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Renormalization-group study of Bose polarons

Felipe Isaule ,1 Ivan Morera ,1 Pietro Massignan ,2 and Bruno Juliá-Díaz 1

1Departament de Física Quàntica i Astrofísica, Facultat de Física, and Institut de Ciències del Cosmos, Universitat de Barcelona,
Martí i Franquès 1, E-08028 Barcelona, Spain

2Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain

(Received 30 May 2021; accepted 5 August 2021; published 19 August 2021)

We study the properties of a single impurity in a dilute Bose gas, a Bose polaron, using the functional
renormalization group. We use an ansatz for the effective action motivated by a derivative expansion, and
we compute the energies of the attractive and repulsive branches of excitations in both two and three spatial
dimensions. Three-body correlations play an important role in the attractive branch, and we account for those
by including three-body couplings between two bath bosons and the impurity. Our calculations compare very
favorably with state-of-the-art experimental measurements and numerical simulations.
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I. INTRODUCTION

The study of an impurity immersed in a quantum medium
has a long history, dating back to the work of Landau and
Pekar on electrons coupled to an ionic crystal [1]. Such im-
purity is understood as a dressed quasiparticle referred to as a
polaron. Impurities in bosonic baths have been studied in a va-
riety of configurations and played a key role in elucidating the
physics of helium liquids [2,3]. The polaron problem has been
extensively studied also in fermionic mediums, particularly in
condensed-matter physics [4] and ultracold atoms [5–16].

The interest in an impurity immersed in a weakly in-
teracting Bose gas, the Bose polaron, has greatly increased
in the past decade. Indeed, the experimental progress in
cold-atom gases [17] recently allowed the experimental
realization of Bose polarons, including the regime of reso-
nant boson-impurity interactions [18–21]. Theoretically, early
perturbative works were restricted to the regime of weak
boson-impurity interactions [22–24]. Improved descriptions
emerged in recent years with a variety of techniques, including
field-theory approaches [25–29], variational methods [30–41],
the Fröhlich model [42–44], and Monte Carlo (MC) simula-
tions [45–49].

In the case of Bose polarons, the bosonic nature of the
medium means that three- and higher-body correlations can
be important [32] and that the mixture is generally highly
unstable against three-body losses. In contrast, in the case of
Fermi polarons, interactions beyond the two-body level are
suppressed by Pauli blocking, and the mixture is relatively
long-lived. These differences make the theoretical description
and experimental investigation of Bose polarons much more
challenging. Furthermore, in a bosonic bath the dressed im-
purity has the same quantum statistics in the two asymptotic
limits of zero and infinite attraction, so that the problem
features a smooth polaron-to-molecule crossover [25]. In con-
trast, in a fermionic medium, a bare impurity and the molecule
it forms by binding to a bath fermion have opposite quantum

statistics, and therefore, the spectrum of a Fermi polaron gen-
erally features a sharp polaron-to-molecule transition.

In this work we study Bose polarons using the functional
renormalization group (FRG) based on the effective average
action [50,51] (for a complete review see Ref. [52]). The FRG
is a nonperturbative field-theory approach which has proved
to be a powerful tool to study strongly correlated systems,
including Efimov physics in three-body [53–55] and four-
body [56–59] systems, the BCS-BEC crossover [60–68], and
the Fermi polaron [69–71] (for applications in other areas of
physics see Refs. [51,52]). The FRG permits us to include
systematically the effect of fluctuations, such as those arising
from three- and higher-body correlations and to add their
effect nonperturbatively over a wide range of scales. In addi-
tion, the FRG already provided accurate descriptions of Bose
gases in two and three dimensions [72–78], including critical
phenomena at the superfluid phase transitions [79]. Therefore,
the FRG appears to be a good technique to study novel physics
in Bose polarons. Furthermore, because the FRG provides a
unified description of few- and many-body physics within the
same theory, studying polaron physics with FRG can provide
important insight into Bose-Bose and Bose-Fermi mixtures.

In this article, we focus on Bose polarons at zero temper-
ature in two and three spatial dimensions. We approximate
the coarse-grained effective action under a derivative expan-
sion, and we consider up to three-body correlations. Our
approximation enables us to give a good description of the
ground-state energies and to quantify the importance of three-
body forces. This article is organized as follows. In Sec. II we
present our model and introduce the FRG flow equation. In
Sec. III we study the repulsive branch of the Bose polaron,
presenting the main aspects of our FRG calculations, as well
as results for the polaron energy. In Sec. IV we study the
attractive branch, stressing the specific considerations for the
study of attractive interactions and presenting results for the
polaron energy with and without three-body correlations. In
Sec. V we present the conclusions and outlook of our work.
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Finally, in Appendixes A and B we provide specific details of
the RG equations, and in Appendix C we provide an estima-
tion for the effective mass in the repulsive branch.

