
PHYSICAL REVIEW A 104, 023504 (2021)
Editors’ Suggestion

Metastable two-component solitons near an exceptional point
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We consider a two-dimensional nonlinear waveguide with distributed gain and losses. The optical potential
describing the system consists of an unperturbed complex potential depending only on one transverse coordinate,
i.e., corresponding to a planar waveguide, and a small nonseparable perturbation depending on both transverse
coordinates. It is assumed that the spectrum of the unperturbed planar waveguide features an exceptional
point (EP), while the perturbation drives the system into the unbroken phase. Slightly below the EP, the
waveguide sustains two-component envelope solitons. We derive one-dimensional equations for the slowly
varying envelopes of the components and show their stable propagation. When both traverse directions are taken
into account within the framework of the original model, the obtained two-component bright solitons become
metastable and persist over remarkably long propagation distances.
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I. INTRODUCTION

Stable propagation of linear waves in either conservative
or dissipative systems requires the reality of the spectrum of
the governing evolution operator. When this operator is non-
Hermitian and depends on control parameters, its spectrum
can undergo qualitative changes upon variation of these pa-
rameters. In particular, the spectrum can change from purely
real to a complex one. This (phase) transition between real
and complex spectra typically occurs either through an excep-
tional point (EP) in the discrete spectrum [1–3] or through
a spectral singularity in the continuous spectrum [4,5]. Al-
though EPs as well as spectral singularities are introduced as
characteristics of linear spectral problems [6], they also im-
pact the propagation of nonlinear waves. First of all, stability
of linear waves of a given nonlinear system is a necessary
(although not yet sufficient) condition for stability of local-
ized nonlinear waves, for example, of bright solitons (see
Refs. [7,8] for review). An EP in the spectrum of the un-
derlying linear system affects the equations governing weakly
nonlinear waves having propagation constants in the vicinity
of the EP [9,10]. If parameters of a nonlinear medium are
close to an EP locally, i.e., only in a given spatial domain,
a soliton interacting with such a domain can be scattered
according to different scenarios [11]. In a waveguide geom-
etry characterized by a separable optical potential (created by
modulation of the dielectric permittivity) the existence of an
EP in the linear spectrum of the carrying transverse modes of a
separable optical potential can change the sign of the effective
Kerr nonlinearity felt by a wave packet propagating along the
waveguide [12].
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In a more general context of nonlinear systems, an EP is
sometimes introduced as a point of coalescence of the eigen-
values and eigenvectors of a nonlinear eigenvalue problem.
The location of such an EP in the parameter space depends
on the nonlinearity, i.e., on the amplitude of the field. This
has been particularly well studied for models with double-
well potentials [13–15], and it has also been found that the
nonlinearity may have significant impact on the spectrum of
the system in the vicinity of an EP. Thus, considering a non-
linear system with parameters at which its linear limit is close
enough to an EP, one can expect fragility of the stability that
may be destructively affected by the nonlinearity. Therefore,
one may expect considerable constraints on stable propagation
of nonlinear waves in such systems. In this paper, we show
that this is not necessarily so: metastable solitons can exist
even when the parameters of the underlying linear system are
in close proximity to an EP.

The organization of our paper is as follows. In Sec. II we
introduce a nonlinear planar waveguide, which is described
by an optical potential depending on one of the transverse
directions and features an EP. Then in Sec. III we develop
a perturbation theory for the spectrum of the corresponding
non-Hermitian evolution operator near the EP in the presence
of a nonseparable perturbation depending on both transverse
coordinates. In Sec. IV we derive the two-component system
of equations governing evolution of the slowly varying ampli-
tudes of the guided modes having the propagation constants
in close proximity to the second-order EP. We employ the
method of multiple-scale expansion where two coupled modes
have to be accounted for for self-consistency of theory. The
obtained system for slowly varying amplitudes features high-
order dispersion, resembling (although not coinciding with)
dispersion that may lead to pyramid diffraction, considered
previously in Ref. [10]. In Sec. V we describe solitons of the
derived effective one-dimensional (1D) model. Such solitons
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FIG. 1. Schematics of the geometry. The unperturbed potential
V0(y) (left panel) features an EP at each value of x. For the perturbed
potential V0(y) + δV1(x, y) the degeneracy is lifted, and for each x
the waveguide operates slightly below the EP, which means that for
each x there are two close real-valued propagation constants, b1(x)
and b2(x) (right panel), and two eigenfunctions φ1,2(x, y) which are
about to merge but nevertheless are distinct.

