Sec. IV. Finally, two Appendixes are presented to
display the detailed calculations related to Sec. II.

II. HYBRID SYSTEM

We consider a hybrid system comprising of a Josephson
junction superconducting qubit (CPB qubit) and an optome-
chanical system as shown schematically in Fig. 1(a). This
hybrid system consists of an intermediary mechanical oscil-
lator, coupled to a pair of Josephson junction qubits through
the capacitance Cx(x) and an optical mode. Cx(x) depends
on the mechanical displacement x, caused by the radiation
pressure interaction (optomechanical coupling). Adopting the
same approach as in Ref. [22] for the Josephson qubit part, the

Hamiltonian of the hybrid system without dissipation could be
written as follows:

Ĥ = [Q̂ − Qxq(x)]2

2C� (x)
− EJ (�ext ) cos θ + h̄� b̂†b̂

− h̄�c â†â + h̄go â†â(b̂† + b̂) + h̄η(â† + â). (1)

Here, Q̂ = 2eN̂ (in the number basis), where N̂ is the number
operator for the Cooper pairs transferred across the Joseph-
son junction in the superconducting qubit (CPB). Qxq(x) =
2eNxq(x), where Nxq(x) = Nx(x) + Nq, is the offset charge
or gate charge produced by external gate voltages Vx =
2eNx (x)/Cx(x) and Vq = 2eNq/Cq, which induces Cooper
pairs to tunnel through the Josephson junction, and hence
control the charge and state of the CPB. It is apparent that
this offset charge is dependent on the resonator displacement
x. C� (x) = 2CJ + Cq + Cx(x) is the total capacitance of the
qubit. EJ (�ext ) cos θ is the effective energy in the two parallel
junctions, each with energy EJ/2. �ext is the external flux
applied in the loop formed by the two junctions. Here, θ is
the phase difference between the junctions and EJ (�ext ) =
EJ cos(π�ext/�o). The movable capacitor in the system acts
as a mechanical oscillator with frequency � and is described
by the third term in the Hamiltonian. This movable capacitor
and a partially reflecting mirror placed in front of it form
an optomechanical system. The last three terms in Eq. (1)
describe the optomechanical system in the driven frame. Here,
�c(= ωL − ωc) is the detuning between the laser drive (ωL)
and the cavity (ωc) frequency. The second-last term describes
the coupling between an optical mode (â) in the cavity and
a mechanical mode (b̂) via optomechanical coupling rate go.
The last term is the laser drive with amplitude η.

If the qubit is driven coherently at frequency ωd and am-
plitude �R, the Hamiltonian described by Eq. (1), could be
expressed in the qubit basis, subject to certain approximations,
as given below (see Appendix A for details):

Ĥ = − h̄�q

2
σz + 1

2
h̄�R σx cos ϕ − h̄g(b̂† + b̂)σz sin ϕ

+ h̄g2

ωq
(2b̂†b̂ + 1)σz cos2 ϕ + h̄� b̂†b̂ − h̄�c â†â

+ goh̄â†â(b̂† + b̂) + h̄η(â† + â). (2)

Here, �q = ωd − ωq, where ωq is the transition frequency of
the qubit. σx and σz are the usual Pauli matrices. g is a coupling
constant. The parameter ϕ is defined through tan ϕ = ε/EJ ,
with ε being associated with the variation of gate charge. For
details of the parameters, please refer to Appendix A.

The optomechanical coupling rate go is usually smaller
than the mechanical (γ ) and optical (κ) decay rates. One
common approach to address this issue is to drive the optical
cavity using strong coherent light. This drive significantly
increases the radiation pressure force, and hence the optome-
chanical coupling rate. It also induces a classical steady-state
displacement of both the intracavity field and the mechanical
mode [26]. The quantum fluctuations around the classical
steady-state values are small. Hence, we make the following
transformation, also referred to as shifted or displaced frame
[1]: â → α + δâ and b̂ → β + δb̂, where α and β are, respec-
tively, the steady-state displacements of the intracavity field
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and the mechanical mode, while δâ and δb̂ are the correspond-
ing quantum fluctuations. Using this transformation in Eq. (2)
and removing the constant terms, we obtain:

Ĥ = − h̄
�q

2
σz + 1

2
h̄�R σx cos ϕ − h̄g(b̂† + b̂)σz sin ϕ

+ 2h̄g2

ωq
(βb̂† + β∗b̂)σz cos2 ϕ + 2h̄g2

ωq
b̂†b̂σz cos2 ϕ

− h̄�câ†â + h̄go[(αâ† + α∗â) + â†â](b̂† + b̂)

+ h̄� b̂†b̂ + Ha + Hb. (3)

Here, â ⇒ δâ, b̂ ⇒ δb̂, �q ⇒ �q − (g2/ωq)(4|β|2 +
2) cos2 ϕ − 2g(β + β∗) sin ϕ, and �c ⇒ �c − go(β + β∗).
The last two terms in Eq. (3) constitute the terms that are
proportional to â, â†, b̂ and b̂† (see Appendix B for details).
The third, fourth, and fifth terms are the qubit and oscillator
interaction terms. Two observations could be made when we
compare these three interacting terms. First, the fourth term is
amplified by the steady-state displacement of the mechanical
oscillator β compared to the fifth term. Second, the third
and fourth term gives rise to second-order nonlinearity and
the fifth term gives rise to third-order nonlinearity. The
same observations could also be deduced for the seventh
term. However, in this case, the coupling is between the
optical photon and mechanical phonon, and the second-order
nonlinear coupling is amplified by the coherent amplitude
α. Because the second-order nonlinear interaction terms are
amplified (fourth and seventh terms) and since, a(a†) and
b(b†) are small quantum fluctuations about its steady-state
value α and β, we neglect the third-order interaction. The
resultant Hamiltonian could then be put in the following
form:

Ĥ = − h̄
�q

2
σz + 1

2 h̄�R σx + h̄(Gb̂† + G∗b̂)σz + h̄� b̂†b̂

− h̄�c â†â + h̄(Goâ† + G∗
oâ)(b̂† + b̂) + Ha + Hb, (4)

where G = −g sin ϕ + (2g2β/ωq) cos2 ϕ, Go = goα, and
�R → �R cos ϕ. Near the sweet point where the linear
charge fluctuation is absent, sin ϕ ≈ 0. We observe that in
the presence of the steady-state mechanical displacement
β, induced through the optical drive, the coupling rate
between the qubit and the oscillator increases by a factor
(2g2β/ωq) cos2 ϕ. Similarly, the optomechanical coupling
rate is amplified to goα.

III. COOLING

The cooling of the mechanical oscillator, using the hy-
brid system, could be obtained in the two coupling regimes,
namely, the weak and the strong coupling regime. In the weak
coupling regime, the qubit, and the optical cavity field act as
perturbations to the oscillator. However, in the strong coupling
regime, we assume that only the qubit acts as a perturbation,
and the optical field strongly couples with the oscillator. Apart
from its own environment (bath), the mechanical oscillator
has two additional sources of dissipation, one from the qubit
and the other from the optical resonator. Due to the different
timescales of these dissipation channels (nthγ � �, κ), they
act separately. Assuming that the timescale of evolution of the

bath is much shorter than the timescale for the interaction be-
tween the bath and the system, the Lindblad master equation
for the hybrid system in the shifted frame reads as follows:

˙̂ρ = − i

h̄
[Ĥ, ρ̂] + (Lq + Lm + Lc)ρ̂

+ κ

2
[α∗â − αâ†, ρ̂] + γ

2
[β∗b̂ − βb̂†, ρ̂], (5)

where

Lq = �(nq + 1)D[σ−](ρ̂)+�nqD[σ+](ρ̂)+ �d

2
(σzρ̂σz − ρ̂ ),

Lm = γ (nth + 1)D[b̂](ρ̂) + γ nthD[b̂†](ρ̂), Lc = κD[â](ρ̂),

and D[Â] = 1

2
(2Âρ̂Â† − Â†Âρ̂ − ρ̂Â†Â). (6)

The decay rates �d , �, and γ can be found out from the noise
correlations of gate voltage fluctuations or charge number
fluctuations; ˆδNx and ˆδNq. Similarly, the optical cavity decay
rate κ can be derived from the noise correlation of the optical
bath.

