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Unitary p-wave Fermi gas in one dimension
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We elucidate universal many-body properties of a one-dimensional, two-component ultracold Fermi gas
near the p-wave Feshbach resonance. The low-energy scattering in this system can be characterized by two
parameters, that is, p-wave scattering length and effective range. At the unitarity limit where the p-wave
scattering length diverges and the effective range is reduced to zero without conflicting with the causality bound,
the system obeys universal thermodynamics as observed in a unitary Fermi gas with contact s-wave interaction
in three dimensions. It is in contrast to a Fermi gas with the p-wave resonance in three dimensions in which
the effective range is inevitably finite. We present the universal equation of state in this unitary p-wave Fermi
gas within the many-body T -matrix approach as well as the virial expansion method. Moreover, we examine the
single-particle spectral function in the high-density regime where the virial expansion is no longer valid. On the
basis of the Hartree-like self-energy shift at the divergent scattering length, we conjecture that the equivalence
of the Bertsch parameter across spatial dimensions holds even for a one-dimensional unitary p-wave Fermi gas.
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I. INTRODUCTION

The concept of universality often facilitates the approach
to normally complicated many-body problems. While detailed
structure of the interaction potential between constituent parti-
cles generally plays a crucial role in describing the properties
of a specific many-body system, the possible presence of an
infinitely large length scale such as the correlation length near
a critical point and the scattering length near the Feshbach
resonance could be a key to understanding the universality in
various systems. For example, the Bardeen-Cooper-Schrieffer
(BCS) to Bose-Einstein condensate (BEC) crossover [1–4],
which is experimentally realized in ultracold atoms [5–7] (for
recent review, see Refs. [8–11]), not only gives a unified way
of understanding Fermi and Bose superfluidity in a specific
system, but also an interdisciplinary viewpoint on how to deal
with different systems with different energy scales such as
strongly correlated superconductors, superfluid helium, nu-
clear matter, and color superconductors.

Moreover, a unitary Fermi gas, which is located in the mid-
dle of the BCS-BEC crossover where the s-wave scattering
length diverges and hence the grand-canonical thermody-
namic potential includes only two energy scales, namely, the
chemical potential μ and the temperature T , has been ex-
tensively investigated by theoretical [12] and experimental
[13–15] approaches. In particular, the ground-state thermody-
namic properties of such a gas are characterized by a single
parameter called the Bertsch parameter [16,17]. These univer-
sal ground-state properties have attracted attention from the
viewpoint of the similarity between an ultracold Fermi gas and
dilute neutron matter [18–20] and have been quantitatively

revealed in cold atom experiments [21–23]. At high tempera-
tures, one can pin down the virial expansion coefficients [24],
which could be useful for describing matter in stellar collapse
[25]. In this way, there is no doubt about the importance
of further investigations on these universal states of matter.
Moreover, such a unitary Fermi gas is also predicted to occur
in a one-dimensional system of four-component fermions with
a four-body attraction [26]. Interestingly, it was reported from
lattice simulations [27] that the values of the Bertsch parame-
ter in these unitary gases with different dimensions are close
to each other. In this context, other possibilities of realizing
unitary gases with different kinds of interactions such as the
p-wave resonant one are worth exploring.

While strongly interacting s-wave Fermi superfluids are
successfully realized, the experimental realization of a super-
fluid Fermi gas near a p-wave Feshbach resonance [28–31]
is still challenging. In fact, p-wave superfluid Fermi gases,
which have been anticipated over the past few decades
[32,33], suffer several difficulties such as strong three-body
losses [34–38]. Fortunately, progress in experimental tech-
niques has enabled the observation of dipolar splittings
[39,40], the formation of a p-wave molecule [41–44], the op-
tical control [45], characterization of the two-body relaxation
[46], and the measurement of the p-wave Tan’s contact [47].
Simultaneously, universal aspects of p-wave Fermi gases have
attracted theoretical attention [48–54]. Also, it remains to be
examined how atomic losses are suppressed in the presence of
strong p-wave interaction.