II. MODEL AND FRG EQUATION

We consider an impurity of mass mI and energy μI im-
mersed in a gas of weakly repulsive bosons of mass mB

and chemical potential μB. We approximate the boson-boson
and boson-impurity interactions with contact potentials of
strengths gBB and gBI , respectively. In a field-theory formu-
lation, such a system is described by the microscopic action
[25]

S[ϕ] =
∫

x

[
ψ

†
B

(
∂τ − ∇2

2mB
− μB

)
ψB

+ ψ
†
I

(
∂τ − ∇2

2mI
− μI

)
ψI

+ gBB

2
(ψ†

BψB)2 + gBIψ
†
Bψ

†
I ψBψI

]
, (1)

where we use natural units h̄ = 1 and
∫

x = ∫ ∞
0 dτ

∫
dx, with

τ = it being the imaginary time. The microscopic action
defines the grand-canonical partition function [51] and is a
functional of the complex fields ψB and ψI , which repre-
sent the bath bosons and the impurity, respectively. Since we
consider a single impurity, the quantum statistics of ψI is
irrelevant.

The boson-boson interaction needs to be repulsive in order
to prevent the collapse of the bosonic medium. In contrast,
the boson-impurity interaction can either be repulsive or at-
tractive, leading to the repulsive and attractive branches of
the Bose polaron. The repulsive branch is generally well
described by perturbative approaches. In contrast, the at-
tractive branch is more challenging to describe and shows
richer physics. In particular, for strong attractive coupling the
scattering length diverges in three dimensions, so that usual
perturbative approaches may not be employed. Furthermore,
three- and higher-body physics can become important in the
regime of strong coupling [32]. Therefore, more robust ap-
proaches have to be employed in this regime [34]. An analytic
solution for the case of heavy polarons at unitarity was re-
cently put forward in Ref. [38].

In this work, we extract the ground-state properties of the
Bose polaron from the Green’s functions [25]. These can be
obtained from S by taking into account all the quantum paths
using the path-integral formalism. However, it is more conve-
nient to work in terms of the Legendre-transformed effective
action �. The effective action is defined in terms of classical
fields, and thus, it already contains the effect of fluctuations.
The Green’s functions are then naturally obtained from the
vertex functions �(n) (for details see Ref. [51]).

The effective action can be calculated perturbatively from
a loop expansion. However, a perturbative calculation is im-
practical in the regime of strong coupling, where one needs
to take into account fluctuations over a wide range of scales.
Within the FRG, the calculation of � is instead performed
nonperturbatively. In this framework, a regulator function Rk

is added to the theory to suppress fluctuations at momenta

q � k, so one works in terms of a k-dependent effective action
�k . At a high scale in the ultraviolet (UV) k = �, all fluctu-
ations are suppressed, and the effective action is simply the
microscopic action �� = S . On the other hand, for k → 0 all
fluctuations are considered, and �0 is the full effective action.

The flow of �k as a function of k is dictated by the Wet-
terich equation [50]

∂k�k = 1
2 tr

[(
�

(2)
k + Rk

)−1
∂kRk

]
, (2)

where �
(2)
k is the matrix with the second functional derivatives

of �k ,

�
(2)
k = δ2�k

δϕ†
−qδϕq

, (3)

and tr denotes both a matrix trace and an integral over in-
ternal momentum q = (ω, q). The Wetterich equation has a
one-loop structure with a propagator Gk = (�(2)

k + Rk )−1 and
insertion ∂kRk [50].

In most applications, one solves the RG flow by propos-
ing an ansatz for �k , which respects the symmetries of the
microscopic theory. In this work we employ an ansatz based
on a derivative expansion (DE) truncated to a small number
of k-dependent couplings [52]. Within the DE, we expand the
effective action up to a chosen number of fields and deriva-
tives, so the Wetterich equation becomes a set of coupled
differential equations for the k-dependent couplings in the
expansion. These equations can then be solved numerically
using standard methods.

It has been shown that the DE gives an accurate description
of various properties of the Fermi polaron in both two [71] and
three [69] dimensions, including the onset of the polaron and
molecule phases and their respective energies. Similarly, in
this work we show that the DE provides a precise description
of the ground-state energy of the Bose polaron and also en-
ables us to quantify the importance of three-body correlations.

In the following, we present the study of the repulsive and
attractive branches separately. We start in Sec. III with the
simpler repulsive branch to easily introduce our formalism.
We then generalize our formalism to the attractive branch in
Sec. IV.

III. REPULSIVE BOSE POLARONS

We start from action (1), and we neglect the feedback of the
impurity on the medium. To solve the RG flow of the effective
action in the presence of repulsive impurity-bath interactions,
we propose the following ansatz:

�k[ϕ] =
∫

x

[
ψ

†
B

(
SB∂τ − ZB

2mB
∇2 − VB∂2

τ

)
ψB

+ ψ
†
I

(
SI∂τ − ZI

2mI
∇2

)
ψI + U (ρB, ρI )

]
, (4)

where SB, ZB, VB, SI , and ZI are renormalization factors which
we assume are field independent and

U = −P + uIρI + λBB

2
(ρB − ρ0)2 + λBI (ρB − ρ0)ρI (5)

is the effective potential expanded up to fourth order in the
fields, where ρa = ψ†

a ψa (a = B, I), P is the pressure of the
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bath, uI is a one-body coupling for the impurity, and λBB and
λBI are the couplings associated with the boson-boson and
boson-impurity interactions, respectively. All the couplings in
the expansion, SB, ZB, VB, SI , ZI , P, uI , λBB, and λBI , as well
as the order parameter ρ0 = 〈ρB〉, flow with k. We note that
three- and higher-body correlations are not important in the
repulsive branch, and thus, ansatz (4) contains only two-body
couplings.