A. Weak coupling

The weak coupling regime assumes Go � κ and G � �,
which means that the qubit and the cavity-optical field go
to equilibrium before their states could hardly be affected by
the mechanical interaction. Thus, the cavity optical field and
the qubit can be adiabatically eliminated using the Nakajima-
Zwanzig formalism [24,50,51]. Since the qubit and the cavity
field are not coupled, we can eliminate them separately. To
eliminate the qubit, we first split the total density operator by
means of a projection operator P and Q as

ρ̂ = (P + Q)ρ̂, and P + Q = I, (7)

with P defined by

Pρ̂ = ρ̂qss ⊗ ρ̂om, ρ̂om = trq[ρ̂], (8)

where ρ̂qss is the steady-state density operator of the qubit, and
ρ̂om is the optomechanical density operator. Projecting Eq. (5)
into P space, the master equation reads:

P ˙̂ρ = P[−i�b̂†b̂, Pρ̂] − i

h̄
P[Ha + Hb, Pρ̂]

+ P[i�câ†â − i(Goâ† + G∗
oâ)(b̂† + b̂), Pρ̂]

+ P[−i(Gb̂† + G∗b̂)σz, Qρ̂ + Pρ̂]

+ P(Lm + Lc)Pρ̂ + P
γ

2
[β∗b̂ − βb̂†, Pρ̂]

+ P
κ

2
[α∗â − αâ†, Pρ̂]. (9)

Similarly, the master equation in the Q space can be obtained
by projecting Eq. (5) into the Q space. The steady-state dis-
placements α and β are determined from Eq. (9) as follows:

α = η

�c + iκ/2 − go(β + β∗)
, β = go|α|2 + G〈σz〉s

iγ /2 − �
.

(10)

Here, 〈σz〉s = Pσz is the steady-state expectation value
of σz. For go � 1, �c 
 κ , and γ /2 � �, we obtain
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FIG. 2. (a) Real part of the qubit spectral noise density at op-
timal cooling drive strength �R = 0.85 � and resonance frequency
�̄q = �. The parameters used for the plot are � = 10 MHz and � =
2 MHz. The solid red curve is for the dephasing rate �d = 0.01�, and
the dotted blue curve corresponds to �d = �. The difference between
the peaks at ±� is more and the heating peak at ω = −� is less
when � 
 �d , and hence more cooling. (b) Spectral noise density of
the radiation force in the resolved (solid red and dotted green curve)
and unresolved sideband (dotted blue curve) regime. The parameters
used here correspond to that of minimum quantum limit cooling.
Minimum quantum limit is attained at �c = −κ/2 in the unresolved
sideband (κ 
 �), and at �c = −� in resolved sideband (κ � �).

β = −(go|α|2 + G〈σz〉s)/� and α = η/[�c − go(β + β∗)],
which are real values. The qubit indirectly interacts with the
optical field through the mechanical oscillator. In the follow-
ing, we assume that the qubit and the optical field evolve
independently with no interaction. The master equation for
the optomechanical system (ρ̂om) can be obtained by solving
the coupled rate equations for Pρ̂ and Qρ̂ [24]:

˙̂ρom = − i

h̄
[Ĥom, ρ̂om] + {�+

q + γ nth}D[b̂†](ρ̂)

+ {�−
q + γ (nth + 1)}D[b̂](ρ̂) + κD[â](ρ̂), (11)

where

Ĥom = h̄�′ b̂†b̂ − h̄�c â†â + h̄Go(â† + â)(b̂† + b̂),

�−
q = 2G2Re{S(�)}, �+

q = 2G2Re{S(−�)},
and �′ = � + Im{S(�) + S(−�)}. (12)

The master equation [Eq. (11)] is correct only up to the
O{(G/�)2, (γ nm/�)2}. We see that by eliminating the qubit
dynamics, the frequency of the oscillator is coherently shifted,
and two additional decay rates appear (�−

q and �+
q ). The decay

rate �+
q is responsible for heating, whereas �−

q contributes to
cooling. The half-sided spectral noise density S(ω) is defined
as