To reach the unitarity limit, the scale of the effective range
is important. In a three-dimensional system, the effective
range of the p-wave interaction is inevitably nonzero due to
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Wigner’s causality bound [55]. Therefore, the unitarity limit
can never be realized in a three-dimensional gas with a p-wave
Feshbach resonance. In a one-dimensional system, the situa-
tion is totally different. Recently, the stabilization of p-wave
Fermi gases confined in one spatial dimension [56–58] and in
optical lattices [59] has been pointed out theoretically, while
the three-body loss associated with a p-wave Feshbach reso-
nance under low-dimensional confinement has experimentally
been investigated [60,61]. The renormalization scheme of a
contact-type p-wave interaction has also been presented in
Refs. [62–67]. Note that the low-energy scattering properties
are generally classified by the combination 2L + d of the
angular momentum L and the dimension d [68,69]. In this
context, a one-dimensional system with a p-wave interaction
(L = 1 and d = 1) belongs to the same class as a three-
dimensional system with an s-wave interaction (L = 0 and
d = 3). Thus one can expect the realization of a unitary behav-
ior in such a one-dimensional system as the unitarity limit has
already been achieved in the three-dimensional counterpart.
We note that this classification is valid only for the case of
two-body interactions and therefore the unitarity limit may
be realized in other dimensions with multibody interactions
and different angular momentum of clusters as shown in
Refs. [26,27].

In this work, we elucidate how the unitarity limit occurs for
L = 1 and d = 1 for two-body interactions and then examine
the resulting universal many-body properties. Physically, such
unitarity would be realized at zero temperature because the
interaction energy is of the same order as the kinetic energy
with respect to the density. In one dimension, a typical mo-
mentum scale is given by the Fermi momentum kF, which
is in turn proportional to the density. Note that the size of
a preformed pair is given by the interparticle spacing rather
than the scattering length in a many-particle system of interest
here. According to the Lippmann-Schwinger equation, the
effective interaction is then larger than the bare interaction by
a factor of 1/(kFreff ) with a vanishingly small effective range
reff . Since the bare interaction per fermion scales as k3

F, the
effective interaction per fermion scales as k2

F, which is of the
same order in kF as the kinetic energy.

This paper is organized as follows. In Sec. II, we present
our formulation based on the many-body T -matrix approach.
In Sec. III, we show the numerical results for the number
density and single-particle spectral weight. Finally, we con-
clude this paper in Sec. IV. Hereafter, we use units in which
h̄ = kB = 1 and the system volume is set to unity.

II. FORMULATION

We consider a one-dimensional two-component Fermi gas
near a p-wave Feshbach resonance and examine its equilib-
rium properties at chemical potential μ and temperature T .
The corresponding two-channel Hamiltonian reads

H =
∑
k,σ

ξkc†
k,σ

ck,σ +
∑

q

ξ b
q b†

qbq

+ g
∑
p,q

(pb†
qc−p+q/2,↓cp+q/2,↑ + H.c.), (1)

where ξk = k2/(2m) − μ and c(†)
k,σ

are the kinetic energy mi-
nus the chemical potential and annihilation (creation) operator
of a Fermi atom with mass m, momentum k, and pseudospin
σ =↑,↓, respectively. For simplicity, we consider an equal-
mass mixture. The second term on the right-hand side of
Eq. (1) denotes the kinetic energy term of closed channel
molecules with the energy level ν, where ξ b

q = q2/(4m) −
2μ + ν and b(†)

q are the kinetic energy minus the chemical
potential and the annihilation (creation) operator of a bosonic
molecule with momentum q. The last term represents the
p-wave (odd parity) Feshbach coupling with coupling con-
stant g. The p-wave scattering length a and the effective range
reff are related to ν and g via the Lippmann-Schwinger equa-
tion as [62,63]

m

2a
= −νR

g2
, reff = − 4

m2g2
, (2)

where νR = ν − g2 m�
π

is the renormalized energy level of a
closed channel molecule with the momentum cutoff �. An
explicit form of the condition for the unitarity limit (a =
±∞) reads ν = g2 m�

π
. While this condition is satisfied for

any finite value of g in the large-� limit, a dimensionless
quantity mr2

effT still remains to be fixed. In what follows,
we shall utilize the thermal momentum scale kT = √

2mT
associated with the temperature T as well as the thermal de

Broglie length λT =
√

2π
mT ≡ 2

√
πk−1

T for convenience. Also,
the dimensionless range parameter R = |reffkT | will be used
to characterize the magnitude of reff . In this work, we will
confine ourselves to the unitary system with a−1 = 0. For
the numerical calculation, we take � = 102kT which is suf-
ficiently large to avoid the cutoff effect.

