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Surface plasmon polaritons in metal films on anisotropic and bianisotropic substrates

A. N. Darinskii
Institute of Crystallography FSRC “Crystallography and Photonics,” Russian Academy of Sciences,

Leninskii Prospect 59, Moscow 119333, Russia

(Received 18 May 2021; accepted 8 July 2021; published 6 August 2021)

The existence of nonradiative surface plasmon polaritons (SPPs) is theoretically studied in an isotropic metal
film surrounded by optically anisotropic half-infinite dielectrics. By using general properties of the impedance
matrices of half-infinite dielectrics and metal films the maximum number of SPPs has been established at a given
value of the tangential wave number. It has been proved that, if the dielectrics are nonbianisotropic and magneto-
optically inactive but uniaxial or biaxial and oriented arbitrarily, then at most two SPPs can exist independently
of the frequency dispersion of the dielectric permittivity and magnetic permeability. At most four SPPs emerge
when both the dielectric media are bianisotropic and/or magneto-optically active but the maximum number of
SPPs reduces to 3 provided that one of the dielectrics does not exhibit either bianisotropy or magneto-optical
activity. A metal film inserted into an infinite bianisotropic and/or magneto-optically active medium can also
guide at most three SPPs.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs) exist in a variety of
structures. Theoretical and experimental investigations al-
lowed the establishment of fundamental properties of the SPP
propagation on flat and randomly rough metal-dielectric in-
terfaces, in metal films sandwiched between dielectrics and
in dielectric film enclosed between metals, in waveguides of
different types, and in periodic gratings, grooves, and wedges
created on the surface of metals [1–8]. Recently there has ap-
peared an interest in studying SPPs at the boundary of metals
having unusual properties and in the possibility of generating
SPPs with specific characteristics of the wave field [9–14].
Scientific activity is stimulated by applications of SPPs in
chemical and biological sensors, in photovoltaic cells in order
to enhance their effectiveness, in super-resolution microscopy
and surface-enhanced Raman scattering [15–19].

Given material constants and the geometric parameters
of a structure, SPPs may or may not exist, their number
can be different and, apart from that, SPPs can be radiative
(leaky) and nonradiative [1–6,8,20–30]. The former emerge
in a frequency range where bulk electromagnetic waves exist
in dielectrics and, correspondingly, they radiate electromag-
netic waves into the interior of dielectrics. In contrast, the
frequencies of nonradiative SPPs fall outside the interval of
bulk waves in external dielectrics, so that there is no radiation.

We are concerned with nonradiative SPPs guided by a
metal film. Such SPPs were comprehensively studied by ex-
plicit analytic computations in the case of isotropic dielectrics
and optically anisotropic ones at orientations supporting TE
and TM modes [20–22], at particular orientations of uniaxial
and biaxial dielectrics not allowing TE and TM modes [30]. It
was found that not more than two SPPs come about.

The present paper considers nonradiative SPPs in metal
films embedded between arbitrarily oriented uniaxial or

biaxial dielectrics as well as between bianisotropic and/or
magneto-optically active dielectrics. Our goal is to establish
the admissible maximum number of SPPs. This task cannot
be accomplished by explicit analytic computations analogous
to those which were carried out in [20–22,30] for nonradiative
SPPs guided by films as well as in [23–29] for nonradiative
SPPs on the dielectric–half-infinite metal and radiative SPPs
because it is not possible to even derive the dispersion equa-
tion in a closed analytic form in the cases we are interested
in. Numerical computations do not help either to solve such
a general problem. The posed problem proves to be solvable
by using an analytical method which is based on properties of
the impedance matrices of half-infinite media and metal films,
allowing one to avoid the necessity of deriving explicitly
dispersion equations. Note that similar methods have already
been applied to surface electromagnetic waves in homoge-
neous dielectrics and superlattices [31–33], and to surface
acoustic waves in superlattices [34–38]. In general, the idea
of using properties of the impedance matrices, which follow
from fundamental physical principles, in order to analyze the
existence of surface waves has been put forward in [39,40]
in connection with the theory of surface acoustic waves in
half-infinite homogeneous anisotropic solids.

Our paper is organized as follows. Section II introduces the
impedance matrices of half-infinite dielectric materials and
metal films. The proofs of the statements concerning the exis-
tence of nonradiative SPPs are given in Sec. III, and Sec. IV
discusses the results obtained. Some important relations are
included in Appendices A–C. Numerical examples are given
in Appendix D.