S(ω) =
∫ ∞

0
dt eiωt 〈�σz(t )�σz(0)〉, (13)

where �σz = σz − 〈σz〉s. An approximate analytical expres-

sion for Re{S(ω)} near resonance condition
√

�2
q + �2

R = �

is derived in Ref. [24]. Figure 2(a) shows the plot of Re{S(ω)}
under red detuning (�q < 0) and resonance condition. Two
plots are shown in the figure, one for � 
 �d , and the other
for � ≈ �d . As shown in the figure, the difference between
the peaks at ±� is more when the relaxation rate � is much

greater than the dephasing rate �d . As we will see later in
Eq. (19), this difference should be significant for achieving
optimal cooling.

The master equation [Eq. (11)] contains the dynamics of
both the mechanical oscillator and cavity optical field. The
cavity field can be traced out and adiabatically eliminated
using the same P and Q formalism

Pρ̂om = ρ̂oss ⊗ ρ̂m, ρ̂m = tro[ρ̂], (14)

where ρ̂oss is the steady-state density operator of the optical
field, and ρ̂m is the mechanical density operator. Analogous
with the qubit elimination result, the elimination of the cavity
field coherently shifts the mechanical frequency and adds two
decay rates (�−

o and �+
o ). The reduced master equation of the

mechanical resonator in the interaction picture reads [51]:

˙̂ρm = {�+
o + �+

q + γ nth}D[b̂†](ρ̂)

+ {�−
q + �−

q + γ (nth + 1)}D[b̂](ρ̂), (15)

with

�−
o = x2

ZPF

h̄2 SFF(�) and �+
o = x2

ZPF

h̄2 SFF(−�). (16)

Here SFF(ω) is the spectral noise density of the radiative force
F̂ [= (h̄G/xZPF)(â + â†)] acting on the mechanical oscillator:

SFF(ω) =
∫ ∞

−∞
dt eiωt 〈F̂ (t )F̂ (0)〉. (17)

In Fig. 2(b), we plot SFF(ω) for the resolved (κ = 0.1 �,
κ = 0.8 �) and unresolved (κ = 10 �) sideband in the red de-
tuning case. The expectation value of the phonon occupation
number can be calculated from Eq. (15) as

〈 ˙̂nm〉 = −(γ + �o + �q)〈n̂m〉 + γ nth + �+
o + �−

q , (18)

where �q = �−
q − �+

q and �o = �−
o − �+

o are the cooling
rates contributed from the qubit and optical cavity field, re-
spectively, with

�q = 2G2[Re{S(�)} − Re{S(−�)}],

�o = x2
ZPF

h̄2 [SFF(�) − SFF(−�)]. (19)

For effective cooling, the cooling rates [Eq. (19)] must be
positive. This condition is met if the external drive of the
qubit and optical cavity are red detuned with respect to the
qubit energy level and optical resonance, respectively (see
Fig. 2). This means that the incoming photons from the ex-
ternal drive enter the optical cavity by absorbing a phonon
from the mechanical oscillator. In the qubit case, the energy
from the incoming photon is less than the excitation energy,
and thus energy is taken from the resonator phonon to ex-
cite fully. Therefore, in both the cases, phonons are emitted,
thereby cooling the mechanical oscillator. However, there is
also a finite probability for phonon absorption, thus heating
the oscillator. The phonons are absorbed at the rate �+

q + �+
o .

Cooling happens when the emission rate is faster than the ab-
sorption rate, which is generally the case in the red detuning.
The dynamics at the red detuning are schematically shown in
Fig. 1(b). The steady-state phonon number of the mechanical
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oscillator is given by

〈n̂m〉ss = γ nth + �+
o + �+

q

γ + �o + �q
. (20)

It is clear from Eq. (20) that cooling is prominent when the
cooling rates �q and �o are maximum, and the heating rates
�+

q and �+
o are minimum. The quantum limit for the bare qubit

cooling is given by

〈n̂m〉q = �+
q /�q. (21)