are stable in the 1D model and they become metastable in the
full 2D model governing light propagation in the dissipative
waveguide (Sec. VI).

II. THE MODEL

We consider propagation of a paraxial beam along the z
direction in a medium with gain and losses modulated along
the x and y directions. The amplitude of the field � in di-
mensionless units is governed by the nonlinear Schrödinger
equation

i
∂�

∂z
= −1

2
∇2� − Vδ (x, y)� + χ |�|2�, (1)

where ∇ = (∂x, ∂y), the complex-valued optical potential
Vδ (x, y) is parametrized by a real control parameter δ, and
the real coefficient χ characterizes Kerr nonlinearity of the
medium. Considering 0 � δ � 1, we assume that the poten-
tial Vδ (x, y) can be represented in the form

Vδ (x, y) = V0(y) + δV1(x, y). (2)

Here V0(y) is a complex-valued potential for which the spec-
trum of the linear non-Hermitian Hamiltonian

H0 := −1

2
∂2

y − V0(y) (3)

has an EP −b0 on the real axis, b0 ∈ R, with φ0(y) being the
respective eigenfunction:

H0φ0 = −b0φ0. (4)

Schematics of the described waveguide are illustrated in
Fig. 1. Since x does not enter Eq. (4), we can say that the
waveguide has the EP at each value of x.

For further consideration, we define the associated (gener-
alized) eigenfunction ϕ0(y),

(H0 + b0)ϕ0 = φ0, (5)

as well as the eigenfunction φ̃0 and the generalized eigenfunc-
tion ϕ̃0 of the Hermitian conjugate H†

0 :

H†
0 φ̃0 = −b0φ̃0, (H†

0 + b0)ϕ̃0 = φ̃0. (6)

Hereafter we use tildes for the spectral characteristics of the
adjoint eigenvalue problem. In our case H† = H∗, and hence
φ̃0 = φ∗

0 and ϕ̃0 = ϕ∗
0 , where asterisks mean complex conju-

gation. We emphasize that neither φ0 nor ϕ0 depend on x; they
depend only on y.

A signature of the EP is the orthogonality condition

〈φ̃0, φ0〉 = 0. (7)

Hereafter we use the inner product defined as

〈 f , g〉 :=
∫ ∞

−∞
f ∗(x, y)g(x, y)dy. (8)

Generally, the eigenfunction φ0 is defined up to an arbitrary
nonzero coefficient, and the generalized eigenfunction ϕ0 is
defined up to the addition of an arbitrary multiple of φ0.
It is convenient to fix these two functions by imposing the
following normalization [16],

〈ϕ̃0, φ0〉 = 〈φ̃0, ϕ0〉 = 1, (9)

and the orthogonality condition

〈ϕ̃0, ϕ0〉 = 0. (10)

III. PERTURBATION THEORY FOR THE SPECTRUM
NEAR AN EP

Suppose, that V1(x, y) is chosen such that the spectrum of
the perturbed linear Hamiltonian

Hδ := H0 − δV1(x, y) (11)

is all-real and there exist two eigenvalues, b1(x) and b2(x), i.e.,

Hδφ j (x, y) = −b j (x)φ j (x, y), j = 1, 2, (12)

satisfying the condition

b1(x) > b0 > b2(x) (13)

for all x. We recall that x plays the role of a parameter in the
eigenvalue problem (12). We therefore can say that in the two-
dimensional plane of parameters (δ, x) the Hamiltonian Hδ has
an exceptional line δ = 0.