II. IMPEDANCE MATRICES

The matrices which we call impedances have somewhat
different properties in nonbianisotropic magneto-optically
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inactive media and bianisotropic and/or magneto-optically
active dielectrics but the properties, which we need, are the
same independently of whether the dielectric is only bian-
isotropic, or only magneto-optically active, or bianisotropic
and magneto-optically active. Taking into account this fact,
we will frequently call “anisotropic” a dielectric which is
nonbianisotropic and magneto-optically inactive. The term
“bianisotropic” will mean bianisotropic and/or magneto-
optically active dielectric.

We will assume no absorption. Otherwise the impedances
lose their key properties, so that the rigorous analysis of the
SPP existence in the presence of losses requires a different
approach. The influence of absorption on the number of SPPs
is discussed in Sec. III C.

A. Dielectrics

Electromagnetic properties of a bianisotropic material are
described with the aid of the constitutive relations

D = ε̂E + κ̂H, B = κ̂†E + μ̂H, (1)

where D, B, E, and H are the electric displacement, magnetic
induction, and electric and magnetic fields, respectively; ε̂ and
μ̂ are, respectively, the dielectric permittivity and magnetic
permeability; κ̂ is a complex nonsymmetric pseudotensor
[41–46]. The symbol † denotes the Hermitian conjugation. We
assume ε̂ and μ̂ complex Hermitian tensors to allow for the
magneto-optical activity. The components of ε̂, μ̂, and κ̂ may
depend on frequency.

In materials that are anisotropic according to our terminol-
ogy, Eq. (1) simplifies to

D = ε̂E, B = μ̂H, (2)

where ε̂ and μ̂ are real symmetric tensors (magneto-optical
activity is excluded but ε̂ and μ̂ remain frequency dependent).

Consider an electromagnetic wave

ξ̃α (r, t ) = ξαei[kx+pαz−ωt] (3)

labeled by the subscript α and propagating in the plane XZ
along the axis X with a frequency ω and wave number k. The
vectors ξ̃α and ξα have four components and these components
are the x and y components of the electric E and magnetic H
fields, r = (x z)t is the radius vector, and the symbol t denotes
the transposition. By substituting (3) in the Maxwell equations
and taking into account (1) or (2) one can find that the normal
wave number pα and the vector ξα are an eigenvalue and the
corresponding eigenvector of a 4 × 4 matrix N̂. The explicit
expression of N̂ depends on the order of components of E and
H in ξα (see, e.g., [31,47–49]). Following [32,33] we put

ξα =
(

Uα

Vα

)
, Uα =

(−Eαy

Hαy

)
, Vα =

(
Hαx

Eαx

)
. (4)

The matrix N̂ which corresponds to the definition of vectors
ξα (4) is given in [32,33] and omitted in this paper because it
will not be used.

Independently of whether the medium is anisotropic or
bianisotropic, the four eigenvalues pα occur either pairwise
complex conjugate, pα = p∗

α+2, Im(pα ) = −Im(pα+2) �= 0,
where the symbol ∗ denotes the complex conjugation, or pair-
wise real, i.e., Im(pα ) = Im(pα+2) = 0. Given the geometry

of propagation and the value of k, a limiting frequency ωL

exists such that in the interval ω < ωL all pα’s are complex
and hence there are no bulk waves. It is this interval which is
of our concern.

Assume Im(pα ) > 0, α = 1, 2, at ω < ωL. In this instance
the wave fields

ξ̃
(+) =

2∑
α=1

bα ξ̃α (r, t ), ξ̃
(−) =

4∑
α=3

bα ξ̃α (r, , t ), (5)

where bα are constants, tend to zero as z → +∞ and −∞,
respectively. With this in mind, we introduce two 2 × 2
impedance matrices Ẑ and Ẑ′ via the relations

Vα = iẐUα, Vα+2 = −iẐ′Uα+2, α = 1, 2. (6)

Thus Ẑ can express the last two components of ξ̃
(+)

in terms
of its first two components at a fixed plane z = const. The

impedance Ẑ′ relates similarly the components of ξ̃
(−)

.
The properties of Ẑ and Ẑ′ within the interval ω < ωL

are given in Appendix A. They are basically the same in
bianisotropic and anisotropic media. The difference is that in
anisotropic media

Ẑ′ = Ẑ∗ = Ẑt . (7)

Hence in this case

Re(Ẑ) = Re(Ẑ)t , Im(Ẑ) = −Im(Ẑ)t . (8)

Equality (7) holds true because N̂ is a real matrix in
anisotropic media and therefore ξα = ξ∗

α+2 once pα = p∗
α+2.