The minimum value of this quantum limit turns out to be zero
at drive strength �R = 0. However, with no drive, the qubit
is neither heating nor cooling the oscillator since the spectral
noise density responsible for these processes is zero for all
frequencies. In the following, we find the minimum quantum
limit in the presence of drive. Using Eq. (19) and Eq. (13), we
derive the decay rate �q for � 
 �d and �̄q = �, as given
below:

�q = β f (�R/�̄q), (22)

where β = 2G2/�, �̄q =
√

�2
R + �2

c , and

f (�R/�̄q) = 4
(�R/�̄q)2

√
1 − (�R/�̄q)2

4 − (�R/�̄q)4 . (23)

The maximum cooling rate is achieved for a large value of β

and the value of �R that maximize the function f (�R/�̄c),
i.e., �R = 0.85 �. At the optimal drive strength, �R =
0.85 �, the detuning is not absolute, i.e., �q = −0.53 �. The
spectral noise density Re{S(ω)} at the optimal drive is plotted
in Fig. 2(a). The minimum quantum limit for the optimal drive
strength is 〈n̂m〉q,min = 0.106.

The optomechanical cooling rate �o could be expressed
using Eq. (19), as follows:

�o = |G0|2
{

κ

(� + �c)2 + κ2/4
− κ

(−� + �c)2 + κ2/4

}
.

(24)
The quantum limit of the cooling induced by the optical cavity
field is given by

〈n̂m〉o = �+
o /�o, (25)

which we obtain using Eq. (16) and Eq. (24) as

〈n̂m〉o = −4(� + �c)2 + κ2

16 ��c
. (26)

The minimum cooling limit 〈n̂m〉o,min is reached at a detuning
�c = −

√
�2 + κ2/4 as

〈n̂m〉o,min = 1

2

(√
1 +

( κ

2�

)2
− 1

)
. (27)

For slow oscillators, referred to as the unresolved sideband
regime, � � κ , the minimum cooling limit is 〈n̂m〉o,min =
κ/(4�) for �c = −κ/2. Ground-state cooling is not possible
in this regime. The minimum cooling for fast oscillators, or the
resolved sideband regime, κ � �, is 〈n̂m〉o,min = κ2/(4�)2

for �c = −�. Thus, ground-state cooling is possible for the
high-frequency oscillator. The corresponding spectral noise

FIG. 3. (a) Steady-state mean phonon number in the unresolved
sideband regime, κ = 10 � and �c = −κ/2. Green, blue, and red
curves represent qubit, optomechanical and hybrid cooling, respec-
tively. Ground-state cooling is possible, but at the expense of bare
qubit cooling. (b) Cooling in the resolved sideband regime, κ =
0.1 � and �c = −�. More effective cooling is observed in the
hybrid case. Other parameters: � = 10 MHz, G = 0.2 MHz, γ =
10−5 MHz, and nth = 103.

density SFF(ω) for the minimum cooling limit is shown in
Fig. 2(b).

The effective minimum cooling, 〈n̂m〉ss [Eq. (20)], for
different optomechanical coupling rates G0 and the qubit cou-
pling rate G = 0.2 MHz is shown in Figs. 3(a) and 3(b). We
see that the qubit brings the mechanical oscillator to its ground
state even in the unresolved sideband regime. However, the
bare qubit cooling is more effective than hybrid cooling in
this regime. Nevertheless, we can study the applications of the
optomechanical system in this regime. In the case of a high-
frequency oscillator, or resolved sideband regime, we find
that hybrid cooling is more efficient than the bare individual
coolings.

B. Strong coupling

The strong coupling here refers to the coupling between
the optical cavity field and the mechanical oscillator. We as-
sume that the qubit state is hardly affected by the mechanical
interaction and goes to steady-state quickly, hence adiabat-
ically eliminated from the dynamics of the hybrid system.
The reduced master equation of the resultant optomechanical
system is given by Eq. (11). For determining the steady-state
phonon occupation number, we have to solve a linear system
of differential equations involving all the second-order mo-
ments: 〈â†â〉, 〈b̂†b̂〉, 〈â†b̂〉, 〈âb̂〉, 〈â2〉, and 〈b̂2〉 [27]. The time
evolution of the mean phonon number for two coupling cases,
Go = 1.2 κ and Go = 12 κ , taking the initial phonon numbers
to be 103, is shown in Fig. 4. It could be seen that in both the
coupling cases (intermediate coupling Go = 1.2κ and strong
coupling Go = 12κ), the hybrid cooling is more effective than
the individual coolings. Furthermore, cooling is more in the
strong coupling case than the intermediate coupling one.