Our ansatz is based on the one used to study repulsive
Bose-Bose mixtures [78], adapted to the limit of extreme
population imbalance. The term VB∂2

τ is necessary to correctly
describe the bosonic medium in the infrared, where the effec-
tive action develops phonons with linear dispersion, taking the
form of a relativistic model [73]. An analogous term is not
needed for the impurity, as the latter is not condensed.

We stress that our ansatz is accurate for only two- and
three-dimensional gases. In one dimension, our level of trun-
cation is not able to accurately capture the quasicondensate
nature of the bath [72], where we have to carefully treat the
stronger impact of phase fluctuations [77].

The minimum ρ0 of the effective potential corresponds
to the condensate density of the medium, giving its physical
value at k = 0. If ρ0 > 0, the U(1) symmetry of the bosonic
bath is broken, and the gas is condensed. Here we study the
two- and three-dimensional polarons at zero temperature, so
that ρ0 is always nonzero. In contrast, for the impurity 〈ρI〉 =
0. Furthermore, the superfluid density is given by the value at
k = 0 of the superfluid stiffness ρs = ZBρ0 [76]. Because at
zero temperature all bosons are superfluid, we can extract the
density of the medium n from n = ρs [74]. We note that in-
teractions deplete the condensate, ρ0 � ρs = n, and therefore,
the mass-renormalization coefficient ZB flows to a value larger
than unity for k → 0 [74].

To solve the RG flow we need an equation for each running
coupling. We obtain the flow equations from the Wetterich
equation (2). They can be found in Appendix A. In addition,
we need to choose a regulator. In this work, we use the opti-
mized Litim regulator [80]

Rk,a = Za

2ma
(k2 − q2)�(k2 − q2), a = B, I, (6)

where � is the Heaviside step function. This choice enables
us to perform the momentum integrals analytically before
solving the RG flow. Finally, we need to specify the initial
conditions of the RG flow. We do so in the following section.

A. Initial conditions of the RG flow

The RG flow is started at a scale k = � much larger than
the relevant scale of the bath, which, in this case, is given by
the healing scale kh = (2mBμB)1/2 [74,77]. At this high scale,
we can impose that �� = S . We obtain

SB(�) = ZB(�) = SI (�) = ZI (�) = 1, VB(�) = 0,

ρ0(�) = μB

λBB(�)
, uI (�) = −μI + μB

λBI (�)

λBB(�)
, (7)

where μB > 0 and μI/μB < λBI (�)/λBB(�).
To connect the flow to known physical observables, we im-

pose that the couplings λBB and λBI in vacuum (μB = μI = 0)
correspond to the known two-body T matrices at the physical

limit k = 0 (see details in Ref. [74]). With this, the initial
conditions for λBB and λBI depend on the boson-boson and
boson-impurity scattering lengths aBB and aBI , respectively.
For the optimized regulator (6), we have the same initial con-
ditions as those for the repulsive Bose-Bose mixtures studied
in Ref. [78]. They are

λα (�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π/mα

1 − 2γE − ln(a2
α�2/4)

d = 2,

(
mα

2πaα

− mα

3π2
�

)−1

d = 3,

(8)

where α = BB, BI and γE ≈ 0.577 is the Euler-Mascheroni
constant. The reduced masses are mBB = mB/2 and mBI =
mr = mBmI/(mB + mI ). For purely repulsive potentials, the
scattering lengths provide a lower bound to the potential
ranges. Thus, a contact potential approximation becomes in-
valid for momenta larger than the inverse scattering length
[77,78]. The flow must therefore be restricted to � <

min(a−1
BI , a−1

BB ). Nevertheless, we stress that because the inter-
actions are renormalized by Eq. (8), as long as � � kh, the
results are independent of the choice of �. For more details
see Refs. [74,77].

The initial conditions completely define the RG flow in
terms of the physical inputs μB, aBB, and aBI and the self-
consistently determined μI . We then follow the RG flow by
solving the flow equations of all the couplings. Note that we
choose values of aBB and μB which give the desired physical
density of the bath for k → 0 [74]. Examples of flows are
given in Appendix A.

B. Propagator and polaron energy

As explained in Sec. II, the propagator of the FRG equa-
tion is given by Gk = (�(2)

k + Rk )−1. In momentum space
q = (ω, q), the inverse propagator for ansatz (4) reads

G−1
k (q) =

(
G−1

k,B(q) 0
0 G−1

k,I (q)

)
, (9)

where

G−1
k,B(q) =

(
E1,k (q; ρB) + VBω2 SBω

−SBω E2,k (q; ρB) + VBω2

)
(10)

is the inverse propagator of the Bose gas, with

E1,k (q; ρB) =E2,k (q; ρB) + 2ρBU ′′
B (ρB), (11)

E2,k (q; ρB) =ZB
q2

2mB
+ U ′

B(ρB) + Rk,B(q), (12)

where the primes in U ′ and U ′′ indicate derivatives with re-
spect to ρB, whereas