In bianisotropic media N̂ is a complex matrix, so that ξα �=
ξ∗
α+2 and (7) does not hold true. In consequence, (8) may or

may not hold true in such materials.

B. Metal films

We consider that the absorption of electromagnetic waves
in metal is negligibly small at frequencies higher than a crit-
ical value ωa and that the relative dielectric permittivity of
metal εm(ω) is isotropic and negative in the interval ωa < ω <

ωp, where ωp is a bulk plasma frequency. For example, within
the frame of the Drude model εm(ω) = 1 − ω2

p/ω
2.

In isotropic media there are two TE polarized modes α =
1, 3 with Eαx = Hαy = 0 and two TM polarized modes α =
2, 4 with Eαy = Hαx = 0. Given k, all the modes have the
purely imaginary wave number pα = −pα+2 = ip, where p =
1
c

√
c2k2 + ω2|εm|μm, c is the light velocity in the vacuum, and

μm > 0 is the relative magnetic permeability of the metal.
We are interested in electromagnetic fields in films. By

using an analogy with a general theory of acoustic waves
in elastically anisotropic plates [50], we introduce the 2 × 2

impedances ẐZZ
(TE)

and ẐZZ
(TM)

as follows. The former relates the
values H (h)

x and H (0)
x of the total field Hx at the edges z = h and

0 of the film, respectively, with the values E (h)
y and E (0)

y of the
total field Ey at the same edges. The latter expresses similarly
E (h)

x and E (0)
x in terms of H (h)

y and H (0)
y :(

H (h)
x

−H (0)
x

)
= iẐZZ

(TE)
(

E (h)
y

E (0)
y

)
, (9)

(
E (h)

x

−E (0)
x

)
= −iẐZZ

(TM)
(

H (h)
y

H (0)
y

)
, (10)
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where

ẐZZ
(TE) = p

ωμ0μm
ẐZZ, ẐZZ

(TM) = − p

ωε0|εm|ẐZZ, (11)

ẐZZ =
(

coth(ph) −csch(ph)

−csch(ph) coth(ph)

)
, (12)

where μ0 and ε0 are the magnetic and dielectric constants.

The necessary properties of ẐZZ
(TE)

and ẐZZ
(TM)

are given in
Appendix B.

III. EXISTENCE OF SURFACE PLASMON POLARITONS

Let a metal film of thickness h be between half-infinite
dielectric media 1 and 2 which occupy the regions z > h and
z < 0, respectively. In order to derive the dispersion equation

in a suitable form we build up of ẐZZ
(TE)

and ẐZZ
(TM)

a real 4 × 4
matrix Ẑ f in such a way that(

V(h)

−V(0)

)
= −iẐ f

(
U(h)

U(0)

)
, (13)

where U(h),(0) and V(h),(0) are the vectors formed of E (h),(0)
x,y

and H (h),(0)
x,y , respectively, similarly to Uα and Vα (4):

Ẑ f =

⎛
⎜⎜⎜⎜⎝

Z(TE)
11 0 Z(TE)

12 0

0 Z(TM)
11 0 Z(TM)

12

Z(TE)
12 0 Z(TE)

11 0

0 Z(TM)
12 0 Z(TM)

11

⎞
⎟⎟⎟⎟⎠, (14)

where Z(TE)
i j and Z(TM)

i j are i j elements of matrices (11), and
the index f means “film.” In view of Eq. (6)

V(h) = iẐ(1)U(h), V(0) = −iẐ(2)′U(0), (15)

where Ẑ(J ) and Ẑ(J )′, with J = 1, 2, are, respectively, the
impedances of media 1 and 2. The insertion of V(h) and V(0)

(15) in (13) yields

Ẑst

(
U(h)

U(0)

)
= 0, (16)

where

Ẑst = Ẑd + Ẑ f (17)

and

Ẑd =
(

Ẑ(1) 0̂

0̂ Ẑ(2)′

)
, (18)

0̂ is the 2 × 2 zero matrix, and the indices st and d come
from “structure” and “dielectric.” As a result, the dispersion
equation can be written in the form

det Ẑst = 0, (19)

wherefrom it follows that one of the eigenvalues λα , α =
1, 2, 3, 4, of Ẑst vanishes at SPP frequencies, so below we will
analyze the roots of equations