IV. CONCLUSION

We have studied the cooling of a mechanical oscillator
in a hybrid system of optomechanics and a superconducting
qubit. The Hamiltonian describing the system dynamics is
systematically derived. We show that because of the external
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FIG. 4. Time evolution of mean phonon number 〈n̂m〉(t ) for
(a) Go = 0.06 MHz, κ = 0.05 MHz, and G = 0.2 MHz, and
(b) Go = 0.6 MHz, κ = 0.05 MHz, and G = 0.2 MHz. Other pa-
rameters: � = 10 MHz, γ = 10−5 MHz, and nth = 103.

laser drive, the coupling rate between the qubit and the os-
cillator is modified. We discussed the cooling effect in two
specific regimes, namely, the weak and the strong coupling
regimes. In the weak coupling regime, the dynamics of the
qubit and the optical cavity field are adiabatically eliminated,
which resulted in adding an extra factor in the steady-state
displacement of the resonator. The significance of this extra
factor is apparent while dealing with optomechanical bistabil-
ity. We also discussed the quantum limit of cooling for both
the individual qubit and optomechanical cooling under the
weak coupling regime. We show that in the weak coupling and
resolved sideband regime, cooling is more efficient in the hy-
brid case for a specific choice of parameters. In the unresolved
sideband regime, the ground-state cooling of the mechanical
resonator is still possible, however, at the expense of qubit
cooling. Cooling in the strong optomechanical coupling case
is also studied. It is found that hybrid cooling is more effective
compared to the individual cooling mechanisms. Finally, we
would like to emphasize that the hybrid system proposed in
this work could also be used for quantum state transferring
purposes and could be utilized as a quantum transducer.
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APPENDIX A: DERIVATION OF THE
HAMILTONIAN [EQ. (2)]

In the following, we derive the Hamiltonian [Eq. (2)] for
the hybrid system in the qubit basis. Let us begin with Eq. (1).
At the gate charge close to an odd number of electron charges,
i.e., Nxq(x) = Nx(x) + Nq + 1/2 − �N , where |�N | � 1/2,
the first two energy levels of the Josephson junction are very
close compared to the higher ones. Therefore, we can make
a two-level approximation in this region. To have a clear
idea of this approximation, we rewrite the first and second
terms of Eq. (1) in the number basis. Denoting the resultant
transformation of these two terms by Hq, we have

Hq = 4Ec(x)
∑

N

[N̂ − Nxq(x)]2|N〉〈N |

− EJ

2

∑
N

(|N + 1〉〈N | + |N〉〈N + 1|), (A1)

where Ec(x) = e2/2C� (x) is the charging energy of the CPB.
Substituting the value of Nxq(x), which is close to an odd
number of electron charges, in Eq. (A1), and restricting |N〉
to |0〉 and |1〉, we get the following Hamiltonian:

Hq = Ec(x)[1 + 4�N (x)2]I − 4Ec(x)�N (x)σ ′
z − EJ

2
σ ′

x.

(A2)

Here, the first term simply adds extra energy of Ec(x)[1 +
4�N (x)2] to all the states. Thus, we first omit this energy off-
set term and later use it when we introduce the gate fluctuation
by retaining the fluctuating term.

Hq = −4Ec(x)�N (x)σ ′
z − EJ

2
σ ′

x. (A3)

Assuming that the displacement x of the movable capacitor is
relatively small compared to it’s initial separation d , we obtain
Cx(x) ≈ Cx − Cx(x/d ). Hence �N (x) ≈ �N − Nx(x/d ) and
Ec(x) ≈ Ec + Ec(Cx/C� )(x/d ). Here, Cx = 2eNx/Vx, Ec =
e2/2C� , and C� = 2CJ + Cq + Cx. Then, from Eq. (A3), we
get