G−1
k,I (q) =

(
EI,k (q; ρB) + iSIω 0

0 EI,k (q; ρB) − iSIω

)
(13)

is the inverse propagator of the impurity, with

EI,k (q; ρB) = ZI
q2

2mI
+ ∂ρIU (ρB, ρI ) + Rk,I (q). (14)

Note that we introduced real orthogonal fields ψB =
[ψB,1(x) + iψB,2(x)]/

√
2 and evaluated all the fields at their
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d=3
mI=mB

n1/3aBB=3.5x10-3

FIG. 1. Polaron energy E of the repulsive branch in three dimen-
sions as a function of (n1/3aBI )−1. The solid red line corresponds to
FRG calculations. The dash-dotted brown line corresponds to ladder
calculations from Ref. [26]. The thin orange lines correspond to the
perturbative solution (16) at the MF level (dotted) and with the LHY-
type correction (dashed). The light blue open circles are experimental
data from Ref. [47], and the blue squares are MC simulations from
Ref. [47]. In all cases, mB = mI , and n1/3aBB = 3.5 × 10−3.

background values ψB,1 = √
2ρBδ(q) and ψB,2 = ψI = φ =

0 [74].
The polaron energy μI corresponds to the energy needed

to add an impurity to the medium. In the ground state, the
Green’s function of the impurity GI (or, analogously, the
spectral function) has a pole at μI [25]. In our FRG formalism,
we find the ground-state energy by determining the energy μI

that gives det[G−1
k,I (0)] = 0 for k → 0 [69].

From Eq. (13), by taking det(G−1
k,I ) = 0 at the minimum

ρB = ρ0, we find the pole

q∗
0 (q) = EI,k (q)/SI , (15)

where EI,k is defined in Eq. (14). At zero momentum, q∗
0 (0) =

uI/SI . Therefore, the physical polaron energy μ∗
I corresponds

to the choice of μI which gives q∗
0 (0) → 0 for k → 0. Values

of μI that do not fulfill this condition are not physical. An
analogous condition is imposed to find the ground state of
the Fermi polaron [69] and binding energies in few-boson
problems [55]. We note that because in the DE we follow the
flow at zero momentum q = 0 (see Appendix A), we cannot
study the poles at finite momenta in the current work.

C. Results

Following the approach sketched above, here we present
results for the polaron energy for a range of boson-impurity
scattering lengths aBI . This scattering length can be tuned
experimentally through Feshbach resonances [19]. We present
results in both two and three dimensions and compare them
with known results to check the robustness of our approach.

d=2
mI=mB

n1/2aBB=10-20

FIG. 2. Polaron energy E of the repulsive branch in two dimen-
sions as a function of − ln(n1/2aBI ). The solid red line corresponds to
FRG calculations. The thin dotted orange line corresponds to the MF
solution (17). The blue squares are MC simulations from Ref. [48].
In all cases, mB = mI , and n1/2aBB = 10−20.

First, we show results in three dimensions in Fig. 1. We
employ parameters that simulate the conditions of the Aarhus
experiment [19], and scattering lengths aBI > aBB, so the ef-
fect of the boson-impurity interaction is important. We make
comparisons with MC simulations and experimental data from
Ref. [47] and ladder calculations from Ref. [26] and with the
perturbative solution [81,82]

E = 2πaBI n

mR

[
1 + 24

3
√

π

mR

mI

√
na3

BB

aBI

aBB
I (γ )

]
, (16)

where n is the density of the bosonic bath, γ = mB/mI , and

I (γ ) = 1 + γ

γ

∫ ∞

0
dk

[
1 − (1 + γ )k2

√
1 + k2(

√
1 + k2 + γ k)

]
,

which for equal masses takes the value I (1) = 8/3. The first
term in Eq. (16) corresponds to the mean-field (MF) solution,
whereas the second term is a Lee-Huang-Yang- (LHY) type
correction.

We obtain good agreement between our results and both
the MC simulations and perturbative solutions. This agree-
ment is in line with previous FRG results for repulsive
Bose-Bose mixtures [78]. We stress that the MC simulations
include fluctuations at all orders, and thus, they are a good
benchmark for our calculations. We restrict our calculations
to (n1/3aBI )−1 � 4 because for stronger boson-impurity inter-
actions we have that kh � a−1

BI , and thus, we cannot choose a
sufficiently large value for the initial scale � [see discussion
after Eq. (8)].

We show an analogous calculation in two dimensions in
Fig. 2. We employ conditions that have been achieved exper-
imentally in two-dimensional traps with 87Rb atoms [83,84].
We make a comparison with MC simulations from Ref. [48]
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and with the MF solution [48]

E = πn/mR

| ln(n1/2aBI )| . (17)

As in three dimensions, we obtain excellent agreement with
MC simulations for − ln(n1/2aBI ) � 4. Furthermore, the FRG
results show an important improvement over the perturbative
solution. This is expected, as the FRG has proved to give a
good description of two-dimensional gases [75,85]. In con-
trast, perturbative results are less reliable in two dimensions
because of the enhanced effect of fluctuations. For stronger
interactions [− ln(n1/2aBI ) � 4] the FRG calculations become
unreliable due to the breakdown of the initial conditions.

We have checked that we obtain similarly good descrip-
tions of the polaron energy also for other choices of gas
parameters and masses mB ≈ mI in both two and three dimen-
sions. We also provide an estimate of the effective mass in
Appendix C.