We also define the adjoint operator and eigenfunctions:

H†
δ = −1

2
∂2

y − [Vδ (x, y)]∗ = H†
0 − δ[V1(x, y)]∗ (14)

and

H†
δ φ̃ j (x, y) = −b j (x)φ̃ j (x, y), j = 1, 2. (15)

Furthermore, we assume that Hδ does not have EPs when δ >

0 [this condition can be relaxed: what is really important for
our consideration is the condition (13)]. Then the following
biorthogonality relations hold:

〈φ̃1, φ2〉 = 〈φ̃2, φ1〉 = 0. (16)

The structure of the eigenfunctions in the vicinity of the
EP can be described in terms of the following asymptotic
expansions ( j = 1 and 2):

φ j = φ0 + (−1) jδ1/2ρ j + δρ j1 + δ3/2ρ j2 + O(δ2), (17a)

φ̃ j = φ̃0 + (−1) jδ1/2ρ̃ j + δρ̃ j1 + δ3/2ρ̃ j2 + O(δ2), (17b)
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at δ → 0. In Eqs. (17), the functions ρ j and ρ̃ j are so far
undetermined corrections that generically depend on x and y.
Since in the eigenvalue problem (12) x is a parameter, we can
represent

b j (x) = b0 − (−1) jδ1/2β j (x) + δβ j1(x)

+ δ3/2β j2(x) + O(δ2), (18)

where the coefficients β j , β j1, and β j2 are to be found. Sub-
stituting Eqs. (17)–(18) in Eq. (12), one observes that the
obtained equation in the leading order δ0 is satisfied. The
balance of the δ1/2-order terms requires that ( j = 1 and 2)

(H0 + b0)ρ j = β j (x)φ0. (19)

Comparing this equation with Eq. (5) we conclude that

ρ j (x, y) = β j (x)ϕ0(y), ρ̃ j (x, y) = β j (x)ϕ̃0(y). (20)

Further, from the orthogonality condition (16) we obtain the
relation δ1/2(β1 − β2) + O(δ) = 0. Therefore

β1(x) = β2(x) =: β(x), (21)

and hence

ρ1(x, y) = ρ2(x, y) = β(x)ϕ0(y). (22)

Now Eqs. (17a) and (17b) can be rewritten as

φ j = φ0 + (−1) jδ1/2β(x)ϕ0 + O(δ), (23a)

φ̃ j = φ̃0 + (−1) jδ1/2β(x)ϕ̃0 + O(δ), (23b)

resulting in the normalization condition

〈φ̃ j, φ j〉 = (−1) j2δ1/2β(x) + O(δ). (24)

To determine β(x), we consider the next order, O(δ), of
Eq. (12):

(H0 + b0)ρ j1−V1φ0 = β2ϕ0−β j1φ0. (25)

Applying 〈φ̃0, ·〉, for either j = 1 or j = 2 we obtain

β2(x) = −〈φ̃0,V1φ0〉. (26)

Obviously, our analysis is meaningful only if the right-hand
side of Eq. (26) is positive. We also note that by choosing
an appropriate V1(x, y), depending on both variables, x and y,
one can obtain any desirable function β(x), If, however, V1

does not depend on y, then β(x) = 0. While Eq. (26) does not
define the sign of β, the previously imposed convention (13)
implies β(x) > 0 (notice that the inequality is strict).

Under the condition (26), a solution for Eq. (25) reads

ρ11 = f − β11ϕ0, ρ21 = f − β21ϕ0, (27)

where f solves the equation

(H0 + b0) f = V1φ0 + β2ϕ0. (28)

The function f is defined up to the addition of an arbitrary
multiple of φ0, but from the following analysis it will become
evident that without loss of generality this multiple can be set
to zero.