Ĥq = −ε

2
σ ′

z − EJ

2
σ ′

x + h̄g(b̂† + b̂)σ ′
z, (A4)

where g = (4EcXZPF/h̄d )[Nx − �N (Cx/C� )], ε = 8Ec�N ,
and XZPF is the zero-point field amplitude of the oscilla-
tor. For a large value of Nx 
 1, the coupling rate could
be put as, g ≈ (4EcXZPF/h̄d )Nx. Both the gate voltage Vq

and Vx have quantum fluctuations ( ˆδNx and ˆδNq), which
acts as a quantum dissipation to both the qubit and oscilla-
tor. These fluctuation are incorporated in �N , i.e., �N →
�N + ˆδNx + ˆδNq. Substituting these fluctuations in Eq. (A4),
and in the first term of Eq. (A2), we obtain two additional
terms, i.e., 4Ec( ˆδNx + ˆδNq)σ ′

z and 4EcXZPF( ˆδNx + ˆδNq)(b̂† +
b̂). The first term causes dephasing of the qubit, while the
second term causes relaxation of the oscillator. When we
transform Hq to the qubit basis, σ ′

z → (σx cos ϕ − σz sin ϕ)
(see below), the gate fluctuations cause both dephasing and
relaxation. These fluctuations could be included in the Lind-
blad master equation of the total hybrid system as decay rates,
and, hence, could be excluded from the Hamiltonian. If we
coherently drive the qubit at frequency ωd and amplitude �R,
the qubit Hamiltonian with the driving term reads as follows:

Ĥq = −ε

2
σ ′

z − EJ

2
σ ′

x + h̄g(b̂† + b̂)σ ′
z + h̄�R cos(ωdt )σ ′

z .

(A5)

The above Hamiltonian takes the following form, in eigenba-
sis of the qubit:

Ĥq = h̄ωq

2
σz + h̄�R cos(ωdt )(σx cos ϕ − σz sin ϕ)

+ h̄g(b̂† + b̂)(σx cos ϕ − σz sin ϕ), (A6)

where tan ϕ = ε/EJ and h̄ωq =
√

ε2 + E2
J . Within the usual

rotating-wave approximation (RWA), the transverse coupling
term h̄g(b̂† + b̂)σx cos ϕ could be dropped due to the signifi-
cant difference in qubit and oscillator energy scales, i.e., ωq 

�. Near the charge symmetry point (�N ≈ 0 and sin ϕ ≈
0), the longitudinal coupling is weak. So, we transform the
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transverse coupling term using the so-called Schrieffer-Wolff
transformation [23] and retain the second-order coupling
term, h̄(g2/ωq) cos2 ϕ(b̂† + b̂)2σz. Furthermore, due to ωd ≈
ωq, we can drop the driving term h̄�R cos(ωdt )σz sin ϕ under
the RWA. The Hamiltonian, Eq. (A6). then simplifies to

Ĥq = h̄ωq

2
σz + h̄�R cos(ωdt )σx cos ϕ

− h̄g(b̂† + b̂)σz sin ϕ + h̄
g2

ωq
cos2 ϕ(b̂† + b̂)2σz. (A7)

In the drive frame (ωd ) of the qubit, and under the RWA
Eq. (A7) could be written as follows:

Ĥq = − h̄�q

2
σz + 1

2
h̄�Rσx cos ϕ

−h̄g(b̂† + b̂)σz sin ϕ + h̄
g2

ωq
cos2 ϕ(2b̂†b̂ + 1)σz, (A8)

where �q = ωd − ωq. Finally, on substituting Eq. (A8) in
Eq. (1), we obtain the Hamiltonian of the hybrid sys-
tem,described by Eq. (2).

APPENDIX B: EXPLICIT EXPRESSIONS FOR Ha

AND Hb IN EQ. (3)

The last two terms in Eq. (3) results owing to the direct
substitution of the transformation, â → α + δâ and b̂ → β +
δb̂, in Eq. (2). These terms are as follows:

Ha =h̄go(αa† + α∗a)(β + β∗)

+ h̄η(a + a†) − h̄�c(αa† + α∗a) (B1)

and Hb = h̄go|α|2(b + b†) + h̄�(βb† + β∗b). (B2)
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