λα (ω) = 0, α = 1, 2, 3, 4, (20)

within the frequency range ωa < ω < �L = min(ωL1, ωL2),
where ωL1 and ωL2 are the above defined limiting frequencies

of media 1 and 2, respectively. In this interval there are no bulk
modes in either dielectrics or film (we assume ωL1,L2 < ωp

since ωp falls into far ultraviolet in metals).
General properties of λα in the interval ωa < ω < �L as

functions of ω do not depend on whether media 1 and 2 are
anisotropic or bianisotropic. These properties are derivable
from properties (A1)–(A5) of Ẑ and Ẑ′ and from properties

(B1)–(B4) of ẐZZ
(TE)

and ẐZZ
(TM)

, viz.,

Im(λα ) = 0, α = 1, 2, 3, 4, (21)

λα, α = 1, 2, 3, 4, monotonically decrease
with increasing frequency.

(22)

From (21) and (22) it follows that the dispersion equation
(19) cannot have more than four roots because each λα may
vanish at most once. Correspondingly, the maximum number
of roots is possible when the four eigenvalues are positive at
ωa, so, having in mind property (A4), we consider that

λα > 0, α = 1, 2, 3, 4, at ω = ωa. (23)

It turns out that there are specific restrictions on the number
of vanishing λα’s, depending on whether both dielectrics are
anisotropic or at least one of them is bianisotropic, so we
will discuss these two options separately. [A few additional
remarks concerning Eq. (19) are given in Appendix C.]

A. Anisotropic structure

Once medium 1 and 2 are magneto-optically inactive and
nonbianisotropic, in view of Eqs. (7) and (A1)–(A5), Re(Ẑ(1) )
and Re(Ẑ(2)′) are positive definite matrices in the interval
ω < �L. Since the matrices Ẑ(1) and Ẑ(2)′ are Hermitian, their
diagonal elements Z (1)

11 and Z (2)′
11 are real and therefore Z (1)

11 >

0 and Z (2)′
11 > 0 at ω < �L, owing to the positive definiteness

of Re(Ẑ(1) ) and Re(Ẑ(2)′).
We represent Ẑst in the form

Ẑst =
4∑

α=1

λαeα ⊗ e∗
α, (24)

where eα are the orthonormalized eigenvectors of the Her-
mitian matrix Ẑst and the symbol ⊗ stands for the dyadic
multiplication, and assume the eigenvalue λ4 positive at ω <

�L. Due to Eqs. (14), (17), (18), and (B2), by contracting
Ẑst with the vector t = (−e∗

4,3 0 e∗
4,1 0)t , we arrive at the

inequality

t†Ẑstt =
3∑

α=1

λα|e†
αt|2 = Z (1)

11 |e4,3|2

+ Z (2)′
11 |e4,1|2 + t′†ẐZZ

(TE)
t′ > 0, (25)

where t′ = (−e∗
4,3 e∗

4,1)t . Hence, apart from λ4, at least one of
the eigenvalues λα , α = 1, 2, 3, has to be positive at ω < �L.
If it happens that e4,1 = e4,3 = 0, then the first and third com-
ponents of at least two eigenvectors of three eα , α = 1, 2, 3,
do not vanish, since otherwise the four eα’s could not be
linearly independent. Assuming e3,1 �= 0 and e3,3 �= 0, we
contract Ẑst with the vector t = (−e∗

3,3 0 e∗
3,1 0)t and obtain

that
∑2

α=1 λα|e†
αt|2 > 0, wherefrom it follows that not only
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λ4 > 0 but also either λ1 > 0, or λ2 > 0, or λ1 > 0 and λ2 >

0. Summing up, in view of (22),

given k, at most two nonradiative SPPs exist if both dielectrics
are magneto-optically inactive and nonbianisotropic.

This statement holds true independently of the anisotropy
and frequency dispersion of the dielectric permittivity and
magnetic permeability. It is also independent of a particular
behavior of the dielectric permittivity of metal εm(ω) because,
as it is pointed out in Appendix B, the required properties of

ẐZZ
(TE)

and ẐZZ
(TM)

can be established without using the explicit
expression of εm(ω).

B. Bianisotropic structure

All the four eigenvalues of Ẑst may vanish when both
dielectrics are bianisotropic or/and magneto-optically active,
so

given k, at most four nonradiative SPPs can emerge.