Proceeding to the O(δ3/2) order, from Eq. (12) we obtain
( j = 1 and 2)

(H0 + b0)ρ j2 = (−1) jβ(ρ j1 − β j1ϕ0 + V1ϕ0) − β j2φ0.

(29)

Solvability conditions for these equations read

β j1 = 〈φ̃0,V1ϕ0〉 + 〈φ̃0, ρ j1〉. (30)

Substituting here ρ11 and ρ21 from Eq. (27), we obtain the
next-order coefficients of the expansion for the propagation
constants in the following form:

β11 = β21 = 1
2 〈φ̃0,V1ϕ0〉 + 1

2 〈φ̃0, f 〉 =: γ (x). (31)

On the other hand, the orthogonality condition (16) in the O(δ)
order requires

γ = 〈φ̃0, f 〉. (32)

Combining this expression with Eq. (31), we obtain

γ = 〈φ̃0,V1ϕ0〉. (33)

The requirement for the propagation constant to be real im-
plies that the perturbation V1 should be chosen to ensure the
reality of the right-hand side of Eq. (33). If this condition is
satisfied, then Eq. (33) and the relations

〈ρ j1, φ̃0〉 = 〈V1φ0, ϕ̃0〉 − β j1, (34)

obtained by applying 〈·, ϕ̃0〉 to Eq. (25), yield

〈ρ j1, φ̃0〉 = 〈∂xρ j1, φ̃0〉 = 〈∂2
x ρ j1, φ̃0〉 = 0. (35)

Therefore, the estimate (24) can be improved as follows:

〈φ̃ j, φ j〉 = (−1) j2δ1/2β(x) + O(δ3/2). (36)

Finally, with the same accuracy we compute the following
useful relations:

〈φ̃k, ∂xφ j〉 = (−1) jβxδ
1/2 + O(δ3/2), (37)

〈φ̃k, ∂
2
x φ j〉 = (−1) jβxxδ

1/2 + O(δ3/2). (38)

IV. MULTIPLE-SCALE EXPANSION

Now we turn to the nonlinear model and, using the
multiple-scale expansion, look for the solution of Eq. (1) in
the form

� = δ1/2eib0z[φ1(x, y)U1(x, z) + φ2(x, y)U2(x, z)]

+O(δ3/2), (39)

where U1(x, z) and U2(x, z) are the envelopes of the two
modes that coalesce in the EP in the limit δ = 0. Thus, the
field we are looking for is a two-component field. We substi-
tute Eq. (39) into the main equation (1) and apply 〈φ̃1, ·〉 and
〈φ̃2, ·〉 to the resulting expression. Using the results of Sec. III,
we arrive at a system of two coupled equations that govern the
dynamics of U1 and U2:

i∂zU1 = H0U1−δ1/2βU1+βxx

4β
U2 − βx

2β
∂xU1 + βx

2β
∂xU2

− δ1/2 χ0

2β
(U1 + U2)2(U ∗

1 + U ∗
2 ), (40)

i∂zU2 = H0U2+δ1/2βU2+βxx

4β
U1 + βx

2β
∂xU1 − βx

2β
∂xU2

+ δ1/2 χ0

2β
(U1 + U2)2(U ∗

1 + U ∗
2 ). (41)
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Here

H0 = −1

2
∂2

x − βxx

4β
, (42)

the effective nonlinearity is determined as

χ0 = χ〈φ∗
0 , |φ0|2φ0〉, (43)

and all terms of the order of δ (and higher) are neglected. Upon
derivation of the system (40)–(41) we used that (i, j, k = 1
and 2)

〈φ̃i, |φ j |2φk〉 = 〈φ∗
0 , |φ0|2φ0〉 + O(δ1/2),

〈φ̃i, φ
2
j φ

∗
k 〉 = 〈φ∗

0 , |φ0|2φ0〉 + O(δ1/2).