In this work we focus on the equally populated case.
In the presence of large spin polarization, Fermi polarons
are expected to occur as has theoretically been investigated
[70]. In the perfectly polarized case, an s-wave contact in-
teraction does not work due to the Pauli principle, but a
three-body interaction is inevitable [65]. This is in contrast
to the present case in which an s-wave interaction is normally
non-negligible, but the three-body correlation is expected to
be weak. For a possible method for eliminating the s-wave
interaction, see Appendix in Ref. [71]. The intracomponent
p-wave interaction is not considered in this work. Such a sit-
uation is relevant for the p-wave resonance between different
two hyperfine states [40,62].

We note that the present two-channel model, which in-
volves the contact (q-independent) coupling g, reduces to the
single-channel Hamiltonian with the effective p-wave interac-
tion Hint. = ∑

p,p′,q pU p′c†
p+q/2,↑c†

−p+q/2,↓c−p′+q/2,↓cp′+q/2,↑,

where U = − g2

ν
approaches zero in the large-� limit. This

is in contrast to the s-wave case where the coupling constant
is finite and therefore the Hartree shift gives a nonzero con-
tribution [72]. Indeed, the low-energy limit of the two-body
scattering T matrix Tsc(p, p′; ω = 0) in the single-channel
model

Tsc(p, p′; 0) = pU p′

1 + U m�
π

(3)
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is equivalent to the two-channel one

Ttc(p, p′; 0) = pg2 p′

−ν + g2 m�
π

, (4)

when one takes U = −g2/ν and g → ∞ [noting that ν =
mg2( �

π
− 1

2a ) → ∞]. Once a is determined by the two-body
scattering problem in each model, the results do not depend
on detailed structures of two-body interactions explicitly.

Many-body effects are incorporated into the self-energy
	f (p, iω
) of a Fermi atom in the thermal Green’s
function G(p, iω
) = [{G0(p, iω
)}−1 − 	f (p, iω
)]−1, where
G0(p, iω
) = (iω
 − ξp)−1 is the bare propagator with the
fermion Matsubara frequency ω
 = (2
 + 1)πT (
 ∈ Z).
Within the many-body T -matrix approach, 	f (p, iω
) is
given by

	f (p, iω
) = T
∑
q,iνn

�
(q

2
− p,

q

2
− p; q, iνn

)

× G0(q − p, iνn − iω
), (5)

where νn = 2nπT is the boson Matsubara frequency (n ∈ Z).
The in-medium T matrix

�(k, k′; q, iνn) = g2kk′D(q, iνn) (6)

is associated with the dressed molecular propagator
D(q, iνn) = [iνn − ξ b

q − 	b(q, iνn)]−1. The bosonic
self-energy is given by 	b(q, iνn) = g2�(q, iνn), where

�(q, iνn) =
∑

p

p2 1 − f (ξp+q/2) − f (ξ−p+q/2)

iνn − ξp+q/2 − ξ−p+q/2
, (7)

with the Fermi-Dirac distribution function f (x) = (ex/T +
1)−1, is the lowest-order particle-particle bubble.

III. RESULTS

In the two-channel model, the number density n
reads n = nf + nb, where nf = 2T

∑
p,iω


G(p, iω
) and nb =
−2T

∑
q,iνn

D(q, iνn) are the fermionic and bosonic contribu-
tions, respectively. Figure 1 shows the number density nλT as
a function of μ/T in the case of a negligibly small range pa-
rameter R = 0.01. As can be seen from Fig. 1, nb is negligibly
small, which is natural because nb reduces to zero in the limit
of zero effective range (R → 0). The unitary gas in this limit
strictly obeys the universal thermodynamics in the sense that
the grand-canonical thermodynamic potential 
(μ, T ) has no
other energy scales than μ and T [12]. In the low-density
limit, 
(μ, T ) can be obtained exactly by the virial expansion
[24] as 
 = −2 T