Let one of the dielectrics, e.g., medium 2, be magneto-
optically inactive and nonbianisotropic. Due to (14), (17), and
(18), the contraction of Ẑst with the vector q = (0 0 1 0)t

yields

qt Ẑstq =
4∑

α=1

λα|e†
αq|2 = Z (2)′

11 + Z (TE)
11 > 0, (26)

because Z (2)′
11 > 0 and Z (TE)

11 > 0 [see the beginning of Sec.
III A and also Eqs. (11) and (12)]. For (26) to hold true, it
is necessary that at least one of λα , α = 1, 2, 3, 4, be positive
in the interval ωa < ω < �L. Hence,

given k, at most three nonradiative SPPs can emerge in
a bianisotropic dielectric–metal film–anisotropic dielectric
structure.

Note that the maximum number is the same if medium 2 is
optically isotropic.

Additionally,

given k, at most three nonradiative SPPs exist if media 1 and
2 are the upper and lower halves of an infinite bianisotropic
medium, respectively.

In this case Ẑ(2)′ = Ẑ(1)′ and, by virtue of property (A3),
Z (1)

11 + Z (1)′
11 > 0, where Z (1)

11 and Z (1)′
11 are diagonal elements of

Ẑ(1) and Ẑ(1)′, respectively. By contracting Ẑst with the vector
t = (1 0 1 0)t we obtain the inequality

tt Ẑstt =
4∑

α=1

λα|e†
αt|2

= Z (1)
11 + Z (1)′

11 + t′tẐZZ
(TE)

t′ > 0, (27)

where t′ = (1 1)t . Hence, not all λα’s can turn out to be
negative, so that at most three SPPs exist, which completes
the proof.

C. Absorption

It has already been mentioned that in the presence of ab-
sorption the impedances lose their properties on which our
approach is based; first of all, they are not Hermitian matri-
ces. It is worth noting that absorption changes the situation

in general because in this case all partial solutions (3) of
the Maxwell equations are inhomogeneous at any frequency
rather than only below a certain frequency.

At the same time, some conclusions about the role of
weak absorption can be made (e.g., ε′′

m/ε′
m = 0.067 in Ag

and ε′′
m/ε′

m = 0.077 in Au at λ = 1 μm [51]). In particular,
weak absorption generally cannot change the number of SPPs
established under assumption of no absorption. Indeed, prop-
erties (A5), (A6), and (B5) allow the demonstration via the
perturbation theory that if the dispersion equation has a root
in the absence of absorption then in the presence of weak
absorption, e.g., due to absorption in metal, the dispersion
equation has a complex root of which the imaginary part is
of the sign corresponding to attenuation. Let an eigenvalue λα

of Ẑst vanish at a frequency ωSPP when ε′′
m = 0. Once ε′′

m �= 0,
the equation λα = 0 necessarily has a root ω ≈ ωSPP + iω′
of which the imaginary part ω′ is of sign corresponding to
attenuation:

ω′ = −ε′′
m

e†
α

∂Ẑ f

∂εm
eα

e†
α

∂Ẑst
∂ω

eα

< 0, (28)

where eα is the eigenvector of Ẑst associated with λα at ω =
ωSPP and ε′′

m = 0. It is also seen that the linear correction to
ωSPP is purely imaginary. Therefore the real correction will be
of the second order, so the frequency shift due to absorption
will be smaller than the SPP linewidth and the influence of
the absorption on the existence of SPPs can be viewed as
a second-order effect. In this connection we note that if we
assume the dielectric permittivity of metal purely real below
the frequency ωa (see Sec. II B) and find an SPP at ω < ωa

then this wave will still exist at any reasonable absorption.
Correspondingly, our considerations could be extended to the
interval 0 < ω < �L.

Weak absorption can give rise to a new attenuating SPP
at ω < �L provided that one of the eigenvalues of Ẑst, when
calculated without account for absorption, vanishes, or nearly
vanishes, at �L since then a small perturbation can make this
eigenvalue vanish at ω < �L. However, from (B5) it follows
that the first derivatives of the eigenvalues λα of Ẑst with re-
spect to the dielectric permittivity εm of the metal are negative:

∂λα

∂εm
= e†

α

∂Ẑ f

∂εm
eα < 0, α = 1, 2, 3, 4, (29)

so that if, e.g., in anisotropic structures λ2 < 0 and λ3 < 0
at ω < �L whereas λ4 is slightly greater than zero in the
vicinity of �L, then it would be possible to get a third SPP in a
structure without losses by slightly increasing real εm. Thus a
positive eigenvalue of Ẑst can be small enough at ω = �L only
when not more than one of the other eigenvalues is negative
and hence weak absorption cannot increase the maximum
number of SPPs.