IV. ATTRACTIVE BRANCH

We switch now to the description of the quasiparticle ex-
citation which is present at negative energies, the so-called
attractive polaron.

Because we now deal with attractive interactions, we have
to consider the formation of bound states. In particular, the
Bose polaron shows a polaron-to-molecule crossover [25].
Two-body bound states appear as poles in the four-point ver-
tices �(4). However, in a straightforward application of the
DE [see Eq. (4)], all the terms in the expansion are regu-
lar, and thus, they do not account for bound states [55]. We
can circumvent this by introducing dimer fields φ ∼ ψBψI

to mediate the boson-impurity interaction via a Hubbard-
Stratonovich transformation [69]. Analogous transformations
are used in FRG studies of Fermi gases [61,62] and few atoms
[55]. In the context of Feshbach resonances, the fields ψB and
ψI represent atoms in the open channel, whereas the field φ

represents dimers in the closed channel [61]. The resulting
action takes the form a two-channel model [25],

S[ϕ] =
∫

x

[
ψ

†
B

(
∂τ − ∇2

2mB
− μB

)
ψB

+ ψ
†
I

(
∂τ − ∇2

2mI
− μI

)
ψI

+ φ†

(
∂τ − ∇2

2mφ

+ νφ

)
φ + gBB

2
(ψ†

BψB)2

+ h(φ†ψBψI + φψ
†
Bψ

†
I )

]
, (18)

where mφ = mB + mI is the mass of a closed-channel dimer,
νφ is the dimer detuning, and h is the Feshbach coupling. The
Hubbard-Stratonovich transformation is illustrated in Fig. 3.

We work in the broad resonance limit where h, νφ → ∞
but h2/νφ is kept constant [61]. In this limit, by integrating
out the dimer fields in Eq. (18) we recover the original one-
channel model (1), and thus, both equations are equivalent.
Therefore, we stress that in this work Eq. (18) physically
describes a one-channel model where φ simply acts as an
auxiliary field.

FIG. 3. Tree-level diagram for the scattering between a boson
and an impurity before (left) and after (right) the introduction of the
auxiliary dimer fields. Solid, dashed, and dotted lines denote bosons,
impurities, and dimers, respectively.

Based on action (18), we propose the following ansatz for
the effective action in the attractive branch:

�k[φ] =
∫

x

[
ψ

†
B

(
SB∂τ − ZB

2mB
∇2 − VB∂2

τ

)
ψB

+ ψ
†
I

(
SI∂τ − ZI

2mI
∇2 + UI (ρB)

)
ψI

+ φ†

(
Sφ∂τ − Zφ

2mφ

∇2 + Uφ (ρB)

)
φ

+ Hφ (ρB)(φ†ψBψI + φψ
†
Bψ

†
I ) + UB(ρB)

]
, (19)

where ρB = ψ
†
BψB. Our ansatz is similar to those used for the

Fermi polaron [69,71] and, like for the repulsive branch, is
valid in only two and three dimensions. Note that the dimer
fields become dynamical, with flowing renormalization fac-
tors Sφ and Zφ . We expand the boson effective potential as

UB = −P + λBB

2
(ρB − ρ0)2, (20)

analogously to Eq. (5). As in the repulsive branch, ρ0 and
ρs = ZBρ0 at k = 0 correspond to the physical condensate
and superfluid densities of the bosonic medium, respectively.
The rest of the functions contain the interactions between
the bosonic medium and the impurity. Because three-body
correlations are important in the attractive branch, we expand
these up to three-body couplings

UI = uI + λBI (ρ − ρ0) + λBBI

2
(ρ − ρ0)2, (21)

Uφ = uφ + λBφ (ρ − ρ0), (22)

Hφ = hφ + hBφ (ρ − ρ0). (23)

Here hφ and λBI correspond to two-body boson-impurity ver-
tices, whereas λBφ , λBBI , and hBφ correspond to three-body
vertices. These vertices are illustrated in Fig. 4.

The FRG framework enables us to include the effect of
three-body correlations by allowing the three-body couplings
to flow. In the following, we want to test the relevance of
three-body effects. To switch those off, it is enough to fix the
corresponding couplings at zero for all k.

Like for the repulsive branch, all the renormalization fac-
tors (Za, Sa, VB) and the couplings in UB, UI , Uφ , and Hφ ,
as well as ρ0, flow with k. We also employ the optimized
regulator (6) for all the fields a = B, I, φ. We provide the
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FIG. 4. Two- (top row) and three-body (bottom row) vertices
associated with the interaction between the bosons and the impurity.
Solid lines represent the bosons, dashed lines represent the impurity,
and the dotted lines represent the dimer field.

flow equations in Appendix B, and we examine the initial
conditions here below.

A. Initial conditions of the RG flow

Like for the repulsive branch, the RG flow is started at a
high scale k = � much larger than the healing scale of the
bath kh = (2mBμB)1/2. By imposing that �� = S , we obtain

SB(�) = ZB(�) = SI (�) = ZI (�) = 1,

VB(�) = 0, ρ0(�) = μB

λBB(�)
, uI = −μI , (24)

where μB > 0 and μI < 0. Note that, in contrast to the
repulsive branch, the impurity energy μI is negative by con-
struction.

