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Path-integral approach to the thermodynamics of bosons with memory:
Partition function and specific heat
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For a system of bosons that interact through a class of general memory kernels, a recurrence relation for
the partition function is derived within the path-integral formalism. This approach provides a generalization
to previously known treatments in the literature of harmonically coupled systems of identical particles. As an
example the result is applied to the specific heat of a simplified model of an open quantum system of bosons,
harmonically coupled to a reservoir of distinguishable fictitious masses.
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I. INTRODUCTION

One of the peculiar features of the path-integral approach
in statistical mechanics is the appearance of retarded inter-
actions between particles, after integrating out the degrees
of freedom of the environment that the particles couple to.
This most famously appears in Feynman’s variational treat-
ment of the polaron problem [1], where the effective action
functional of an electron interacting with a bath of phonons
is obtained by integrating out the phonon degrees of free-
dom. The resulting action functional describes the electron
interacting with itself at previous times through an interaction
term that is moreover nonquadratic in the electron coordinate,
prohibiting an analytical solution. A variational solution can
be found by proposing a model action functional where this
interaction term is replaced by a quadratic retarded interaction
of the electron with itself, mediated by some memory kernel
that depends on variational parameters. In Feynman’s initial
treatment of the problem, the model action is obtained by
integrating out a harmonically coupled fictitious particle to the
electron [2], which yields a memory kernel as a function of
two variational parameters.

This approach has since then known various extensions
towards either generalizations of the model action, appli-
cations to multiple particles, or entirely different physical
systems [3,4]. In the context of a single solid-state polaron, in-
stead of obtaining a model action by integrating out fictitious
particles, which inevitably restricts the variational freedom of
the memory kernel, an approach directly proposing the most
general quadratic single-particle model action with memory
has been studied in Ref. [5]. On the other hand, extensions to-
wards multiple particles [6,7] or towards an arbitrary number
of identical particles [8] have so far relied on using restricted
model actions that are constructed by integrating out harmon-
ically coupled fictitious particles. Even in the absence of a
fictitious system the canonical treatment of identical particles
in the path-integral formalism significantly complicates the
expressions for the partition and correlation functions [9,10].
This naturally raises the question as to how these approaches
could be extended to many identical particles using action

functionals with general memory kernels, yielding an all-
encompassing treatment. In this paper we answer the first part
of this question by presenting a derivation of the partition
function for such a general action functional. When necessary
to emphasize that the memory kernels arise from the influence
of an external system, we will also refer to this quantity as the
reduced partition function.

It is important to emphasize that in the context of varia-
tional models, the environment often plays merely the role
of an intermediary used to obtain a variationally suitable
expression for the retarded interactions. However, the ther-
modynamics that follows from the reduced partition function,
interpreted as a model for an open quantum system, has
been shown to display particularly interesting behavior in
itself [11,12]. As an example of an application we will show
how our expression for the partition function with memory
could be used to generalize the study of the specific heat for
identical particles in this direction as well.

In this paper we consider the following action functional
(we will work in units of h̄ = 1):

S(N )[r, x, y, κ]

= m

2

N∑
i

∫ β

0
ṙi(τ )2dτ

+ m

2

N∑
i

∫ β

0
dτ

∫ β

0
dσx(τ − σ )ri(τ ) · ri(σ )

+ m

2N

N∑
i, j

∫ β

0
dτ

∫ β

0
dσ [y(τ −σ )−x(τ −σ )]ri(τ ) · r j (σ )

− m
N∑
i

∫ β

0
dτri(τ ) · κi(τ ). (1)

This action contains the most general quadratic many-particle
potential terms. For the functional arguments the notations
r = r1, . . . , rN and κ = κ1, . . . , κN are used. This (Euclidean)
action functional describes N particles with mass m at
temperature (kBβ )−1 that interact through memory kernels

2469-9926/2021/104(2)/023322(11) 023322-1 ©2021 American Physical Society

https://orcid.org/0000-0002-0279-3716
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.023322&domain=pdf&date_stamp=2021-08-25
https://doi.org/10.1103/PhysRevA.104.023322


T. ICHMOUKHAMEDOV AND J. TEMPERE PHYSICAL REVIEW A 104, 023322 (2021)

x(τ − σ ) and y(τ − σ ). The memory kernels generally repre-
sent the effect of some external system or medium that induces
retarded interactions and would arise after integrating out the
external system coupled to the particles. However, here they
are taken to be completely general and can also be defined
to include harmonic trapping potentials. In addition, we in-
troduce a set of completely general vector source functions
κi(τ ), which may represent time-dependent external forces on
the particles but will mainly prove to be useful for calculating
expectation values. Expression (1) can be rewritten to note
that each particle interacts with itself through the memory
kernel 1

N [(N − 1)x(τ − σ ) + y(τ − σ )] and with any other
particle through the memory kernel 1

N [y(τ − σ ) − x(τ − σ )],
and hence the two can be tuned independently.

We restrict the memory kernels to be symmetric (x(τ ),
y(τ )) = (x(−τ ), y(−τ )) and β-periodic (x(β − τ ), y(β −
τ )) = (x(τ ), y(τ )). These are general properties of bosonic
Green’s functions [13] which are also assumed in the treat-
ment for the single polaron in Ref. [5] and naturally arise in
systems with a harmonic coupling to an external system [2,6–
8,14–16]. In addition, we will assume that

∫ β

0 x(τ )dτ �= 0

and
∫ β

0 y(τ )dτ �= 0, so that we do not need to introduce
a finite volume in our treatment—a technical step that oc-
curs when taking the free-particle limit as the harmonic
oscillator frequency tends to zero. We specifically consider
three-dimensional systems and in further notation d = 3, un-
less specified otherwise.