IV. CONCLUDING REMARKS

We have proved that at most two nonradiative SPPs
exist in a metal film enclosed between two semi-infinite
optically anisotropic but magneto-optically inactive and non-
bianisotropic dielectrics. Thus the maximum number of
nonradiative SPPs is the same as in the case of optically
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isotropic dielectrics. This maximum is universal in the sense
that it is not affected either by particular material properties
of dielectrics and metal, such as the frequency dependence of
the dielectric permittivity and its anisotropy in dielectrics, or
by the film thickness.

Bianisotropy and/or magneto-optical activity increase the
admissible maximum of nonradiative SPPs in films. Three
SPPs, rather than two, can emerge in a metal film placed
between bianisotropic, or magneto-optically active, dielectric
and nonbianisotropic magneto-optically inactive dielectrics
independently of whether the latter is optically isotropic or
anisotropic. Four SPPs can exist if both dielectrics are bian-
isotropic and different, but if the dielectrics are the upper
and lower parts of a bisected bianisotropic and/or magneto-
optically active dielectric then at most three SPPs emerge. For
the number of SPPs in films to be greater than 2, bianisotropy
and magneto-optical activity must be sufficiently strong to
overcome the limit set by the real part of the dielectric per-
mittivity and magnetic permeability. Hence, most likely, not
more than two SPPs can be observed in practice.

However, more than two SPPs can be found by compu-
tations, e.g., in “model” strongly magneto-optically active
materials (see Appendix D). These computations confirm the
fact that the maximum numbers of SPPs established in Sec.
III B are exact, that is, four or three SPPs can actually exist in
relevant structures. In Appendix C it is mentioned that at most
two SPPs can propagate along the bianisotropic dielectric–
half-infinite metal interface whereas at most one SPP exists
at the interface between a metal and a nonbianisotropic and
magneto-optically inactive dielectric. Example 4 in Appendix
D reveals that a pair of SPPs is also an exact maximum.

Like in the case of absorbing materials, the impedances of
dielectrics lose their properties in the range ω > ωL because
of bulk waves. In particular, they turn out to be non-Hermitian.
Therefore the existence of radiative (leaky) SPPs also cannot
be analyzed by the method used. We note that the same
restriction on the applicability of impedances occurs when
considering leaky and so-called supersonic surface acoustic
waves in solids. At the same time, certain general relations
between the characteristics of acoustic fields continue to hold
true and they allow one to draw a number of general conclu-
sions concerning such waves [52–54]. Similar relations hold
true for electromagnetic fields but the analysis of the specific
features of SPPs emerging in the frequency range of bulk
waves is out of the scope of the present paper.
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APPENDIX A

The properties of the impedances Ẑ and Ẑ′ of homo-
geneous dielectrics defined by Eq. (6) coincide with the
properties of their counterparts introduced in [32–36] to an-
alyze the existence of surface electromagnetic and acoustic
waves in periodic superlattices within the so-called lowest

forbidden band. The latter is an analog of the range ω < ωL.

Ẑ = Ẑ†, Ẑ′ = Ẑ′† at ω < ωL, (A1)

Ẑ and Ẑ′ are positive definite matrices at ω → 0, (A2)

Ĝ = Ẑ + Ẑ′ is a positive definite matrix at ω < ωL, (A3)

all eigenvalues of Z and Ẑ′ are finite at ω < ωL

but tend to + ∞ as ω → 0,
(A4)

∂Ẑ
∂ω

and
∂Ẑ′

∂ω
are negative definite matrices at ω < ωL. (A5)

The latter properties holds true irrespective of whether the
material constants are frequency independent or dependent.

If the replacement of a material constant c by c + ic′, where
c′ 	 c is real, results in absorption, then

sgn(c′)
∂Ẑ
∂c

∣∣∣∣
c′=0

and sgn(c′)
∂Ẑ′

∂c

∣∣∣∣
c′=0

are

negative definite matrices at ω < ωL.