λT

∑
j=1 b jz j , where z = eμ/T is the fugac-

ity. Within the second-order virial expansion, the number
density reads

nλT = 2[b1z + 2b2z2 + O(z3)]. (8)

While the first-order coefficient b1 = 1 corresponds to the
ideal classical gas contribution, the second one b2 = b(0)

2 +
�b2 involves not only the noninteracting part b(0)

2 = − 1
2
√

2
but

also the interaction correction �b2. �b2 can be obtained from
the low-density limit of the many-body T -matrix approach,

0

1

2

3

4

-3 -2 -1 0 1

nλ
T

μ/T

nf + nb

nf

2nd virial

ideal Fermi gas

FIG. 1. Number density equation of state for a unitary p-wave
Fermi gas in one dimension. The dotted curve (“2nd virial”) shows
the result from the second-order virial expansion. In this figure,
we take R = 0.01 which is sufficiently small to describe the uni-
versal regime. For reference, we also plot the behavior of an ideal
Fermi gas.

where n is approximately given by

n 
 n0 + 2T
∑
p,iω


[G0(p, iω
)]2	f (p, iω
). (9)

The second term on the right-hand side of Eq. (11) obtained
by truncating the full Green’s function up to first order in
	f (p, iω
) is equivalent to the Nozières-Schmitt-Rink (NSR)
correction δnNSR [11]. Using the relation δnNSR = 4

λT
�b2z2 +

O(z3), we obtain �b2 = 1
2
√

2
and hence b2 = 0 (see also the

Appendix for the derivation of �b2). This indicates that the
virial equation of state for a one-dimensional unitary p-wave
Fermi gas up to second order in z happens to be the same as
the ideal classical one 
 = −2 T z

λT
even in the presence of

strong correlations. It is in contrast to a unitary Fermi gas
in three dimensions where b2 = 3

4
√

2
[24]. We note that the

number density of an ideal Fermi gas is smaller than the
unitary gas result due to the lack of pairing fluctuations.

While the virial expansion is no longer valid for z > 1
(μ > 0), corresponding to a quantum degenerate regime of the
unitary Fermi gas, the many-body T -matrix approach in this
regime is still expected to give a semiquantitative description
of strong-coupling effects such as the emergence of a pairing
pseudogap. In Fig. 2 we present the single-particle density of
states ρ(ω) = ∑

k A(k, ω) in such a unitary p-wave Fermi gas
within the many-body T -matrix approach, where the single-
particle spectral weight A(k, ω) = − 1

π
ImG(k, iω
 → ω + iδ)

is obtained by the analytic continuation of G(k, iω
) to the real
frequency ω (δ is a positive infinitesimal). At zero chemical
potential, ρ(ω) exhibits a single-particle peak near ω = 0,
which is a specific behavior in one dimension, where we
obtain ρ0(ω) = m

π
√

2mω
θ (ω) for the noninteracting case. It is

in contrast to a square-root behavior ρ0(ω) ∝ √
ω of single-

particle contributions in three dimensions. At larger μ, ρ(ω)
shows the pseudogap opening around ω = 0 due to strong-
pairing fluctuations. Although the emergence of a pseudogap
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ρ(
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)k
T/

(2
m

)

ω/T
FIG. 2. Single-particle density of states ρ(ω) as a function of

the single-particle energy ω in a unitary p-wave Fermi gas where
a−1 = 0.

is still under debate in a three-dimensional unitary Fermi gas
[73–75], the present system is expected to have a pseudo-
gap pairing enhanced by low-dimensional fluctuations [72].
We note that a possible pseudogap in a three-dimensional
Fermi gas with p-wave interaction has also been discussed in
Ref. [76].