The goal of this work is to obtain a recurrence relation
for the partition function of bosons described by the general
action functional (1). To provide an example, we will apply
our result to study the specific heat of the identical oscillator
extension of the system in Ref. [11]. Our approach generalizes
the previously known results for a system of harmonically
coupled identical oscillators in Refs. [9,10], which corre-
sponds to a specific choice of memory kernels in (1). First, in
Sec. II we will extend the calculation performed in Ref. [17] to
a many-particle system to obtain the distinguishable particle
propagator corresponding to Eq. (1). Next, in Sec. III we will
discuss which steps of Refs. [9,10] need to be generalized
to take memory effects for identical particles into account.
Therefore, in a way, this work can be seen as an application of
the methods in Ref. [17] to generalize the approach in Ref. [9].
Finally, in Sec. IV we will apply the results to consider the
specific heat of an open quantum system of bosons, where
the effects of the environment are represented by a harmonic
coupling to fictitious masses.

II. PROPAGATOR

Before taking the permutation symmetries of identical par-
ticles into account, first the many-particle propagator for N
distinguishable particles has to be calculated:

KN [x, y, κ](rT , β|r0, 0) =
∫ rT ,β

r0,0
Dr e−S(N )[r,x,y,κ]. (2)

The boundary points are indicated by rT = r(β ) and r0 =
r(0). To emphasize that the expression for the propagator is
still a functional of the memory kernels and source functions,
this dependence on x, y, and κ is indicated in the square
brackets. The calculation of the propagator for N = 1 has been

performed in Ref. [17], and we largely base our derivation
for the many-particle case in the rest of this section on the
methods presented in Refs. [9,17].

For a quadratic action functional given by expression (1),
the path integral can be expanded around the classical paths
that minimize the action functional to write

KN [x, y, κ](rT , β|r0, 0)

= KN [x, y, 0](0, β|0, 0)e−Scl[x,y,κ](rT ,r0 ). (3)

Here, Scl[x, y, κ](rT , r0) is the action functional (1) evaluated
along the classical paths that are found as solutions to the
following set of integrodifferential equations:

R̈(τ ) −
∫ β

0
y(τ − σ )R(σ )dσ + K(τ ) = 0, (4)

r̈i(τ ) −
∫ β

0
x(τ − σ )ri(σ )dσ

−
∫ β

0
[y(τ − σ ) − x(τ − σ )]R(σ )dσ + κi(τ ) = 0. (5)

The center-of-mass coordinate R = 1
N

∑N
i=1 ri decouples to-

gether with the center-of-mass source term K = 1
N

∑N
i=1 κi

yielding an equation that has already been solved in Ref. [17].
Having obtained a solution to Eq. (4), the last two terms
in Eq. (5) can be seen as an effective source term, which
allows us to solve Eq. (5) using the same approach. Sub-
stitution of the solutions into the action functional yields
Scl(rT , r0), which can then be used to derive the fluctuation
factor KN [x, y, 0](0, β|0, 0) in the same way as in Ref. [17].
This lengthy calculation can be somewhat shortened by writ-
ing the paths in terms of fluctuations around the center of
mass, for which the derivation is presented in Appendix A.

As shown in Appendix A, the many-body propagator (2)
factorizes in terms of single-particle propagators just as in the
case of a harmonically coupled system [9]:

KN [x, y, κ](rT , β|r0, 0)

= K[y,
√

NK](
√

NRT , β|√NR0, 0)

K[x,
√

NK](
√

NRT , β|√NR0, 0)

×
N∏

j=1

K[x, κ j](r j,T , β|r j,0, 0). (6)

The propagators on the right-hand side of Eq. (6) are the
single-particle propagators for which the action functional (1)
depends on a single memory kernel, making the notation of
Eq. (2) somewhat redundant. Hence let us separately define
the single-particle propagator as a functional of only the mem-
ory kernel x(τ − σ ):

K[x, κ](rT , β|r0, 0) =
∫ rT ,β

r0,0
Dre−S(1)[r,x,κ], (7)

where

S(1)[r, x, κ] =
∫ β

0

mṙ2

2
dτ

+ m

2

∫ β

0
dτ

∫ β

0
dσx(τ − σ )r(τ ) · r(σ )

− m
∫ β

0
dτr(τ ) · κ(τ ). (8)

023322-2



PATH-INTEGRAL APPROACH TO THE THERMODYNAMICS … PHYSICAL REVIEW A 104, 023322 (2021)

In what follows, we will decompose the memory ker-
nels and the source terms in their Fourier components
xn, yn, and κn, respectively, using the convention f (τ ) =∑∞

n=−∞ fneiνnτ , with νn = 2πn/β being the bosonic Mat-

subara frequencies. Following the method of Ref. [17] and
assuming the same stability conditions, we derive the fol-
lowing expression for the single-particle propagator with
memory:

K[x, κ](rT , β|r0, 0) =
(

m

2πβ

)d/2( 4

β3x0�x

)d/2 1∏
k=1

(
1 + βxk

ν2
k

)d exp

[
− m

2β
Ax(rT − r0)2 − m

2β

1

�x
(rT + r0)2

+ 2m

β

1

�x

∑
n

κn

ν2
n + βxn

· (rT + r0) − 2m

β

(
β

2

∑
n �=0

iνn

ν2
n + βxn

κn

)
· (rT − r0)

−2m

β

1

�x

(∑
n

κn

ν2
n + βxn

)2

+ 2m

β

(
β2

4

∑
n

κn · κ−n

ν2
n + βxn

)]
. (9)

In Eq. (9) we have chosen a slightly different notation from
that of Ref. [17] to define the following dimensionless func-
tionals of the memory kernel x:

Ax =
∞∑

n=−∞

βxn

ν2
n + βxn

, (10)

�x = 4

β2

∞∑
n=−∞

1

ν2
n + βxn

. (11)

In what follows we will generally assume Ax > 0 and �x > 0
to restrict ourselves to propagators (9) that are convergent for
any combination of the boundary points. Note that due to the
previous assumption of x0 �= 0 and y0 �= 0 the functionals are
well defined when written in this form. Nevertheless, taking
the limit x0, y0 → 0 in the propagators still yields the appro-
priate expression, and this distinction will only become of
importance in the partition function further on.