(A6)

APPENDIX B

By Eqs. (11) and (12), in the interval ωa < ω < ωp

ẐZZ
(TE)

and ẐZZ
(TM)

are real symmetric matrices, (B1)

ẐZZ
(TE)

is a positive definite matrix, (B2)

ẐZZ
(TM)

is a negative definite matrix, (B3)

∂ẐZZ
(TE)

∂ω
and

∂ẐZZ
(TM)

∂ω
are negative definite matrices. (B4)

Property (B4) can be verified by taking advantage of inequal-
ity (13) from [33], i.e., to proceed similarly to the derivation
of (A5). In the present case this inequality is integrated over
the film thickness rather than from zero to infinity. If the
Drude model is used, then (B4) can also be established just

by evaluating the derivatives of ẐZZ
(TE)

and ẐZZ
(TM)

.
The absorption in metals is included into considerations

by changing real εm to complex εm = ε′
m + iε′′

m [owing to
the choice of the phase factor in (3), in our case ε′′

m > 0].
Proceeding by analogy with the derivation of (A6) in [33] and
using again the integration over the film thickness we find that

∂ẐZZ
(TE)

∂εm

∣∣∣∣
ε′′

m=0

and
∂ẐZZ

(TM)

∂εm

∣∣∣∣
ε′′

m=0

are

negative definite matrices at ωa < ω < ωp. (B5)

Within the frame of the Drude model these inequalities can

also be obtained just by differentiating ẐZZ
(TE)

and ẐZZ
(TM)

(11)
with respect to εm.

APPENDIX C

Equation (19) can be transformed to det(Ẑst22Ẑ−1
st12Ẑst11 −

Ẑst12) = 0, where Ẑst11 and Ẑst22 are the upper and lower
diagonal 2 × 2 blocks of Ẑst and Ẑst12 is the off-diagonal 2 × 2
block of Ẑst. It can be checked that in the limit h → 0 this
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FIG. 1. Four SPPs in metallic film embedded between two dif-
ferent magneto-optically active dielectrics. Line 1a and line 2a are
low-frequency branches 1 and 2, respectively. Line 3a represents
high-frequency branches 3 and 4 as well as the dependence �L (k)
(these lines are hardly distinguishable). Lines 1b, 2b, and 3b are
branches 3 and 4 and dependence �L (k), respectively.

equation goes to the dispersion equation det(Ẑ(1) + Ẑ(2)′) = 0
for surface electromagnetic waves at the medium 1–medium
2 interface. According to [33], at most two surface waves can
exist on the interface between bianisotropic media. At most
one wave can emerge if the media are anisotropic [31,33].

From Eqs. (12) and (14) it is seen that in the opposite limit
h → ∞ Eq. (19) splits into two independent dispersion equa-
tions for SPPs at the medium 1–infinite metal and medium
2–infinite metal interfaces. At most one SPP exists on the
anisotropic media–metal interface. Two SPPs can exist if the
dielectric is bianisotropic or/and magneto-optically active (an
example is given in Appendix D). These conclusions follow
from (A1)–(A5) and (B1)–(B4). An interesting fact is worth
noting. Namely, let us bisect a bianisotropic or/and magneto-
optically active dielectric and form two structures: Structure
1, where the upper part of the dielectric is on top of a metal,
and structure 2, where the same metal is on top of the lower
part of the dielectric. Using (A1)–(A5) and (B1)–(B4) it can

FIG. 2. Three SPPs in a metallic film immersed into a magneto-
optically active dielectric. Line 1a and line 2a are low-frequency
branches 1 and 2, respectively. Line 3a represents high-frequency
branch 3 and the dependence �L (k) (these lines are hardly distin-
guishable). Lines 1b and 2b are branch 3 and dependence �L (k),
respectively.

be proved that if two SPPs exist in structure 1 then at most one
SPP can exist in structure 2, and vice versa.

APPENDIX D

In order to demonstrate the existence of the maxi-
mum number of SPPs established in Sec. III B we can
use model materials of which the material constants se-
cure the validity of properties (A1)–(A5) and (B1)–(B4) of
the impedances. Namely, (A1)–(A5) hold true provided that
the matrix ∂ (ω�̂)/∂ω is positive definite, where

�̂ =
(

ε̂ κ̂

κ̂† μ̂

)
(D1)

is a 6 × 6 Hermitian matrix which involves the material con-
stants entering Eqs. (1) and (2) [33]. Properties (B1)–(B4)
hold true if a metal has isotropic real dielectric permittivity
εm < 0 and magnetic permeability μm > 0 satisfying the in-
equalities ∂ (ωεm)/∂ω > 0 and ∂ (ωμm)/∂ω > 0.
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FIG. 3. Three SPPs in metallic film embedded between a
magneto-optically active dielectric and a nonbianisotropic magneto-
optically inactive one. Line 1a and line 2a are low-frequency
branches 1 and 2, respectively. Line 3a represents high-frequency
branch 3 and the dependence �L (k) (these lines are hardly distin-
guishable). Lines 1b and 2b are branch 3 and dependence �L (k),
respectively.