The couplings λBB, uφ , Zφ , and Sφ are renormalized in vac-
uum so they can be connected to physical scattering [62,74].
The initial condition for λBB is given by Eq. (8). For the
boson-impurity interaction, we consider the boson-impurity
scattering length aBI and effective range r0 as physical inputs.
The effective range is necessary to have a well-defined three-
body sector with attractive interactions in three dimensions.
Otherwise, the UV is not well defined since the infinite tower
of Efimov trimers which appears in this case lacks a reference
scale [34]. At low collision energies, the boson-impurity T
matrix takes the form [86,87]

TBI =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π/mr

ln(−4/p2
Ra2

BI ) − 2γE − πr2
0

4 p2
R + iπ

d = 2,

2π/mr

a−1
BI − r0

2 p2
R + ipR

d = 3,

(25)
where

pR = −
√

2mr

(
p0 − p2

2mφ

+ μφ

)
(26)

is the relative momentum, with μφ = μB + μI and p0 = iωp.
At the physical limit k = 0 in vacuum, we impose (see

Ref. [88] for details)

h2
φ

�φ (p0, p)

∣∣∣∣
k=0

= −TBI , (27)

where �φ is the full dimer self-energy. �φ is related to the
couplings in ansatz (19) through uφ = �φ (0, 0), and

Zφ =2mφ

∂

∂p2
�φ

∣∣∣
p0=0,p=0

, (28)

Sφ = − ∂

∂ p0
�φ

∣∣∣
p0=0,p=0

. (29)

We obtain the following initial conditions [88]:

uφ

h2
φ

∣∣∣∣
�

=

⎧⎪⎨
⎪⎩

mr

2π
[ln(a2

BI�
2/4) + 2γE − 1] d = 2,

2mr

3π2
� − mr

2πaBB
d = 3,

(30)

and

Zφ

h2
φ

∣∣∣∣
�

= Sφ

h2
φ

∣∣∣∣
�

=

⎧⎪⎪⎨
⎪⎪⎩

m2
r

π

(
2

�2
− π

4
r2

0

)
d = 2,

m2
r

π2

(
8

3�
− π

2
r0

)
d = 3.

(31)

Note that uφ and hφ are chosen freely as long as they satisfy
Eq. (30).

Since we work in the broad resonance limit, we naturally
have r0 > 0 [89,90]. In three dimensions, a positive effective
range ensures that the dimer fields become nondynamical
in the UV with Zφ, Sφ → 0, so our ansatz describes a one-
channel model. For details on the FRG for narrow resonances,
see Ref. [61].

The scattering length aBB sets a lower bound for the range
of the boson-boson interaction, whereas r0 sets the range of
the attractive boson-impurity interaction. Like for the repul-
sive branch, we must restrict the flow to momenta smaller
than a−1

BB and r−1
0 in order for our approximation of contact

potentials to be valid. Therefore, the initial scale has to sat-
isfy � < min(a−1

BB, r−1
0 ). We stress again that because of the

renormalizations (30) and (31), the results are independent of
the choice of � as long as � � kh.

In contrast to purely repulsive potentials, for attractive po-
tentials the scattering length can be tuned independently of the
range. Therefore, in the attractive branch we can choose aBI

freely. This enables us to study the regime of strong boson-
impurity coupling, including the unitary limit aBI → ∞ in
three dimensions [62]. In contrast, in the repulsive branch the
initial scale � is heavily restricted by aBI [see discussion after
Eq. (8)].

The couplings not mentioned so far are not present in the
microscopic theory (18), so their values at k = � are zero. In
particular, the three-body couplings are zero in the UV, and
they are generated only as k is lowered. To capture the effect
of three-body correlations at high scales, we must start the
RG flow at a high scale near the range of the interactions:
� ≈ min(a−1

BB, r−1
0 ).

B. Propagator and polaron energy

In the attractive branch, the inverse propagator for ansatz
(19) reads
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G−1
k (q) =

(
G−1

k,B(q) 0
0 G−1

k,Iφ (q)

)
, (32)

where G−1
k,B is given in Eq. (10) and

G−1
k,Iφ (q) =

⎛
⎜⎜⎝

EI,k (q; ρB) + iSIω 0 ρ
1/2
B Hφ (ρB) 0

0 EI,k (q; ρB) − iSIω 0 ρ
1/2
B Hφ (ρB)

ρ
1/2
B Hφ (ρB) 0 Eφ,k (q; ρB) + iSφω 0

0 ρ
1/2
B Hφ (ρB) 0 Eφ,k (q; ρB) − iSφω

⎞
⎟⎟⎠ (33)

is the impurity-dimer inverse propagator, with

EI,k (q; ρB) = ZI
q2

2mI
+ UI (ρB) + Rk,I (q), (34)

Eφ,k (q; ρB) = Zφ

q2

2mφ

+ Uφ (ρB) + Rk,φ (q). (35)

In contrast to the problem of an impurity in a Fermi bath,
whose ground state features a sharp transition between a po-
laron and a dressed dimer, the Bose polaron problem shows

a smooth polaron-to-molecule crossover. We can understand
this from Eq. (33), where if ρ0 > 0 we cannot separate G−1

k,Iφ
into independent impurity and dimer propagators. Therefore,
the impurity and dimer propagators are hybridized, and we
cannot identify a polaron or a molecule phase (for more de-
tails, we refer to Ref. [25]).