Generally speaking, the effective nonlinearity coefficient
χ0 obtained in Eq. (43) is complex valued. However, it is
necessarily real if the unperturbed potential is PyT sym-
metric. Here, according to standard definitions, the operator
Py corresponds to the reversal of the y axis, and the op-
erator T corresponds to the complex conjugation, and thus
[PyT , H0] = 0, where the unperturbed operator H0 is defined
in Eq. (3). Indeed, the PyT symmetry implies that PyT φ0 =
eiθφ0, where θ is a constant phase. From Eqs. (5) and (9) it
follows that e2iθ = 1; i.e., possible values of θ are 0 and π . In
either case Py|φ0|2 = |φ0|2, and one can verify that χ0 is real:

〈φ∗
0 , |φ0|2φ0〉 = T 〈φ0, |φ0|2T φ0〉

= 〈e−iθPyT φ0, |φ0|2eiθPyφ0〉∗

= e−2iθ 〈T φ0, |φ0|2φ0〉∗ = 〈φ∗
0 , |φ0|2φ0〉∗.

Importantly, the effective nonlinearities for different com-
ponents of the field, described by Eqs. (40)–(41), have
opposite signs. This effect resembles the finding reported in
Ref. [12], where it has been shown that the presence of an EP
in the spectrum of the underlying linear problem can change
the sign of the effective nonlinearity.

Equations (40)–(41) acquire a more convenient form if
one introduces new functions U± = U2 ± U1 which satisfy the
following system:

i∂zU+ = −1

2
∂2

x U+ + δ1/2βU−, (44a)

i∂zU− =
(

−1

2
∂2

x − βxx

2β

)
U− − βx

β
∂xU−

+ δ1/2βU+ + δ1/2 χ0

β
|U+|2U+. (44b)

The equations obtained for the envelopes make explicit the
scaling of the solutions as well as constraints that should be
imposed on the β(x) dependence. Indeed, from Eq. (44a) we
conclude that the envelope is smooth, in the sense that it de-
pends on the scaled variables δ1/2z and δ1/4x. From Eq. (44b)
it follows that the consistency of the multiple-scale expansion
requires |βx/β| � δ1/4 and |βxx/β| � δ1/2.

V. 1D SOLITONS AT CONSTANT β

Let us now consider solitons of the 1D model (44) at a
constant β > 0, when βx = βxx = 0. For stationary solutions,
U± = u±(x)eiμz, the system (44) reduces to

μu+ = 1

2

d2u+
dx2

− δ1/2βu−, (45a)

μu− = 1

2

d2u−
dx2

− δ1/2βu+ − δ1/2 χ0

β
|u+|2u+. (45b)

The spectrum of the linear (χ0 = 0) limit of this system
(U± ∝ eiμz+ikx) has two branches:

μ± = −k2

2
±

√
δβ. (46)

System (45) can be further reduced to a fourth-order non-
linear equation:

−1

4

d4u+
dx4

+ μ
d2u+
dx2

+ (δβ2 − μ2)u+ + δχ0|u+|2u+ = 0.

(47)

Two comments are in order. First, one can see that in the vicin-
ity of the EP the governing equation includes the fourth-order
dispersion, which corroborates the previous results on linear
diffraction [9,10]. Second, the models similar to model (47)
can be encountered in fiber optics in description of evolution
of pulses close to the zero-dispersion wavelength (see, e.g.,
Refs. [17,18]).

A. Two-component solitons

Equation (47), and hence system (45), allows for an exact
solution. Indeed, for χ0 > 0 and the propagation constant

μ = 5

3
δ1/2β > μ+ (48)

belonging to the semi-infinite gap of linear spectrum, one
obtains [17]

u+(x) = β

√
10

3χ0
sech2ξ, (49a)

u−(x) = −β

√
10

3χ0
(sech2ξ + sech4ξ ), (49b)

where for compactness we have introduced

ξ =
√

β

3
δ1/4x. (50)

The exact soliton given by Eq. (49) belongs to a continuous
family parametrized by the propagation constant μ. Examples
of such families are shown in Fig. 2(a) in the form of depen-
dencies P±(μ), where P± are the powers carried by each of
the two components:

P± =
∫ ∞

−∞
|u±(x)|2dx. (51)

B. Linear stability of two-component solitons

Now we proceed to the linear-stability analysis of the
found solitons in the framework of the two-component model
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FIG. 2. (a) Families of solitons, in terms of the dependencies of
powers P± on μ, for δ = 0.01 (red curves) and δ = 0.1 (blue curves).
Solid and dashed lines correspond to P+ and P−, respectively. Gray
vertical lines denote values of μ that correspond to the exact solution
(48)–(49). (b) Profiles of corresponding exact solutions at μ = 0.167
and δ = 0.01 (red curve) and μ = 0.527 and δ = 0.1 (blue curve).
Here χ0 = 1 and β = 1.

(44). For perturbed solutions in the form U± = eiμz[u±(x) +
q±(x, z)], where q± are small perturbations of real-valued so-
lutions u±(x), the linearization of the two-component system
(44) with constant β gives the following eigenvalue problem
after splitting into real and imaginary parts:

∂zRe q+ = L0Im q+ + δ1/2βIm q−,

∂zIm q+ = −L0Re q+ − δ1/2βRe q−,

∂zRe q− = L0Im q− + δ1/2(β + χ0β
−1u2

+)Im q+,

∂zIm q− = −L0Re q− − δ1/2(β + 3χ0β
−1u2

+)Re q+, (52)

where L0 = −(1/2)∂2
x + μ. Making the substitution

(Re q+, Im q+, Re q−, Im q−) = eωz(Q+, R+, Q−, R−), where
ω is the linear stability eigenvalue (positive real part of ω

corresponds to the exponential growth of the perturbation
along the propagation distance), we then eliminate Q− and
R− from the linear stability equations. This leads to athe
quadratic eigenvalue problem

(ω21 + ωC + K)� = 0, (53)

where

� = (Q+, R+)T , (54)

C =
(

0 −2μ + ∂2
x

2μ − ∂2
x 0

)
, K =

(
L+ 0
0 L−

)
, (55)

L± = −1

4
∂4

x + μ∂2
x + (β2δ − μ2) + (2 ± 1)δχ0u2

+, (56)

and 1 is the identity operator. The quadratic eigenvalue
problem (53) can be further converted into the generalized
eigenvalue problem [19]

(A − ωB)Z = 0, (57)

where the augmented matrices read

A =
(
K 0
0 −1

)
, B =

(−C −1
−1 0

)
, Z =

(
�

ω�

)
.

Numerical solution of the generalized eigenvalue problem
(57) indicates that the soliton families with χ0 > 0 are entirely
stable.

C. Embedded soliton

For χ0 < 0, Eq. (47) admits another exact bright soliton
solution which can be written down as [18]

u+(x) = β

√
10

3|χ0| sechξ tanh ξ, (58a)

u−(x) = β

√
10

3|χ0| sechξ tanh3 ξ, (58b)

where ξ is given by Eq. (50). The propagation constant of this
solution,

μ = −5

6

√
δβ2, (59)

belongs to the continuous spectrum; i.e., this is an embed-
ded soliton which can hardly be expected to be stable. The
instability of this solution has indeed been confirmed by the
linear-stability analysis (described in the previous section),
as well as by using direct numerical simulations of one-
dimensional propagation governed by the vector model (44).
Nevertheless, the fact that the system derived here simultane-
ously supports bright solitons in both focusing and defocusing
media is rather interesting.