III. PARTITION FUNCTION FOR IDENTICAL
PARTICLES WITH MEMORY

The path-integral approach is naturally extended to the
treatment of identical particles by taking all possible permu-
tations of the end points into account [2]. In this way, the
canonical partition function for bosons is written as

Z (N ) = 1

N!

∑
P

∫
dr
∫ P[r],β

r,0
Dr′ e−S(N )[r′,x,y,κ]. (12)

The path integral counts all possible paths from an ordered set
of initial points r = {r1, r2, . . . , rN } to a final set of points
P[r] = {Pr1, Pr2, . . . , PrN }, where the coordinates are re-
ordered by a permutation P on a set of N , using the commonly
used notation Pr1 = rP(1). All possible values of the set r are
then integrated out, and the sum over all possible permutations
P is finally taken. The treatment can be straightforwardly
extended to fermions by adding a factor (−1)P that provides a
minus sign to all odd permutations.

The propagator (6) exhibits the same factorization pattern
as a harmonically coupled system of oscillators, and hence
initially the approach of Ref. [9] can be followed. The inte-
gration over all possible boundary points r can be extended to
include the center-of-mass variable through the introduction

of a delta function,∫
dr →

∫
dR
∫

dr δ

(
R − 1

N

∑
i

ri

)
, (13)

which is then written in its Fourier representation [9]. This
allows us to separate the contribution of the center-of-mass
propagators in Eq. (6) as follows:

Z (N ) = 1

(2π )3

∫
dkZR(N, k)Zr (N, k), (14)

where

ZR(N, k) =
∫

dR eik·R K[y, 0](
√

NR, β|√NR, 0)

K[x, 0](
√

NR, β|√NR, 0)
(15)

and

Zr (N, k) = 1

N!

∑
P

∫
dr

N∏
j=1

K[x, 0](Pr j, β|r j, 0)e−ik·r j/N .

(16)

Note that we set the source functions κi = 0, as their main
purpose was in deriving the fluctuation factor, and from now
on we consider the action functional (1) without source terms.
The integral in expression (15) converges under the restric-
tion �x > �y and can be readily computed as a Gaussian
integral, and calculating expression (16) will prove to be the
main challenge. Following the standard approaches [2,9], any
permutation P can be partitioned into M	 disjoint permutation
cycles of length 	, which allows us to write

Zr (N, k) =
∗∑

M1,M2,...,MN

N∏
	=1

1

	M	 (M	)!
h	(k)M	 , (17)

where the ∗ symbol above the summation symbol indicates
a constrained summation that has to obey

∑N
	=1 	M	 = N .

In this representation the nested N-dimensional integral in
expression (16) factorizes as a product of 	-fold integrals that
correspond to each permutation cycle:

h	(k) =
∫

dr1 · · ·
∫

dr	 K[x, 0](r1, β|r	, 0) · · ·

× K[x, 0](r3, β|r2, 0)K[x, 0](r2, β|r10)e−i 1
N k·∑	

j=1 r j .

(18)
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The next step is to obtain an expression for h	(k), which
requires the computation of an 	-dimensional integral in ex-
pression (18). While high-dimensional Gaussian integrals can
always in principle be calculated by converting them into
a linear algebra problem of finding a determinant of an 	-
dimensional matrix, finding an explicit expression for the
latter is not always equally straightforward. In the approach
of Ref. [9], which we have thus far followed very closely,
the integral (18) is calculated by relying on the composition
property of the propagators. If the composition property holds,
then h	(k) becomes the single-particle partition function of
exactly the same system as described by the single-particle
propagator, but at an inverse temperature 	β and with addi-
tional delta kicks to account for the k exponent. This partition
function can then be readily computed with standard path
integration methods. This trick is not applicable here, as the
propagator with memory (9) does not obey the composition
property. This can be easily seen by noting that the action
functional (1) cannot just be split into a sum of two parts on
respective time intervals. In Appendix B we show how inte-
gral (18) can be directly computed and obtain the following
result in d dimensions:

h	(k) = Q	d
x

1∣∣2 sinh
(

	
2 arccosh

[Ax�x+1
Ax�x−1

])∣∣d
× exp

(
− 	k2β

8N2m
�x

)
, (19)

where

Qx = 1∏
k=1

(
1 + βxk

ν2
k

)( 1

β3x0

4

|Ax�x − 1|
)1/2

. (20)

The functional form of h	(k) is very similar to that found
in Ref. [9]. The main differences are that the oscillator-
frequency-dependent parts are now replaced by expressions
containing �x and Ax, functionals of the memory kernel,
appearing in the argument of the hyperbolic sine and the expo-
nential. An additional factor Qx appears, which equals 1 when
the memory kernel x corresponds to a harmonic oscillator
without memory.

The choice of writing expression (19) in terms of the hy-
perbolic sine has the advantage of being maximally illustrative
in regard to how changes due to memory arise on top of pre-
viously known expressions in Ref. [9]. However, due to this
choice some particular care should be taken when �xAx < 1.
In this case each of the two factors in the determinant (B14) in
Appendix B can become negative, and the complex modulus
should be added after taking the square root if the factors are
to be separated as in (19) and (20). For simple harmonic os-
cillator systems, and the model system considered in Sec. IV,
�xAx > 1 and this subtlety can be safely ignored.

