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Quantum-fluctuation-induced superfluid density in two-dimensional spin-orbit-coupled
Bose-Einstein condensates
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We study a two-dimensional spin- 1
2 interacting Bose-Einstein condensate with a Rashba-Dresselhaus spin-

orbit coupling. The analytical expression of the superfluid density is derived from the linear response theory and
Bogoliubov approximation. We find that the superfluid density can be divided into three terms, which originate
from the condensate, the interaction between the condensate and the Bogoliubov excitations, and only the
excitations. We show that the condensate-excitation interaction changes the bare mass in the superfluid density
into the effective mass. In the isotropic spin-orbit coupling limit, the effective mass diverges, and the superfluid
density is predicted to be zero within previous studies; however, our work shows that the excitation-induced
superfluid density remains nonzero, which means that quantum fluctuations rescue the superfluidity. Our results
show the importance of the quantum fluctuations in understanding the superfluid properties of spin-orbit-coupled
Bose-Einstein condensates.
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I. INTRODUCTION

Spin-orbit coupling (SOC) plays an important role in a
variety of physical systems and is responsible for plenty of
fascinating phenomena, such as the quantum spin Hall effect
[1,2], topological superfluids [3–5], and topological insulators
[6]. Recently, different types of SOCs have been realized in
ultracold atomic gases [7–10]. The exquisite controllability of
atomic systems opens up the possibility for exploring novel
quantum states of matter and has attracted a lot of attention.
In the past decades, the spin-orbit-coupled Bose gases have
been studied extensively [11]. The ground state and excitation
properties have been investigated using various approaches
[12–21]. The system exhibits three typical phases [14,19,20],
i.e., plane-wave, stripe, and zero-momentum phases, in differ-
ent parameter regions.

The SOC modifies the single-particle dispersion such that
the effective mass and density of states are enhanced. As a
result, the interaction effects become more important, and
the beyond-mean-field effects might be noticeable. Bogoli-
ubov excitations are also affected by the SOC; besides the
gapless phonon excitation, there exists a branch of gapped
quasiparticle excitation. The multiband structure was recently
shown to play an important role in understanding fermionic
superfluidity of flat- or quasiflat-band systems in which the
effective mass is large [22,23]. For example, it has been
suggested that the geometric superfluid density contributes
much to the high superconducting transition temperature of
twisted bilayer graphene [24–26]. The superfluid density of
spin-orbit-coupled fermionic superfluids has also been inves-
tigated [27,28]. It is thus natural to investigate the multiband
and beyond-mean-field effects in spin-orbit-coupled Bose-
Einstein condensates (BECs).
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Since the Galilean invariance is broken by SOC, the super-
fluid density can be different from the particle density even at
zero temperature [29]. Previous studies [30–32] on spin-orbit-
coupled BECs predict that the superfluid density becomes
zero when the effective mass diverges, while the condensate
fraction is still very large for weak interactions. However, in
these works the effects of multibands and quantum fluctua-
tions on the superfluid density of spin-orbit-coupled bosons
are not fully taken into account.

In this work we go beyond the mean-field analysis and in-
vestigate the superfluid properties of a two-dimensional (2D)
interacting Bose gas with an in-plane Rashba-Dresselhaus
SOC. We calculate the superfluid density using the linear
response theory and Bogoliubov approximation and find that
in general, the superfluid density consists of three terms: The
first term comes from the Bose condensate and is propor-
tional to the condensate fraction. The second term is from
the interaction between the condensate and the Bogoliubov
excitations, which is always negative and cancels part of the
first term. The third term originates from the Bogoliubov ex-
citations, which takes the same form as in the fermionic case
[28], and is related to both interband and intraband processes.
In the isotropic SOC limit, the effective mass diverges, and
the first two terms cancel out completely. However, the third
term remains nonzero, which means that it is the quantum
fluctuation that makes the superfluidity possible. Our result is
thus qualitatively different from previous predictions that the
superfluidity will be destroyed in the isotropic SOC limit [30].
Experimentally, our prediction can be tested by measuring the
sound velocity [33].