VI. METASTABLE 2D SOLITONS

Now we turn to the two-dimensional solitons supported
by the original model (1). To find stationary solutions, we
use the substitution �(x, y, z) = eiλzw(x, y). Comparing this
substitution with Eq. (39), we obtain the approximate relation
λ ≈ b0 + μ, which connects the propagation constant of the
2D solitons (i.e., λ) with that of the 1D solitons considered
above in Sec. V. Using the exact solutions obtained above
for the 1D model, one can produce a reasonable analytical
approximation for the 2D soliton profile. At the same time,
the feasibility of the experimental observation of such 2D
solutions depends on the existence of the optical potentials
Vδ (x, y) featuring an EP at δ = 0 and purely real spectrum at
0 < δ � 1. Examples of such potentials are well known. We
discuss two possible examples in the following subsections.

A. Exactly solvable PT -symmetric Scarff II potential

Let Vδ (x, y) be the PyT Scarff potential [20–22]. For the
analysis of its EP we use the representation (2) with

V0 =
[

1

4
(4β + 1)2 − 1

8

]
sech2y + i

4
(4β + 1)2sechy tanh y,

(60)

V1 = sech2y

2
. (61)

For any positive β > 0, the potential V0(y) defined by Eq. (60)
is exactly at the EP that corresponds to the coalescence of
two eigenmodes at the propagation constant b0 = 2β2. The
perturbation δV1 increases the real part of the total potential
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Vδ and therefore drives the system below the phase transition
threshold.

Thanks to the solvability of the PT -symmetric Scarf II
potential [20–22], exact expressions for the propagation con-
stants are available:

b1,2 = 1

8
[
√

(4β + 1)2 + δ ±
√

δ − 1]2

= 2β2 ± β
√

δ + γ δ + O(δ3/2), (62)

where [see Eqs. (31)–(33)]

γ = β

2(4β + 1)
+ 1

8
. (63)

The eigenfunctions at the EP read

φ0 = 22β+1iβ√
π

exp

{
i
4β + 1

2
arctan sinh y

}
sech2βy, (64)

ϕ0 = φ0

2β
[i arctan sinh y − ln sechy − ψ (1) + ψ (4β ) − ln 2],

(65)

where ψ (z) = d[ln �(z)]/dz = �′(z)/�(z) is the digamma
function [23]. One can check that the normalization conditions
(9) are satisfied. The nonlinear coefficient defined by Eq. (43)
is computed as

χ0 = −χ
16β3

3πB(6β, 2β )
, (66)

where B(·, ·) is the beta function. Thus, χ0 > 0 (χ0 < 0)
corresponds to the focusing (defocusing) nonlinearity of the
physical model (1).

In Figs. 3(a) and 3(b) we compare analytical predictions
for soliton shape (its cross section at y = 0) obtained using the
combination of the exact 1D solution (49) and eigenfunctions
given by Eqs. (64) and (65) with the numerically obtained
2D soliton of Eq. (1) having the same propagation constant
λ = 2β2 + 5δ1/2β/3. One can see that analytical and numeri-
cal solutions are very close at sufficiently small δ values, while
with increases of δ the difference between them gradually
increases.

B. Numerical results in the parabolic PT -symmetric potential

For a more systematic study of the families of the 2D
solitons, we choose a less sophisticated potential in the form

V0 = −y2 + iγ0ye−y2/2. (67)

One-dimensional nonlinear modes in a potential of similar
form have been considered in Ref. [24]. This potential has
an EP at γ0 ≈ 2.1684. Analytical expressions for the eigen-
functions φ0 and ϕ0 are not available in this case, but they can
be found numerically. In order to drive the potential V0 to the
unbroken PT -symmetric phase, we perturb it by decreasing
the gain-and-loss amplitude by means of the following pertur-
bation:

V1 = −i
β2

0.5521
ye−y2/2. (68)

Notice that the numerical coefficient in the denominator is
chosen to ensure Eq. (26).

FIG. 3. (a, b) Comparison between analytical (black solid line)
and numerical (red dots) soliton profiles in the PT Scarff potential
for two values of δ. Here we show amplitudes of the solutions at fixed
y = 0 as functions of x. (c) Three-dimensional plot of the numerical
solution amplitude |w(x, y)|. In all panels β = 0.4 and χ = −1.