The expression for the partition function (14) can now be
computed. The center of mass ZR(N, k) can be calculated
from the propagators, and now that the k dependence of h	(k)
is known, the k integral in (14) can be performed. After some
algebraic work, one obtains

Z (N ) = Z(N )QNd
x

(
βx0

βy0

)d/2 ∞∏
k=1

(
1 + βxk

ν2
k

1 + βyk

ν2
k

)d

, (21)

with Z given by

Z(N )=
∗∑

M1,M2,...,MN

N∏
	=1

1

	M	 (M	)!

1∣∣2 sinh
(

	
2 arccosh

[Ax�x+1
Ax�x−1

])∣∣M	d
.

(22)

Note that due to the presence of the additional factor in
expression (21) it is now the product QNd

x Z(N ) that represents
the partition function in the absence of two-body interactions,
extending the result of Ref. [9]. Following the approach in
Ref. [9], the constrained summation (22) can be transformed
into a recurrence relation:

Z(N )= 1

N

N−1∑
k=0

Z(k)

∣∣∣∣2 sinh

[
(N−k)

2
arccosh

(
Ax�x +1

Ax�x −1

)]∣∣∣∣
−d

.

(23)

The recurrence relation requires an initial value, and it can be
seen that Z(0) = 1 yields the correct Z (1) result according to
expression (21). Alternatively, the factor Qx could be absorbed
in the definition of Z(N ), but then the recurrence would have
to start from Z(0) = QNd

x .
As a consistency check, consider the specific choice x(τ −

σ ) = w2δ(τ − σ ) and y(τ − σ ) = 
2δ(τ − σ ) for which the
action functional (1) exactly corresponds with the system of
coupled oscillators in Ref. [9]. The different Matsubara sums
and products in Eq. (21) can now be readily computed to find

(
βx0

βy0

)d/2 ∞∏
k=1

(
1 + βxk

ν2
k

1 + βyk

ν2
k

)d

= sinh
(

βw

2

)d
sinh

(
β


2

)d (24)

and Qx = 1. In particular, the resulting hyperbolic cosine from

Ax�x + 1

Ax�x − 1
= cosh(βw) (25)

allows us to cancel the inverse hyperbolic cosine in the weight
factor of the recurrence relation (23). Substituting these re-
sults, the expression for the partition function in Ref. [9] is
exactly retrieved in this limit.

IV. EXAMPLE APPLICATION: OPEN QUANTUM SYSTEM
OF IDENTICAL OSCILLATORS

In this section we present a brief example application of the
derived expressions to a stylized model of an open quantum
system of identical particles. We consider the system depicted
in Fig. 1 of noninteracting bosons in a harmonic trap with
frequency 
, coupled to an environment. The effect of the en-
vironment is modeled as a harmonic coupling with frequency
W of each boson to a fictitious particle with mass M. This
model corresponds to a particular equal-particle case of the
more general models studied in Refs. [18,19] for distinguish-
able particles of the system, which we will here consider for
bosons. Note that because of the Bose statistics that have to be
imposed, this model is more than simply N unrelated copies
of a two-particle system.

The fictitious particles are taken to be uncoupled and dis-
tinguishable, which could represent an environment with a far
slower relaxation than the bosonic system. The (Euclidean)
Lagrangian of the full system corresponding to the partition
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FIG. 1. A one-dimensional depiction of the system described
by (26).

function Ztot is therefore given by

Ltot =
N∑

i=1

(
m

2
ṙ2

i + m
2

2
r2

i + M

2
Q̇2

i + MW 2

2
(ri − Qi )

2

)
,

(26)

and the Lagrangian of the external system is defined as

Lf =
N∑

i=1

(
M

2
Q̇2

i + MW 2

2
Q2

i

)
. (27)

It is important to note that through (27) we adopt the view of
the external system as defined in Ref. [11]. The external sys-
tem is considered to be the whole of the fictitious particles and
springs with constant MW 2 that are attached to the degrees of
freedom of interest. The fictitious particles can be integrated
out as in Ref. [14] to obtain the reduced partition function:

Z (N ) = Ztot(N )

Zf(N )
, (28)

where Zf is the partition function of the external system
corresponding to (27). Expression (28) is exactly the identical-
particle extension of one of the stylized models of an open
quantum system considered in Ref. [11]. The resulting Z (N )
can now be cast in the form of (12), where the memory kernels
in the action functional (1) are given by

x(τ − σ ) = y(τ − σ ) = MW 2

m

[
W 2 + m

M 
2

W 2
δ(τ − σ )

−W cosh(W [|τ − σ | − β/2])

2 sinh(W β/2)

]
. (29)

This is the simplest translationally noninvariant model that
provides a memory kernel x(τ − σ ) with nontrivial memory
effects for the recurrence relation (23). The functionals Ax and
�x are obtained after computing the Matsubara summations in
expressions (10) and (11):

Ax = βω+
2

coth

(
βω+

2

)
γ+ + βω−

2
coth

(
βω−

2

)
γ−, (30)

�x = 2

βω+
coth

(
βω+

2

)
γ+ + 2

βω−
coth

(
βω−

2

)
γ−, (31)

where

ω2
± =

m+M
m W 2 + 
2 ±

√(
m+M

m W 2 + 
2
)2 − 4W 2
2

2
,

(32)

γ± = 1

2

[
1 ± 
2 + (M

m − 1
)
W 2

ω2+ − ω2−

]
. (33)

The frequencies ω± that diagonalize the full system [11]
therefore naturally appear in the calculation.