II. HAMILTONIAN

We consider a 2D spin- 1
2 Bose gas with a Rashba-

Dresselhaus SOC, which is described by the Hamiltonian
H = H0 + Hint. The single-particle Hamiltonian H0 and the
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interaction Hamiltonian Hint are given by [14,30]

H0 =
∫

d2r ψ†

[
p2 + κ2

0

2
+ κ0(pxσx + λpyσy)

]
ψ (1)

and

Hint =
∫

d2r (g↑↑n↑n↑ + g↓↓n↓n↓ + 2g↑↓n↑n↓), (2)

where ψ = (ψ↑, ψ↓)T is the spinor, and p = (px, py) is the
momentum operator. κ0 is the SOC strength and is taken to
be positive. σx and σy are the Pauli matrices. λ (0 � λ � 1)
describes the anisotropy of the in-plane Rashba-Dresselhaus
SOC; when λ = 1, the system reduces to the isotropic case
[17]. nσ = ψ†

σ ψσ is the particle density for spin σ . gσσ (σ =↑
,↓) and g↑↓ are the intraspecies and interspecies s-wave cou-
plings, respectively. Experimentally, a quasi-2D system can
be realized by applying a confinement potential along the
z direction and a weak trap in the x-y plane. In the weak
confinement limit, the confinement length lz is much larger
than the three-dimensional scattering length aσσ ′ , and the in-
teraction parameters gσσ ′ can be written as gσσ ′ = h̄2g̃σσ ′/m,
where h̄ is the reduced Plank constant, m is the atom mass,
and g̃σσ ′ = √

8πaσσ ′/lz is dimensionless and much smaller
than 1 [34]. In this paper we set h̄ and m to unity and take
g↑↑ = g↓↓ = g and g↑↓ = g′.

Without interactions, the single-particle spectrum has two
branches,

ε±(k) = 1
2

[(√
k2

x + λ2k2
y ± κ0

)2 + (1 − λ2)k2
y

]
; (3)

the ground state is doubly degenerate when 0 � λ < 1 with
the energy minima located at k = (±κ0, 0). For the isotropic
case with λ = 1, the lowest energy has degenerate states

on the circle with
√

k2
x + k2

y = κ0. The effective mass is

anisotropic, with

1

meff,x
= 1,

1

meff,y
= 1 − λ2. (4)

In the isotropic SOC limit, the effective mass meff,y diverges.
When considering the interactions, mean-field studies of

the ground state have shown different phases. Depending on
the relative magnitude of g and g′, the bosons can condense
into a plane-wave phase with a single momentum (g > g′) or
a density-stripe state of two opposite momenta (g < g′) [14].

III. SUPERFLUID DENSITY

In this work, we focus on the region g > g′. Our starting
point is the plane-wave state with momentum k0 = (κ0, 0),
and the condensate wave function is [14,30]

φ(r) =
√

n0

2
eiκ0x

(
1

−1

)
, (5)

where n0 is the condensate density.
To study the quantum fluctuations, first, we expand the

bosonic field operator as

ψσ (r) = φσ (r) + 1√
V

∑
k

eik·rψkσ , (6)

where V is the volume of the system and we take it to be
unity; substituting Eq. (6) into the Hamiltonian and keeping
the quadratic terms, we obtain the Bogoliubov Hamiltonian

H = 1

2

∑
k

	
†
kH(k)	k, (7)

with 	
†
k = [ψ†

k+k0,↑, ψ
†
k+k0,↓, ψ−k+k0,↑, ψ−k+k0,↓] and

H(k) =
[

h(k + k0) 



 h∗(−k + k0)

]
, (8)

with h(k + k0) = (k+k0 )2+κ2
0

2 + gn0 − g′n0σx + κ0[(kx +
k0)σx + λkyσy] and 
 = gn0 − g′n0σx.

The superfluid density can be obtained by the linear re-
sponse theory, which was applied to study the geometric
superfluid density in multiband attractive Fermi-Hubbard sys-
tems recently [23]. The geometric contribution, which is
associated with the off-diagonal matrix elements of the cur-
rent operator, is shown to play an important role in the
superfluid density, especially in models with flat bands where
the effective mass diverges. A similar approach can be gener-
alized to bosonic systems.

According to the linear response theory, the superfluid
density ρi j is obtained by taking the zero-momentum limit
of the transverse component of the current-current function
Ki j (q, ω), i.e., ρi j = Ki j (q → 0, ω = 0) and

Ki j (q, ω) = 〈Ti j〉 − i
∫ ∞

0
dt ei(ω+i0+ )t

× 〈[
j p
i (q, t ), j p

j (−q, 0)
]〉
, (9)

where Ti j is the diamagnetic current operator and j p
i is the

paramagnetic current operator, given by

Ti j = δi j

∑
k,σ

ψ
†
k,σ

ψk,σ (10)

and

j p
i (q, t ) =

∑
k

	
†
k∂iH(k + q/2)P+	k+q. (11)