A family of 2D solitons obtained numerically is shown in
Fig. 4, where we present our results for the total power of
solitons [cf. Eq. (51)],

P =
∫∫

R2
|w(x, y)|2dxdy, (69)

and for the soliton amplitudes and widths along the x and
y axes. All these characteristics are functions of the prop-
agation constant λ. While the analytical expression (39) is
valid for soliton amplitudes a ∼ δ1/2, the numerical continu-
ation allows one to obtain even large-amplitude solitons. The
cutoff value [shown with a dashed vertical line in Fig. 4(a)]

FIG. 4. (a) Dependencies of the power P, the peak amplitude a,
and widths dx and dy on the propagation constant λ of 2D solitons in
parabolic PT -symmetric potentials at β = 1 and δ = 0.1. (b) Profile
of a stable soliton at λ = −1.2. The focusing nonlinearity coefficient
χ = −1.
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FIG. 5. Peak amplitude versus distance and field modulus distri-
butions at different propagation distances for a stable 2D soliton with
λ = −1.2 [ panels (a) and (c)–(e)] and an unstable 2D soliton with
λ = −0.8 [panels (b) and (f)–(h)] in a parabolic PT potential. In
all cases β = 1 and δ = 0.1. Panels (c)–(h) correspond to the spa-
tial window (x, y) ∈ [−40, 40] × [−8, 8]. The focusing nonlinearity
coefficient χ = −1.

corresponds to the edge of the continuum of two-dimensional
scattering states. At the cutoff propagation constant, the soli-
ton amplitude and power vanish. At the same time, the widths
dx and dy illustrate the anisotropic nature of 2D solitons in our
waveguide: as λ approaches the cutoff, the soliton width in the
x direction diverges, while the width in the y direction remains
finite.

While the stability analysis performed in Sec. V in the
frame of the reduced 1D model for slowly varying envelopes
has indicated that the 1D solitons are stable, this result does
not yet guarantee stable propagation of the respective 2D
solitons constructed using Eq. (39). A systematic numeri-
cal study of soliton propagation governed by the (2 + 1)D
equation (1) indicates that near the cutoff value the 2D soli-
tons are robust and propagate over considerable distances
without noticeable distortions even in the presence of input
perturbations, but far from the cutoff the oscillatory instabil-

ities come into play, whose strength gradually increases with
the increase of soliton amplitude and propagation constant.
The example of metastable evolution of the 2D soliton is
presented in Fig. 5(a), which shows that the amplitude of
such a state remains practically unchanged with the distance
z, while cross sections at different distances are shown in
Figs. 5(c)–5(e). The example of instability development for
a high-amplitude soliton stimulated by small input noise is
presented in Figs. 5(b) and 5(f)–5(h). As one can see, such an
unstable soliton starts radiating and at sufficiently large dis-
tance this radiation grows in amplitude and extends practically
over the entire x cross section. We notice that weak oscillatory
instabilities that affect propagation of the 2D solitons in our
system can be possibly attributed to poorly localized (in the
x direction) unstable modes that bifurcate from the interior
of the two-dimensional continuum [25]. However, an accurate
analysis of this issue requires a separate and more detailed
study.

VII. CONCLUSION

In this work, we have shown that in a waveguide with gain
and loss it is possible to obtain propagation of metastable
two-dimensional solitons with propagation constants in the
vicinity of the exceptional point (but belonging to the un-
broken phase). Such solitons are effectively two-component
solitons. Analytically they are described by the coupled linear
and nonlinear Schrödinger equations which govern envelopes
of the two carrier modes. The deviation of the propagation
constant from the exceptional point is the small parameter of
the multiple-scale expansion. The effective one-dimensional
equations for the envelope allow for exact bright soliton so-
lutions for either sign of the nonlinearity coefficient. The
envelope solitons are stable in the one-dimensional setting,
although they become metastable in the fully two-dimensional
model. The lifetime of such solitons is very large, making
them feasible for experimental observation.
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