Since for this system yn = xn, the interaction factor in front
of (21) cancels out, and the partition function Z (N ) is written
as a product of only two factors, QNd

x and the recurrence part
Z(N ). The Matsubara product in (20) can be computed for the
specific memory kernel (29), which allows us to write

Qx = 2 sinh
(

βW
2

)
βW

βω+
2 sinh

(
βω+

2

) βω−
2 sinh

(
βω−

2

)
×
(

1

β3x0

4

�xAx − 1

)1/2

, (34)

with �x and Ax known from (31) and (30). In three dimen-
sions the recurrence relation (23) for Z(N ) has no known
solution and has to be computed numerically. As shown in
the approach of Ref. [9] a numerically stable implementation
is obtained by defining

b = e−q, q = arccosh

[
�xAx + 1

�xAx − 1

]
, (35)

and without loss of generality proposing the following way of
writing the recurrence factor:

Z(N ) =
N∏

j=1

ρ j
b

3
2

(1 − bj )3 . (36)

This fixes the first coefficient ρ1 = 1, and after substitution
of (36) into (23) a recurrence relation for ρN is found:

ρN = 1

N

(1 − bN )3

(1 − b)3

⎡
⎣1 +

N−2∑
k=0

(1−b)3

(1 − b(N−k) )3

N−1∏
j=k+1

(1 − bj )3

ρ j

⎤
⎦.

(37)

Due to the additional factor in the expression for the partition
function Z (N ) = QNd

x Z(N ), the internal energy and specific
heat of the system are written as a sum of two terms:

U (N ) = UQ(N ) + U (N ) = −3N∂β ln(Qx ) − ∂β ln(Z),
(38)

C(N ) = CQ(N ) + C(N )

= 3NkBβ2∂2
β ln(Qx ) + kBβ2∂2

β ln(Z). (39)
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Analytical expressions for UQ and CQ can straightforwardly be calculated from the factor Qx in (34). The recurrence relations
for U (N ) and C(N ) are obtained after computing the partial derivatives of ln(Z) by combining (36) with (37):

U (N )

∂βq
= 1

N

1

ρN

(1 − bN )3

(1 − b)3

(
U (N − 1)

∂βq
+ 3

2

1 + b

1 − b

+
N−2∑
k=0

(1 − b)3

(1 − b(N−k) )3

[
U (k)

∂βq
+ 3(N − k)

2

1 + b(N−k)

1 − b(N−k)

] N−1∏
j=k+1

(1 − bj )3

ρ j

⎞
⎠ (40)

and

C(N )k−1
B = 1

N

N−1∑
k=0

1

(1 − b(N−k) )3

N∏
j=k+1

(1 − bj )3

ρ j

(
k−1

B C(k) + β2

[
3(N − k)

2

1 + b(N−k)

1 − b(N−k)
∂βq + U (k) − U (N )

]

×
[

3(N − k)

2

1 + b(N−k)

1 − b(N−k)
∂βq + U (k)

]
+ β23(N − k)2 b(N−k)

(1 − b(N−k) )2
(∂βq)2 − β2 3(N − k)

2

1 + b(N−k)

1 − b(N−k)
∂2
βq

)
. (41)

Here, the recurrence formulas are initiated from U (0) = 0
and C(0) = 0, and the partial derivatives ∂βq and ∂2

βq can be
analytically computed from (35) since � and A are known.

The specific heat (39) is shown in Fig. 2 as a function of the
temperature, measured with respect to the critical temperature
in the absence of the external system kBTc = h̄
[N/ζ (3)]1/3,
with ζ (x) being the Riemann zeta function. We can clearly
observe the main bosonic condensation peak slightly below
the critical temperature, which at weak coupling corresponds
exactly to the result in Ref. [9]. The sharpness of the peak
fades towards stronger coupling with the external system but
nevertheless remains visibly present. In addition to the main
condensation peak, at an intermediate coupling strength an
anomalous dip and peak are observed at low temperatures.
These anomalous features in the specific heat of open quan-
tum systems have been studied for distinguishable particles in
Refs. [11,19,20], where it is shown that the specific heat can
even become negative for certain systems. This is explained
in Refs. [11,19] by the fact that the specific heat (39) is the

FIG. 2. Specific heat per particle as a function of the temperature
of N = 100 noninteracting bosons in a harmonic potential, harmon-
ically coupled to external masses for M = m. The results are shown
for three coupling strengths W = [0.01
, 4
, 10
] plotted by the
dashed, solid, and dotted lines, respectively

difference of the specific heats of the system and the trapped
fictitious particles as defined in the partition function (28), and
a more extensive interpretation can be found in Ref. [20].

We can also note that the high- and low-temperature limits
of the specific heat are in agreement with Ref. [19]. From ex-
pression (34) we can see that at high temperatures for β → 0,
Qx approaches a finite value and hence the first part of the
specific heat CQ(N ) in (39) goes to zero. In the same limit
the recurrence part of the partition function can be shown to
diverge as Z ∼ β−Nd , from which follows C(N ) = 3NkB. In
the low-temperature limit β → ∞, one can show that in the
presence of the environment, Z remains finite and Qx becomes
an exponential function of β, from which follows C(N ) = 0.

An overview of the structure of the main condensation peak
and the anomalous dip is presented in Fig. 3. For both a light
and a heavy mass M of the fictitious particles, remnants of
the bosonic condensation peak remain visible up to strong
coupling with the external system. At low temperatures and

FIG. 3. Color map of the specific heat per particle C/(kBN ) for
N = 500 bosons, for (a) M = m and (b) M = 10m. The dashed loop
in the bottom left corner of each color map indicates the region
where the specific heat becomes negative. The dotted line indicates
the effective temperature obtained from (43).
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weaker coupling the anomalous dip can be seen as a region of
lighter shading. In contrast to the single-particle case for this
system [11], we find that the anomalous dip can drop below
zero for bosons in Fig. 3, where the dashed loop indicates a
region of negative specific heat.