The number of SPPs can be greater than the maximum
determined by the real parts of the dielectric permittivity
and magnetic permeability of dielectrics (two SPPs in a film
and one SPP in a half-infinite metal) if bianisotropy and/or
magneto-optical activity are strong. In all cases given below
the number of SPPs reaches a maximum thanks to strong
magneto-optical activity. SPPs propagate in the positive direc-
tion of the axis X of a coordinate system XY Z which always
remains intact. Dielectric permittivities are specified with re-
spect to this coordinate system. Frequencies are normalized
to the frequency ω0 = 1.2π × 1015 Hz, which corresponds
to the wavelength 0.5 μm in the vacuum. Wave numbers are
normalized to k0 = ω0/c.

Example 1. Consider two magneto-optically active media
1 and 2 with alike dielectric permittivity:

ε̂ =
⎛
⎝ 5 i4.2 0

−i4.2 5 0
0 0 4

⎞
⎠. (D2)

FIG. 4. Two SPPs in a magneto-optically active dielectric–half-
infinite metal structure. Line 1a and line 2a are SPP branches 1 and
2, respectively. The latter practically merges with line �L (k). Lines
1b and 2b are branch 2 and dependence �L (k), respectively.

Their magnetic permeabilities are isotropic and equal to unity.
Bianisotropy is ignored, i.e., κ̂ = 0. Let us rotate media 1
and 2 through the angle 20◦ anticlockwise and clockwise,
respectively, around the axis X , making thereby their dielec-
tric permittivities different in the XY Z frame. Afterwards we
bisect them along the plane perpendicular to the axis Z and
put a metallic film between the upper half of medium 1 and
the lower part of medium 2. The thickness of the film is
30 nm, its dielectric permittivity is given by the Drude formula
εm = 1 − ω2

p/ω
2, where ωp = 1.15ω0, and its relative mag-

netic permeability equals 25. Figures 1(a) and 1(b) show four
SPP branches in this structure. It is seen that four SPPs exist
at a given k. According to Sec. III B, this is the maximum of
SPPs in a film embedded between different magneto-optically
active media. High-frequency branches 3 and 4 practically
coincide with line �L(k) of the limiting frequency of bulk
electromagnetic waves.

Example 2. A medium having the dielectric permittivity
(D2) and magnetic permeability equal to unity is rotated
through the angle 20◦ anticlockwise around the axis X and
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bisected along the plane perpendicular to the axis Z . A metal
film is placed between the upper and lower parts. This film
differs from the film of example 1 only by the plasmonic
frequency ωp = 1.5ω0. Three SPP branches emerging in this
structure are shown in Figs. 2(a) and 2(b). One of three
branches is again very close to line �L(k). Thus three SPPs
exist at a given k. As it has been shown in Sec. III B,
this is the maximum of SPPs in a film embedded between
the two halves of a homogeneous magneto-optically active
medium.

Example 3. Let us replace the lower part of the structure
in example 2 by a half-infinite magneto-optically inactive
medium with dielectric permittivity

ε̂ =
⎛
⎝5 0 0

0 4 0
0 0 4

⎞
⎠ (D3)

and magnetic permeability equal to unity. The boundary of
this medium is perpendicular to the axis Z . The metal film
is the same as in example 2. Thus the structure involves
magneto-optically active and inactive dielectrics and a metal
film between them. We find three branches of SPPs (Fig. 3),
so that, given k, three SPPs emerge, which is the allowed
maximum. Notice that branches 1 (lines 1) in Figs. 2(a) and
3(a) hardly differ. Branches 3 (lines 1b) in Figs. 2(b) and 3(b)
also differ only slightly.

Example 4. Assume that the upper part of the structures
used in examples 1–3 is on top of a half-infinite metal with
dielectric permittivity equal to that of the film in example 1.
It has been pointed out in Appendix C that, given k, at most
two SPPs can exist at the interface between a half-infinite
magneto-optically active dielectric and a half-infinite metal.
Figures 4(a) and 4(b) show two SPP branches. Again the
branch of high-frequency SPPs and line �L(k) nearly merge.
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