To find the ground-state energy μI , we search for the pole
of the Green’s function GIφ , as we did for the repulsive branch
in Sec. III B. By taking det(G−1

k,Iφ ) = 0 at the minimum ρB =
ρ0, we find two poles,

q∗
0,±(q) = 1

2

[
EI,k (q)

SI
+ Eφ,k (q)

Sφ

±
√(

EI,k (q)

SI
+ Eφ,k (q)

Sφ

)2

− 4

SI Sφ

[EI,k (q)Eφ,k (q) − h2
φρ0]

]
, (36)

where EI and Eφ are defined in Eqs. (34) and (35). As with
the repulsive branch, we identify the choice of μI that gives
q∗

0,±(0) = 0 for k → 0 as the energy of the polaron. Similarly,
choices of μI that do not fulfill this condition are not physical.

We find that q∗
0,+(0) and q∗

0,−(0) go to zero at the same
impurity energy μI , and thus, there is one ground-state energy
for each combination of interaction strengths. This can change
at finite temperatures, where the spectrum can split into more
than one quasiparticle [29,91]. We provide details of the flows
in Appendix B.

C. Results

In the following, we evaluate the polaron energy in both
two and three dimensions, and we compare it with available
analytical and experimental results. To quantify the effect
of three-body correlations, we present curves which include
only two-body correlations (2B) and both two- and three-body
correlations (2B+3B).

1. Three dimensions

The attractive branch of the three-dimensional polaron
at zero temperature was previously investigated in various
works. To test the robustness of our FRG calculations, we
compare our results with MC simulations, solutions of the
Gross-Pitaevskii equation (GPE), ladder calculations, and ex-
perimental data.

Figure 5 shows the polaron energy for three choices of
masses and gas parameters. Figures 5(a)–5(c) simulate, re-
spectively, the conditions of the Aarhus [19], JILA [20], and
MIT [21] experiments. We present calculations with only

two-body interactions and r0 = 0 (because for the interactions
we investigated the two-body sector is only weakly sensitive
to r0) and with two- and three-body interactions with both
r0 = 0 and r0 > 0. We use the effective ranges r0 computed
in Ref. [37].

In Figs. 5(a) and 5(b) we compare our results with ex-
perimental data, GPE calculations [37], and MC simulations
[47]. In addition, we make a comparison with the perturba-
tive solution (16), where I (2.2) ≈ 1.78 and I (1/1.72) ≈ 1.99.
Additionally, in Fig. 5(a) we make a comparison with lad-
der calculations from Ref. [26], which give an upper bound
for the energy. We observe a noticeable effect of three-body
correlations in Figs. 5(a) and 5(b), as well of the effective
range. In contrast, in Fig. 5(c) three-body effects are not as
important. This result is in agreement with previous studies
that showed that three-body effects are more important for
lighter impurities and at lower bath densities [34,92].

In the weakly interacting regime (n1/3aBI )−1 � −4, our
FRG calculations recover the expected result from perturba-
tion theory (16). For stronger interactions, (n1/3aBI )−1 � −4,
our FRG is in very good agreement with both MC and GPE
results. We obtain the best agreement with MC by including
three-body correlations with r0 = 0. Nevertheless, our cal-
culations with finite effective range are also in reasonable
agreement with experiment.

To examine the effect of the gas parameter, in Fig. 6 we
show the polaron energy as a function of n1/3aBB at unitarity,
where three-body correlations are important. We find that the
effect of three-body correlations depends strongly on the gas
parameter, in agreement with previous studies [34]. As we ap-
proach the vacuum limit n1/3aBB → 0, three-body correlations
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(a)

(b)

(c)

d=3
mI=mB

n1/3aBB=3.5x10-3

d=3
mI=1.72mB

n1/3aBB=4.0x10-2

d=3
mI=mB/2.2
n1/3aBB=2.8x10-2

FIG. 5. Polaron energy in three dimensions as a function of
(n1/3aBI )−1. The thick red lines correspond to FRG calculations
with only 2B interactions (dotted), 2B+3B interactions with r0 = 0
(solid), and 2B+3B interactions with r0 = 3, 1.5, 0.6aBB (dashed)
for (a)–(c). The thin orange lines show the perturbative solution
(16) at the MF level (dotted) and with the first correction (dashed).
The green long-dashed lines are GPE calculations from Ref. [37]
[in (b) the green line is underneath the solid red line]. The dash-
dotted brown line shows ladder calculations from Ref. [26], the
blue squares are MC simulations from Ref. [47], and the light blue
circles are experimental data from Refs. [19,47] in (a) and [20] in
(b). The dashed black lines show the binding energy in vacuum
εb = −(2mRa2

BI )−1�(aBI ).

d=3
mI=mB

FIG. 6. Polaron energy in three dimensions at unitarity aBI → ∞
for mB = mI as a function of the gas parameter n1/3aBB. The red lines
correspond to FRG calculations with only 2B interactions (dotted),
2B+3B interactions with r0 = 0 (solid), and 2B+3B interaction with
r0 = 2.2 × 10−3/(mBμB )1/2 > 0. The blue circles are MC simula-
tions from Ref. [45].

become much more important, significantly decreasing the
polaron energy. In particular, we obtain good agreement with
MC simulations from Ref. [45] by considering three-body
effects, which confirms both the importance of three-body
physics and also the robustness of our calculations.