As can also be seen from Fig. 3, coupling with the external
system significantly lowers the effective critical temperature
of the bosons. This can be understood by noting that the gen-
eralized bosonic recurrence relation (23) is nothing else than
the recurrence relation for harmonically trapped bosons where
the trap frequency is replaced by a temperature-dependent
quantity:


̃(T ) = 1

β
arccosh

[
�xAx + 1

�xAx − 1

]
, (42)

which allows us to define an effective critical temperature as
the solution of

T̃c

Tc
= 
̃(T̃c)



. (43)

The results are plotted as the dotted lines in Fig. 3 and
agree well with the behavior of the condensation peak. It is
important to note that only the recurrence part is correctly
reproduced by substituting 
 → 
̃(T ) in the harmonic oscil-
lator result. The factor Qx in front of the partition function (21)
is not retrieved this way because it is entirely absent in the
harmonic case. As the latter, however, can be taken out of
the recurrence relation, it is no surprise that it should play no
significant role in the inherently bosonic features of the sys-
tem, and the behavior of the condensation peak is accurately
reproduced by (43).

V. CONCLUSION

In this paper we presented an approach that incorporates
the effects of retarded interactions in the path-integral formal-
ism for identical particles. First, the many-body propagator
for distinguishable particles was derived and shown to ex-
hibit the same factorization pattern in terms of single-particle
propagators as seen in harmonically coupled systems with-
out retardation [9]. However, the main difference is that the
single-particle propagators no longer obey the composition
property when the system has memory. This complicates the
computation of a class of integrals appearing in the deriva-
tion of the partition function, for which we obtain explicit
expressions by utilizing the properties of circulant matrices.
The resulting expression for the partition function is a func-
tional applicable to a general class of memory kernels and is
shown to reduce to the known result for harmonically coupled
systems without memory in the appropriate limit.

The results were then applied to study the specific heat
of noninteracting bosons in a harmonic trap coupled to an
external system of fictitious masses. This provides the sim-
plest model system that yields nontrivial memory effects in
the condensation recurrence relation. We show that the pres-
ence of the environment shifts the bosonic condensation to
lower temperatures and significantly smooths out the Bose
condensation peak in the specific heat, which nevertheless
remains visible even at strong coupling. To better understand
these types of open systems and, in particular, to calculate

the density and the pair correlation function, expressions for
the identical-particle one- and two-point generating function-
als are required. The results presented here pave the way to
compute these quantities. These will in turn allow one to
study the autocorrelation functions and occupation numbers
and formulate the most general harmonic variational approach
for identical particles.
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APPENDIX A: DERIVATION OF THE DISTINGUISHABLE
PARTICLE PROPAGATOR

For the single-particle limit of (1), the classical action is
calculated in Ref. [17]. For completeness and due to slightly
different notations, we briefly summarize the calculation be-
low. Consider the single-particle action functional:

S(1)[r, x, κ] =
∫ β

0

mṙ2

2
dτ

+ m

2

∫ β

0
dτ

∫ β

0
dσx(τ − σ )r(τ ) · r(σ )

− m
∫ β

0
dτr(τ ) · κ(τ ). (A1)

The classical path is found as the solution to the following
integrodifferential equation with boundary conditions rT =
r(β ) and r0 = r(0):

r̈(τ ) −
∫ β

0
x(τ − σ )r(σ )dσ + κ(τ ) = 0. (A2)

In Ref. [17], the following Fourier decomposition is proposed:

rcl(τ ) = r0 + (rT − r0)
τ

β
− A0

2
τ (τ − β )

+
∑
n �=0

An

ν2
n

(eiνnτ − 1), (A3)

where after substitution into (A2), the following solutions
are found (assuming x0 �= 0; otherwise the appropriate limit
should be taken):

A0 = 4

β2�x

(∑
n

κn

ν2
n + βxn

− 1

2
(rT + r0)

)
, (A4)

An = βxn

ν2
n + βxn

A0 + 1(
1 + βxn

ν2
n

)(κn + xn
rT − r0

iνn

)
. (A5)

The coefficients can be substituted into (A3) to obtain an
explicit expression for the classical solution rcl(τ ) and its
Fourier components rn. After integrating the kinetic energy by
parts and writing the remaining source term integral in Fourier
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space, the classical action can be written as

S(1)
cl [x, κ](rT , r0) = m

2 [ṙcl(β ) · rT − ṙcl(0) · r0]

− mβ

2

∑
n rn · κ−n. (A6)

By taking the derivative of (A3) and substituting its boundary
points to find the first part, and performing the Fourier sum
using rn = κn−An

βxn
to find the second part, the single-particle

classical action becomes

S(1)
cl [x, κ](rT , r0) = m

2β
Ax(rT − r0)2 + m

2β

1

�x
(rT + r0)2 − 2m

β

1

�x
(rT + r0) ·

∑
n

κn

ν2
n + βxn

+ 2m

β
(rT − r0) ·

(
β

2

∑
n

iνnκn

ν2
n + βxn

)
+ 2m

β

1

�x

(∑
n

κn

ν2
n + βxn

)2

− 2m

β

(
β2

4

∑
n

κn · κ−n

ν2
n + βxn

)
. (A7)

For the source terms, some care should be taken regarding pointwise convergence when performing calculations in Fourier
space, as pointed out in Ref. [17]. For example, when considering a source function κ(τ ) = f δ(τ − σ ) for σ = 0 or σ = β,
the correct result should be derived by considering σ ∈]0, β[ and respectively taking the limit of σ → 0+ or σ → β− rather
than direct substitution due to discontinuities at the edge. Taking care of the appropriate limits, the known results for, e.g., the
harmonic oscillator or the kicked particle are readily obtained from (A7).