Here ∂i ≡ ∂ki , and P+ = (τ 3 + I )/2 is an upper projection
operator, with I being the identity matrix and τ 3 being the
third Pauli matrix acting on the particle-hole space. Note
that when we calculate the response function, the condensate
contribution in j p

i vanishes in the thermodynamic limit, while
in Ti j it contributes a finite value. We have

〈Ti j〉 = nδi j, (12)

where n is the total particle density, and for later convenience
we express it as n = n0 + δn, with δn being the condensate
depletion,

δn = −
∑

k

Tr
[
G′(k)∂2

i H(k)P+
]

(13)

=
∑

k

Tr[G′(k)∂iH(k)G′(k)∂iH(k)P+], (14)

where k = (iωn, k); ωn = 2πnT is the Matsubara frequency,
with T being the temperature; and G′(k) = [iωnτ

3 − H(k)]−1

is the imaginary-time Green’s function for the Bogoliubov
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FIG. 1. Quantum depletion δn/(gn0 ) as a function of the SOC
strength κ0 and the anisotropy parameter λ. The interspecies interac-
tion strength is taken to be g′/g = 0.5.

excitations. As ∂2
i H(k)P+ = P+, Eq. (13) is valid. To get

Eq. (14) from Eq. (13), we use the fact that ∂iG′(k) = G′∂iHG′
and then integrate Eq. (13) by parts. The advantage of Eq. (14)
is that it has the same structure as the paramagnetic current
correlation function.

Let |n, s〉 be the eigenvector of the matrix τ 3H with the
eigenvalue Es

n , i.e., τ 3H|n, s〉 = Es
n|n, s〉, and let s = ± de-

note the positive and negative eigenvalues. The wave vectors
satisfy 〈m, t |τ 3|n, s〉 = sδmnδst . Then G(iω, k) can be written
as

G′(iω, k) =
∑
n,s

s|n, s〉〈n, s|
iω − Es

n

. (15)

By summing over the Matsubara frequencies ω, from
Eq. (14) we can obtain

δn =
∑
n,s

∑
m,t

∑
k

st
ñ(Es

n ) − ñ(Et
m)

Es
n − Et

m

×〈n, s|∂iH(k)P+|m, t〉〈m, t |∂iH(k)|n, s〉, (16)

where ñ(x) = 1/[exp (x/T ) − 1] is the Bose-Einstein distri-
bution. In this work, all the quantities are calculated at zero
temperature. As in the fermionic case, the prefactor should
be understood as −∂En ñ(En) when n = m, which vanishes in
the zero-temperature limit since the Bogoliubov dispersion is
gapless only at k = (0, 0). The effect of SOC on quantum
depletion is shown in Fig. 1, where δn/(gn0) is plotted [35].
As one can see, the depletion increases with the increasing
of the SOC strength and anisotropy. The sharp increase for
the isotropic SOC case is because the single-particle ground
state is circularly degenerate, and the noninteracting den-
sity of states diverges as in the one-dimensional case [36];
therefore, the interaction effects are enhanced [37]. In the
weakly interacting limit, g � 1 [34], and as a result, δn/n0

is largely suppressed even when λ = 1. So we expect that the
Bogoliubov approximation, which has been widely used to in-
vestigate the spin-orbit-coupled BEC (see, e.g., [14,18,21,37–
39]), is still valid in the vicinity of the λ = 1 limit when the
interaction is weak.

The paramagnetic response function is given by
〈
j p
i (q) j p

i (−q)
〉 =

∑
k

Tr[G(iω, k)∂iH(k + q/2)τ 3

× G(iω, k + q)∂iH(k + q/2)τ 3P+],

(17)

where

G(iω, k) = G0δω,0δk,0 + G′(iω, k) (18)

and G0 = −|φ(r)〉〈φ(r)| comes from the condensate wave
function. There are two types of contributions in the para-
magnetic response function: One is the correlation between
the condensate and the excitations, and the other comes solely
from the excitations.

Performing the Matsubara frequency summation and tak-
ing the zero-momentum limit, we obtain the superfluid density

ρs
ii = ρs,C

ii + ρs,C−E
ii + ρs,E

ii . (19)

The first two terms, ρs,C
ii and ρs,C−E

ii , come from the con-
densate and the interaction between the condensate and
quasiparticle excitations, respectively. The third term ρs,E

ii is
totally determined by the excitations. Explicitly,

ρs,C
ii = n0, (20)

ρs,C−E
ii = n0

2
lim
q→0

(〈φ|∂iH(q/2)τ 3G′(0, q)

× ∂iH(q/2)P+|φ〉 + (q ↔ −q)), (21)

ρs,E
ii = 2

∑
n,s

∑
m,t

∑
k

st
ñ
(
Es

n

) − ñ
(
Et

m

)
Es

n − Et
m

×〈n, s|∂iH(k)P−|m, t〉〈m, t |∂iH(k)P+|n, s〉, (22)

where P− = I − P+ is the projection operator to the hole
space.