More detailed single-particle excitations can be found in
A(k, ω), which is shown in Fig. 3. One can see that the
single-particle branch in the low-density regime (μ/T = 0) is
separated into two branches due to strong-pairing fluctuations,
leading to the pseudogap opening in ρ(ω) as shown in Fig. 2.
A similar spectral structure can be found in the case of the
s-wave interaction in one dimension [72]. While the peak
position in A(k, ω) at μ/T = 0 is close to the noninteract-
ing dispersion ω = ξk , at sufficiently large chemical potential

-4
-2
0
2
4

-4
-2
0
2

0 0.5 1 1.5 0 0.5 1 1.5 2
k/kT

/T

(a) /T = 0 (b) /T = 0.4

(c) /T = 0.8 (d) /T = 1.2

0.1 10A(k, )T

FIG. 3. Single-particle spectral weight A(k, ω) in a unitary
p-wave Fermi gas in one dimension. The dashed curve represents the
single-particle dispersion ω = k2/(2m) − μ in an ideal Fermi gas.

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

R = 0.01
 = 0.1

R = 1
 = 10(         )

(         )

(         )

z = eμ/T

nλ
T

ideal Fermi gas

FIG. 4. Nonuniversal effect on the number density nλT , which
can be seen by plotting n = nf + nb (thick curves) and nf (thin
curves) at R = 0.1, 1, and 10. For the result at R = 0.01 we do not
show nf since nb is negligibly small. The calculations are stopped
at �TC = 0 [see Eq. (12) and the following text], indicating that the
T -matrix approach breaks down. The diagonal dotted curve repre-
sents the second-order virial result at R = 0, which is the same as
the behavior of an ideal classical gas, while the behavior of an ideal
Fermi gas is also plotted for comparison.

where a pseudogap appears, deviation of the two branches
from the noninteracting dispersion increases with μ/T .

We now turn to the nonuniversal effect of nonzero effective
range on thermodynamic quantities. Figure 4 shows how nλT

behaves with increasing R as a function of z. For R � 0.1,
the fraction of molecules in the closed channel, nb/n, is no
longer negligible. Since 	b(q, iνn) is proportional to R−1, one

can qualitatively estimate nb ≈ 2
∑

q e−{ q2

4m −2μ+ν−	b(0,0)}/T ∝
z2e− α

R (with the constant α > 0), indicating that nb becomes
exponentially large when R increases. On the other hand, one
can observe that nf with finite R is close to the zero effective
range result (corresponding to the solid curve with R = 0.01
in Fig. 4), indicating that the open-channel fraction is essential
to extract the universal part of the equation of state for this
system.

We note that in addition to the finite-range correction, other
residual interactions such as an s-wave two-body interaction
Us cause nonuniversal effects in an experiment. In the pres-
ence of the repulsive Us, one of possible ways to avoid such
effects is to make use of an attractive interaction induced by
a medium of weakly interacting third-component atoms [71].
Indeed, such a mediated interaction in the long-wavelength
limit has been observed in recent experiments [77,78]. In
the presence of this third-component atomic cloud interact-
ing weakly with two pseudospins via Uσ,3, the total s-wave
interaction is given by Vs = Us − U↑,3U↓,3n2

3κ3 where n3 and
κ3 are the number density and isothermal compressibility of
the third-component atomic gas, respectively. One can realize
Vs = 0 by adjusting U↑,3, U↓,3, and n2

3κ3. However, we note
that this is based on the assumption that the p-wave interaction
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FIG. 5. Dimensionless indicator �TC for the Thouless criterion
at R = 0.01, 0.1, 1, and 10. In this figure, we take a−1 = 0.

is dominant and that the residual s-wave one is sufficiently
weak. If the s-wave interaction is strong, the mediated in-
teraction used for the cancellation may involve nonlocal and
dynamical parts beyond the present static treatment under the
local density approximation.

We mention the limitation of the present many-body
T -matrix approach to this one-dimensional system. In fact, the
numerical results for the number density in the high-density
regime in Fig. 4 are difficult to obtain by this limita-
tion. The many-body T -matrix approach breaks down when
the dimensionless indicator of the Thouless criterion [79]
defined by

�TC = kk′

�(k, k, q = 0, iνn = 0)