To obtain the many-particle extension of this result for the action functional (1), a similar but lengthier calculation was
performed starting from Eqs. (4) and (5) by first finding Rcl(τ ) with the previous method and then using this result to solve the
equation for r(i)

cl (τ ). However, in line with Ref. [9], a somewhat shorter argument yielding the same result can be formulated by
switching to the variable ui = ri − R at the level of the classical equations:

R̈(τ ) −
∫ β

0
y(τ − σ )R(σ )dσ + K(τ ) = 0, (A8)

üi(τ ) −
∫ β

0
x(τ − σ )ui(σ )dσ + κi(τ ) − K(τ ) = 0, (A9)

with boundary conditions ui,(T,0) = ri,(T,0) − R(T,0). In addition, the solution is subject to the constraint
∑

i ui(τ ) = 0. The
many-body classical action corresponding to (1), written in terms of the coordinates ui and R, yields

Scl[x, y, κ](rT , r0) =
N∑

i=1

S(1)
cl [x, κi − K](ui,T , ui,0) + S(1)

cl [y,
√

NK](
√

NRT ,
√

NR0). (A10)

Here, we have used the property
∑

i ui(τ ) = 0 to drop a number of terms and add an additional source term in K(τ ) to obtain
the difference of source terms κ − K in the first term of (A10). Through direct substitution of the boundary conditions ui,(T,0) =
ri,(T,0) − R(T,0) and source term κi − K into (A7), one can easily confirm that

Scl[x, y, κ](rT , r0) =
N∑

i=1

S(1)
cl [x, κi](ri,T , ri,0) + S(1)

cl [y,
√

NK](
√

NRT ,
√

NR0) − S(1)
cl [x,

√
NK](

√
NRT ,

√
NR0). (A11)

Next, we have to find the fluctuation factor of the propagator KN [x, y, 0](0, β|0, 0) as defined in Sec. II. While the
decomposition of the classical action (A11) strongly suggests a similar factorization for the fluctuation factor, let us present
a complete overview of the calculation. Following the approach in Ref. [17], we consider the many-particle fluctuation factor
KN [λx, λy, 0](0, β|0, 0), where the memory kernels are scaled by a variable λ, and define

J (λ) = ln{KN [λx, λy, 0](0, β|0, 0)}. (A12)

The logarithm of the fluctuation factor J (1) can then be written as

J (1) = J (0) +
∫ 1

0
dλ

∂J (λ)

∂λ
= J (0) +

∫ 1

0
dλ

∂
∂λ

KN [λx, λy, 0](0, β|0, 0)

KN [λx, λy, 0](0, β|0, 0)
, (A13)

where of course J (0) = Nd
2 ln( m

2πβ
) is the known free-particle result in d dimensions. In path-integral notation (2), one can write

∂

∂λ
KN [λx, λy, 0](0, β|0, 0) = −

∫ 0,β

0,0
Dr

(
m

2

N∑
i

∫ β

0
dτ

∫ β

0
dσx(τ − σ )ri(τ ) · ri(σ )

+ m

2N

∑
i, j

∫ β

0
dτ

∫ β

0
dσ [y(τ − σ ) − x(τ − σ )]ri(τ ) · rj(σ )

)
e−S(N )[r,λx,λy,0]. (A14)
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By making use of functional derivatives with respect to the source terms κi and taking them out of the path integral, the
propagator fraction in the λ integral of (A13) can be written as

∂
∂λ

KN [λx, λy, 0](0, β|0, 0)

KN [λx, λy, 0](0, β|0, 0)
= −

(
1

2m

N∑
i

∫ β

0
dτ

∫ β

0
dσx(τ − σ )

δ

δκi(τ )
· δ

δκi(σ )

+ 1

2Nm

∫ β

0
dτ

∫ β

0
dσ [y(τ − σ ) − x(τ − σ )]

∑
i

δ

δκi(τ )
·
∑

j

δ

δκ j (σ )

)
e−Scl[λx,λy,κ](0,0)

∣∣∣∣∣
κ̄=0

.

(A15)

Since Scl[λx, λy, κ](0, 0) is known, the functional derivatives can be straightforwardly performed to obtain

∂
∂λ

KN [λx, λy, 0](0, β|0, 0)

KN [λx, λy, 0](0, β|0, 0)
= d

2
(N − 1)

[(∑
n

1

ν2
n + λβxn

)−1∑
n

βxn(
ν2

n + λβxn
)2 −

∑
n

βxn

ν2
n + λβxn

]

+ d

2

[(∑
n

1(
ν2

n + λβyn
)2
)−1∑

n

βyn(
ν2

n + λβyn
)2 −

∑
n

βyn

ν2
n + λβyn

]
. (A16)

The λ integral in (A13) can now be analytically computed to finally obtain the many-body fluctuation factor:

KN [x, y, 0](0, β|0, 0) = K[x, 0](0, β|0, 0)(N−1)K[y, 0](0, β|0, 0), (A17)

where the single-particle fluctuation factor in d dimensions is given by

K[x, 0](0, β|0, 0) =
(

m

2πβ

) d
2
(

4

β3x0�x

) d
2

(
1∏∞

k=1

(
1 + βxk

ν2
k

)
)d

. (A18)

This result together with (3) and (A11) proves the factoriza-
tion of the propagator in (6).

APPENDIX B: EXPLICIT EVALUATION OF
CLOSED-LOOP GAUSSIAN INTEGRALS

Let us start by defining a shorthand notation for the single-
particle propagator (9) with κi = 0:

K[x, 0](rT , β|r0, 0) = Ad exp[−a(rT − r0)2 − b(rT + r0)2],
(B1)

where a = m
2β

Ax, b = m
2β

1
�x

, and

A =
(

m

2πβ

)1/2( 4

β3x0�x

)1/2 1∏
k=1

(
1 + βxk

ν2
k

) . (B2)

It follows from expression (18) and (B1) that the cyclic
integral h	(k) factorizes as a product of each dimensional
component h	(k) = h	(kx )h	(ky)h	(kz ), where each factor is
of the form

h	(kz ) = A	

∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dz	K[x, 0](z1, β|z	, 0) · · ·

× K[x, 0](z3, β|z2, 0)K[x, 0](z2, β|z10)e−i 1
N kz

∑	
j=1 z j .