Now we compare our result with that of the fermionic
counterpart. In the spin-orbit-coupled fermionic superfluid,
ρs,C

ii and ρs,C−E
ii are absent because they are related to the

Bose condensate. The ρs,E
ii term takes the same form as the

result for the fermionic SOC superfluid [28], and the only
difference is that the Fermi-Dirac distribution is replaced by
the Bose-Einstein distribution. As in the fermionic case, we
can separate the contribution into the conventional one which
depends only on the band dispersion and the geometric one
which depends also on the wave function.

IV. RESULTS AND DISCUSSION

The contribution of condensate-excitation interaction to
the superfluid density, Eq. (21), depends only on the zero-
momentum limit of the Green’s function and can be calculated
analytically. We find that only the gapped modes contribute
to the result. Combining it with the condensate contribution,
Eq. (20), we obtain

ρs,C
ii + ρs,C−E

ii = n0

meff,i
, (23)

which reduces to the result obtained previously [30]. Equation
(23) provides a different understanding of the effective mass
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FIG. 2. The difference between the superfluid density ρs,E
ii and

the quantum depletion δn is shown as a function of the SOC
strength κ0 and the anisotropy λ (a) for (ρs,E

xx − δn)/(gn0 ) and (b) for
(ρs,E

yy − δn)/(gn0 ). The interspecies interaction strength is fixed to
g′/g = 0.5.

in the superfluid density, that the interaction between the con-
densate and Bogoliubov excitations modifies the bare mass
into the effective mass.

The total superfluid density can thus be written as

ρs
ii = n0

meff,i
+ ρs,E

ii . (24)

Before presenting the numerical results for the general cases,
we first consider two limiting cases: (1) In the absence of SOC
(i.e., κ0 = 0), the system is Galilean invariant, and the zero-
temperature superfluid density reduces to the well-known
result with ρs

ii = n [29]. This implies that the contribution
of excitations ρs,E

ii is equal to the quantum depletion in the
presence of Galilean invariance. In other words, a nonzero
ρs,E

ii − δn indicates the breaking of Galilean invariance. (2)
In the λ = 0 limit, the SOC is nonzero only in the x direction.
In this case we can first apply a spin rotation along the y axis
such that σ x is changed to σ z, and the SOC can be eliminated
with a unitary transformation [11]. The quantum depletion can
be calculated analytically (for details see the Appendix),

δn = 1

4π

(
(g + g′)n0 + (g − g′)n0

1 + x + √
x(2 + x)

)
, (25)

with x = 2κ2
0 /[(g − g′)n0]. We also find that the superfluid

density is the same as the total particle density n.
For general parameters, we calculate ρs,E

ii numerically. Fig-
ure 2 shows the difference between the excitation term of the
superfluid density and the depletion, i.e., (ρs,E

ii − δn)/(gn0),
as a function of the SOC strength and anisotropy. We find
that away from the two limiting cases, ρs,E

ii is always less than
δn, and although the effective mass in the x direction remains
unchanged, the superfluid density ρs

xx is smaller than the total
density. As mentioned above, this is a result of the breaking of
Galilean invariance in the x direction.

As we can see from Fig. 2, the difference is not very
sensitive to the parameters unless λ gets close to 1. To explain
this, we note that the system has a Z2 symmetry for λ: After

FIG. 3. (a) The superfluid density in the y direction ρs
yy/(gn0 ) as

a function of the SOC strength κ0/
√

gn0 and the interspecies interac-
tion strength g′/g with isotropic SOC. (b) The result for g′/g = 0.5.

a 2π rotation of the spin along the z axis, λ is changed to
−λ. This symmetry implies that all the physical properties,
including the quantum depletion and superfluid density, are
even functions of λ. A similar argument also applies for κ0.
Expanding the difference in terms of λ and κ0 to the lowest
order, we obtain ρs,E

ii − δn ∝ κ2
0 λ2. Because of the quadratic

dependence, when λ is away from the isotropic point, the
difference is small and not very sensitive to both λ and κ0.