π

mkT
(10)

becomes zero. Although in a three-dimensional system, an
infrared divergence of the T matrix would indicate the oc-
currence of a superfluid phase transition, this divergence in
one dimension is an artifact of theory because such a phase
transition in one-dimensional systems is prohibited by the
Mermin-Wagner-Hohenberg theorem [80,81]. Thus, �TC =
0 gives an artificial critical value of μ/T above which the
present approach is no longer available. Figure 5 shows �TC

as a function of μ/T at R = 0.01, 0.1, 1, and 10. In the
unitarity limit where R is negligible, corresponding to the
result at R = 0.01 in Fig. 5, �TC becomes zero around μ/T =
1.5. Since the correction due to the effective range, which
is negative as shown in Eq. (3), induces strong pairing in
the two-channel model [82–84] and hence strong thermal
fluctuations, however, this critical μ/T itself is doubtful. To
safely avoid the above-mentioned artifact in the case of small
R, therefore, one has to consider higher-order fluctuations
beyond the present approach, which are left for future work.

In the large-R limit, on the other hand, 2μ − ν cannot
be positive. In this limit, which is equivalent to g → 0, the
number density is exactly given by

n = 2
∑

p

f (ξp) + 2
∑

q

b
(
ξ b

q

)
, (11)

where b(x) = (ex/T − 1)−1 is the Bose-Einstein distribution
function. Obviously, ξ b

q cannot be negative for any q due to
the Bose statistics in the second term of the right-hand side of
Eq. (13), resulting in μ < ν/2 such that exp ( q2

4mT + ν−2μ

T ) −
1 > 0 for an arbitrary q. This gives an exact upper bound for
μ in the limit of R → ∞, in contrast to the case of R → 0 in
which the condition �TC = 0 originates from the artifact of
the present theoretical approach. Thus, the exact upper bound
for μ at |a| → ∞ is expected to be a function of R which
requires μ < ν/2 = 0 at R → ∞ and gives no constraints
on μ at R → 0. We note that the critical μ in the T -matrix
approach identified by �TC = 0 is smaller than this exact
upper bound at finite R.

In spite of such limitations of the present approach, the
Bertsch parameter might be considered by utilizing the knowl-
edge of a three-dimensional unitary Fermi gas. In three
dimensions, one can estimate the ground-state chemical po-
tential divided by the Fermi energy EF, that is, the Bertsch
parameter ξ 3DS

B , by replacing the s-wave scattering length
as with k−1

F in the Hartree shift [85,86]. Indeed, one can

estimate ξ 3DS
B 
 4πk−1

F
mEF

n
2 
 0.424, which is fairly close to the

experimental values ∼0.4 [14,15,21,22]. This implies that the
characteristic length scale for the interaction is approximately
given by the interparticle distance being proportional to k−1

F at
|a| → ∞. In the present one-dimensional p-wave unitary gas,
the Hartree self-energy 	H(p, a) is given by

	H(p, a) = 2a

m

∑
q

(q

2
− p

)2
f (ξq−p)

= ak3
F

6πm
+ akF

2πm
p2 (T → 0). (12)

By following the same line of argument of the three-
dimensional case, we obtain the corresponding Bertsch
parameter ξ 1DP

B as

ξ 1DP
B 
 	H(p = kF, a = k−1

F )

EF


 0.424, (13)

where we have assumed that the self-energy shift at p = kF is
relevant for our purpose. Surprisingly, it is completely equal
to the value of ξ 3DS

B based on the same ansatz as mentioned
above. This result suggests that the transdimensional equiv-
alence of the Bertsch parameter [27] might apply even to the
one-dimensional p-wave case. It is interesting to check the va-
lidity of this conjecture and examine deviation of the predicted
ξ 1DP

B from the exact value, which will be addressed elsewhere.
Also, it is useful to note that experiments for realizing the
present unitary p-wave Fermi gas are expected to be more
feasible than the case of a four-component unitary Fermi gas
with a four-body attraction in one dimension [26,27].

IV. CONCLUSION

We have theoretically investigated universal many-body
properties of a one-dimensional two-component unitary Fermi
gas with a p-wave contact interaction. Thermodynamic func-
tions in this unitary gas exhibit the universal behavior as in
the case of a three-dimensional unitary Fermi gas with an
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s-wave short-range interaction. We have obtained the univer-
sal equation of state in the limit of zero effective range within
the many-body T -matrix approach and derived the exact result
for the second-order virial expansion, which interestingly is
equivalent to the ideal classical gas result. Even in the case
of finite effective range, the number density of open-channel
fermions is close to the universal result. Moreover, we have
shown that strong-pairing fluctuations are visible as the pseu-
dogap opening in a single-particle spectral weight. Finally,
on the basis of the Hartree-like energy shift at unitarity,
we have conjectured that the transdimensional equivalence
of the Bertsch parameter holds even for this exotic unitary
Fermi gas.