(B3)

Here, the notation for K[x, 0](z1, β|z	, 0) as a function of
scalar points zT and z0 rather than vector variables refers to the
propagator (B1) in one dimension, d = 1. After substitution of
the propagators, expression (B3) can also be calculated using

the well-known Gaussian integral formula:

h	(kz ) = A	

∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dz	 exp(−zT Cz − BT z)

= A	

√
π	

det(C)
exp

(
1

4
BT C−1B

)
, (B4)

where we invoke a vector notation for zT = (z1, . . . , z	),
BT = ikz

N (1, . . . , 1) and define the 	 × 	 dimensional matrix
as

C=

⎛
⎜⎜⎜⎜⎜⎜⎝

2(a+b) (b−a) 0 . . . (b−a)

(b−a) 2(a+b) (b−a) . . . . . .

0 (b−a) 2(a+b) . . . 0

. . . . . . . . . . . . (b−a)

(b−a) . . . 0 (b − a) 2(a+b)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B5)

The matrix C is a circulant matrix, characterized by the
property that any row or column is obtained by shifting the
previous one by a single space (using periodic boundary con-
ditions at the edges). Every circulant matrix has the same set
of j = {0, 1, . . . , 	 − 1} eigenvectors [21]:

yT
j = 1√

	

(
ρ0

j , ρ
1
j , . . . , ρ

	−1
j

)
, where ρ j = e

2π i
	

j, (B6)

with corresponding eigenvalues for this particular matrix [21],

λ j = 2(a + b) + 2(b − a) cos

(
2π j

	

)
. (B7)

The goal now is to calculate both the determinant of C and
the quadratic form BT C−1B of its inverse to obtain an explicit
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expression of (B4). An expression for the determinant is read-
ily written down as the product over all eigenvalues:

det(C) =
	−1∏
j=0

[
2(a + b) + 2(b − a) cos

(
2π j

	

)]

= [2(a − b)]	
	−1∏
j=0

[
a + b

a − b
− cos

(
2π j

	

)]
. (B8)

Consider the strictly positive real numbers a and b and assume
a �= b. We can now define z̃ = arccosh( a+b

a−b ). For a+b
a−b > 1, z̃ is

real and uniquely defined. However, any a+b
a−b < 1 lies exactly

on the branch cut of the arccosh function, and z̃ is complex and
uniquely defined only up to the choice of whether the branch
cut is approached from above or below the real axis. Either
of the two choices work, and as we will show, both yield the
same result. Having converted a+b

a−b in this form, the cosines
in (B8) can now be added:

det(C) = [2(a − b)]	
	−1∏
j=0

[
cos(iz̃) − cos

(
2π j

	

)]

= [4(a − b)]	
	−1∏
j=0

sin
(π j

	
+ iz̃

2

) 	−1∏
j=0

sin
(π j

	
− iz̃

2

)
.

(B9)

We encountered a very concise proof of the resulting sine
product series in Ref. [22]. First note that the following poly-
nomial in c can be decomposed in terms of its roots:

c	 − 1 =
	−1∏
j=0

(
c − e

2π i
	

j
)
. (B10)

Setting c = e2iz, this can be applied to factorize the sine func-
tion as follows:

sin(	z) = e−i	z

2i
(e2i	z − 1) = e−i	z

2i

	−1∏
j=0

(
e2iz − e

2π i
	

j
)
. (B11)

After some algebraic manipulations on (B11), one readily
obtains for any complex z

	−1∏
j=0

sin

(
π j

	
+ z

)
= 1

2	−1
sin(	z), (B12)

which is the known result found in tables of product se-
ries [23]. Using this result in (B9) yields

det(C) = 4(a − b)	 sinh

(
	

2
z̃

)2

. (B13)

Let us now go back to the ambiguity of defining z̃ along the
branch cut. If −1 < a+b

a−b < 1, then z̃ is purely imaginary and
only changes sign across the branch cut, which clearly does
not affect (B13). If a+b

a−b < −1, then the real part of z̃ remains
constant along the branch cut and the imaginary part jumps
from π to −π , which does not change (B13) for an integer
	. Therefore any choice gives the same result, and we can
unambiguously write

det(C) = 4(a − b)	 sinh

[
	

2
arccosh

(
a + b

a − b

)]2

. (B14)

We want to emphasize that when a − b < 0, each of the two
factors in (B14) become negative for odd cycles 	, but the
determinant always remains strictly positive and hence the
square root in (B4) is well defined and real.

Next we have to find the quadratic form of the inverse
matrix BT C−1B. For this, we note that the matrix C is di-
agonalized as D = Q∗CQ [21], where Q is the matrix with
the normalized eigenvectors (B6) and D is the matrix with
eigenvalues (B7) on the diagonal. It readily follows that

BT C−1B = BT QD−1Q∗B = −k2
z 	

N2

1

4b
. (B15)

The determinant (B13) and quadratic form of the in-
verse (B15) now yield

h	(kz ) = A	

(
π	

4(a − b)	 sinh
[

	
2 arccosh

(
a+b
a−b

)]2
)1/2

× exp

(
−k2

z 	

N2

1

16b

)
. (B16)

After substitution of a, b, and A, and taking the dimensionality
into account, we exactly obtain expression (19) in Sec. III.
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