Then we focus on the most interesting case, i.e., λ = 1. In
this limit, although the condensate fraction is large for weak
interactions, its contribution to the superfluid density in the
y direction is completely canceled out, and the superfluidity
comes solely from the excitations. In Fig. 3(a) we illustrate
the excitation-induced superfluid density ρs

yy as a function
of the SOC and the interspecies interaction strengths. In the
κ0 = 0 limit, ρs

yy is the same as the quantum depletion with
δn ≈ 0.16gn0 [see Eq. (25)]. We find that ρs

yy reaches a max-
imum at finite SOC strength [see Fig. 3(b)]; similar behavior
has been observed in the three-dimensional equal-strength
Rashba-Dresselhaus spin-orbit-coupled BEC [40].

Our result for the isotropic SOC is qualitatively different
from the result in [30], where the superfluidity was predicted
to be destroyed. However, in our work we find that the ex-
citations play a crucial role and rescue the superfluidity. In
Ref. [30], the superfluid density was obtained by integrating
out the massive quadratic fluctuations, and high-order fluctu-
ations were not taken into account. We expect the same result
would be obtained if a one-loop correction were calculated.
Our result is also different from that of the BEC with an
equal mixture of Rashba and Dresselhaus SOCs, where the
mean-field superfluid density is found to vanish at the phase
boundary between the plane-wave phase and zero-momentum
phase [31]. Quantum corrections modify the phase boundary
quantitatively, but the superfluid density remains zero at the
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shifted boundary [40]. In contrast, in our work, the isotropic
SOC limit is not a phase-transition point, and the superfluid
density remains nonzero for all the parameters we study.

A nonvanishing superfluid density results in a nonzero
sound velocity [31,40], which can be measured in current
cold-atom experiments [33]. This provides a way to test our
theoretical prediction.

V. CONCLUSION

We studied the superfluid properties of a spin-orbit-
coupled BEC in two dimensions with the linear response
theory and Bogoliubov approximation. We found that the
superfluid density can be divided into three parts, which
originate from the condensate, the interaction between the
condensate and quasiparticle excitations, and only the exci-
tations. The first two terms can be expressed by the effective
mass. The third term, which is caused by the quantum fluc-
tuations, has the same form as the superfluid density in a
spin-orbit-coupled fermionic superfluid and is closely related
to multiband processes [28]. Away from the isotropic limit,
this term is less important because it is much smaller than the
term expressed by the effective mass. But it becomes more and
more important when approaching the isotropic limit. At the
isotropic SOC limit, although the condensate fraction is large,
its contribution to the superfluid density is completely can-
celed out, and the total superfluid density comes solely from
the Bogoliubov excitations. In conclusion, our work provides
insights into the connection between superfluidity and BECs
and demonstrates the importance of quantum fluctuations in
understanding superfluidity. We became aware that a similar
effect of quantum-fluctuation-induced superfluid density was
obtained in flat-band systems [41] very recently.

In this work, we focused on the plane-wave phase; the
method can be extended to the stripe phase. The quantum-
fluctuation corrections to other physical quantities are also
important and deserve future investigations.
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APPENDIX: QUANTUM DEPLETION AND SUPERFLUID
DENSITY IN THE λ = 0 LIMIT

In this Appendix we calculate analytically the quantum de-
pletion and superfluid density in the λ = 0 limit. As explained
in the main text, we can perform a momentum-independent
unitary transformation to change the Bogoliubov Hamiltonian
[Eq. (8)] to a block-diagonalized form H = H+ ⊕ H−, where

H+ =
[ k2

2 + g+n0 g+n0

g+n0
k2

2 + g+n0

]
(A1)

and

H− =
[ (k+2k0 )2

2 + g−n0 g−n0

g−n0
(k−2k0 )2

2 + g−n0

]
, (A2)

with g± = g ± g′.
The quantum depletion is

δn =
∫

d2k
(2π )2

(v2
+ + v2

−), (A3)

where

v2
± = 1

2

(
ε±
E±

− 1

)
, (A4)

with ε+ = k2/2 + g+n0, ε− = k2/2 + 2κ2
0 + g−n0, and E± =√

ε2± − (g±n0)2. The integral can be calculated analytically,
and the result is given as Eq. (25) in the main text.

For κ0 = 0, the quantum depletion is δn = gn0/(2π ) ≈
0.16gn0. Note that the quantum depletion is proportional to
gn0 in 2D systems, and for this reason, in the main text we
plot δn/(gn0) and ρs/(gn0).

The superfluid density can also be calculated analytically
in the λ = 0 limit. We find that the contribution from the para-
magnetic response function vanishes in the zero-temperature
limit, and therefore, the superfluid density is the same as the
total particle density.
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