For future theoretical perspective, it is interesting to ad-
dress the Bertsch parameter in this p-wave unitary Fermi
gas in more sophisticated manner, which could be addressed
by lattice simulations, the thermodynamic Bethe ansatz,
variational approaches, as well as future experiments. It is
worth investigating a bosonic counterpart via the Bose-Fermi
mapping [87]. Indeed, a similar spin-1/2 system with intra-
component p-wave interactions has already been studied by
using the Bose-Fermi mapping [88,89]. Moreover, a similar
unitarity limit is expected to occur in a spin-polarized one-
dimensional Fermi gas with p-wave contact interaction. We
note, however, that in such a case the necessity of a three-
body force for the renormalization has been pointed out in
Ref. [65]. In this regard, it would be essential to investigate
how three-body correlations occur simultaneously. To achieve
a p-wave unitary Fermi gas experimentally, on the other
hand, the suppression of other residual interactions would be
important.

Apart from cold atomic physics, it is also interesting
to consider the applications to other one-dimensional sys-
tems with p-wave interactions such as confined 3He fluids
[90,91], unconventional superconductors [92], and lattice sys-
tems [93].
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APPENDIX: SECOND-ORDER VIRIAL COEFFICIENT
AT p-WAVE UNITARITY

In this Appendix, we present a detailed derivation of the
second-order virial coefficient b2 in the limit of zero effective

range from the many-body T -matrix approach. First, the non-
interacting contribution b(0)

2 can be obtained by expanding n0

with respect to z as

n0 = 2
∑

p

f (ξp)

= 2
z

λT
− 4

1

2
√

2

z2

λT
+ O(z3). (A1)

From Eq. (A1), one can find b(0)
2 = − 1

2
√

2
. The second term

on the right-hand side of Eq. (11) can be rewritten as

δn = −T
∑
q,iνs

γ (q, iνs)
∂

∂μ
γ −1(q, iνs), (A2)

where γ (q, iνs) = �(k, k′q, iνs)/(kk′). The summation with
respect to iνs can be replaced with the integral along the
contour C enclosing the imaginary energy axis as

δn = −
∑

q

∮
C

dζb(ζ )

2π i
γ (q, ζ )

∂

∂μ
γ −1(q, ζ )

= −
∑

q

∮
C′

dζ ′b(ζ ′ + εb
q )

2π i
γ̄ (q, ζ ′)

∂

∂μ
γ̄ −1(q, ζ ′), (A3)

where we have changed the variable ζ → ζ ′ + εb
q (εb

q = q2

4m −
2μ) and the contour C → C′ which encloses the pole ζ ′ =
iνs − εb

q . Also, we have used γ̄ (q, ζ ′) = γ (q, ζ ′ + εb
q ). Since

we are interested in the correction of O(z2) and the lowest

order of b(ζ ′ + εb
q ) 
 z2e− ζ ′

T e− q2

4mT is already O(z2), we can
safely neglect the medium correction in γ̄ (q, ζ ′), leading to

γ̄ (q, ζ ′) 

[ m

2a
+ i

m

2

√
mζ ′

]−1
(A4)

and ∂γ̄ −1(q,ζ ′ )
∂μ

= 2 ∂γ̄ −1(q,ζ ′ )
∂ζ ′ = m2

2
√

mζ ′ i. Using these relations at
unitarity 1/a = 0, we can obtain

δn = −z2
∑

q

e− q2

4mT

∮
C′

dζ ′

2π i

e−ζ ′/T

ζ ′ + O(z3)

= 4
1

2
√

2

z2

λT
+ O(z3), (A5)

which leads to �b2 = 1
2
√

2
. Finally, combining these results,

one can obtain the vanishing second-order coefficient b2 =
b(0)

2 + �b2 = 0.
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