At low gas parameters, the polaron energy is more sen-
sitive to the effective range. In particular, with three-body
interactions, the polaron energy goes to a finite value with
a finite effective range, whereas we are not able to find a
bound with r0 = 0. As explained in detail in Ref. [34], with
r0 = 0 there are infinite Efimov trimers in vacuum, so the
energy diverges at the vacuum limit. In contrast, for r0 > 0
there is a well-defined deepest Efimov state, and therefore,
the energy saturates to a finite value. Finally, let us mention
that the limit of very low gas parameters is extremely delicate
[34,37,38,40]. Indeed, in the limit aBB → 0 the bath becomes
infinitely compressible, and thus, multibody correlations have
increasing importance. To study such a regime with FRG, one
would need to include further higher-order couplings in the
ansatz.

2. Two dimensions

The two-dimensional Bose polaron was studied in detail
only recently, with MC simulations in Ref. [48]. Here we
provide results for various conditions achieved in current ex-
periments [83,84].

Figure 7 shows results for three different combinations
of masses and the gas parameter n1/2aBI = 10−20. All the
calculations use r0 = 0. We find that our calculations are
insensitive to reasonably chosen effective ranges. This result
is not unexpected. In two dimensions, there are no Efimov
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(a)

(b)

(c)

d=2
mI=mB

n1/2aBB=10-20

d=2
mI=1.72mB

n1/2aBB=10-20

d=2
mI=mB/2.2
n1/2aBB=10-20

FIG. 7. Polaron energy in two dimensions as a function of
− ln(n1/2aBI ). Masses and gas parameters are given in the plots.
The thick red lines correspond to FRG calculations with only 2B
interactions (dotted) and 2B+3B interactions with r0 = 0 (solid).
The thin orange lines show the MF solution (17). The blue squares
are MC simulations from Ref. [48]. The dashed black lines are the
boson-impurity binding energy εb = −2/(mre2γE a2

BI ).

d=2
mI=mB

FIG. 8. Polaron energy in two dimensions at ln(n1/2aBI ) = 0
for mB = mI as a function of the gas parameter n1/2aBB. The red
lines show FRG calculations with only 2B interactions (dotted) and
2B+3B interactions with r0 = 0 (solid).

trimers in vacuum, with only two three-body bound states
[93].

In Fig. 7(a) we compare our results with MC simulations
from Ref. [48]. Additionally, we compare them with the per-
turbative solution (17). In all cases, we obtain a noticeable
effect of three-body correlations. In particular, in Fig. 7(a) we
obtain better agreement with the MC simulations by consider-
ing three-body effects. However, we do not obtain agreement
as good as in three dimensions. The reason could be an ef-
fect either of the derivative expansion or of not considering
higher-order couplings. We stress that because fluctuations are
enhanced in low dimensions, it is expected that our approxi-
mation is less robust than in three dimensions.

To study the effect of the density of the medium, in Fig. 8
we show the polaron energy in the strong-coupling regime as a
function of the bath density. We show results for ln(n1/2aBI ) =
0, which cannot be described by the perturbative solution (17).
We explore a wide range of gas parameters. We note that
recent experiments have produced two-dimensional bosonic
gases with gas parameters as high as n1/2aBB ≈ 10−9–10−4

without many losses [94,95].
As in three dimensions, we observe an important effect

of three-body correlations. However, the energy seems to
converge to a finite value for the vacuum gas limit with and
without three-body effects, even with zero effective range.
This is expected. As mentioned, in two dimensions there are
only two well-defined tree-body bound states in vacuum [93]
instead of infinite Efimov trimers. Nevertheless, we do not
reach the value of the binding energy of the deepest trimer in
vacuum E ≈ 16.5εb, where εb = −2/(mre2γE a2

BI ). In Fig. 8,
this energy corresponds to EmB/n ≈ −21. The reason is prob-
ably our truncation of the derivative expansion, which does
not describe few-body physics accurately [55]. We expect that
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the inclusion of further couplings will improve the conver-
gence.

V. CONCLUSIONS

In this work, we studied the Bose polaron at zero tem-
perature in two and three dimensions with the FRG. We
approximated the effective action by means of a derivative
expansion, which enabled us to find the ground-state energies
of the polaron by following the flow of the scale-dependent
poles of the impurity’s propagator.

We studied both the repulsive and attractive branches of the
Bose polaron. In the attractive branch, we introduced dimer
fields via a Hubbard-Stratonovich transformation to mediate
the boson-impurity interaction, which enabled us to access the
regime of strong coupling easily. In addition, in the attrac-
tive branch, we added the effect of three-body correlations
by considering up to three-body couplings in the derivative
expansion.

We obtained polaron energies in good agreement with
state-of-the-art theoretical and experimental results. In partic-
ular, in the attractive branch, we obtained the best agreement
by adding three-body effects. Overall, we showed that the
FRG can successfully describe the regime of strong coupling
in both two and three dimensions.

Throughout this article, we focused on cases where 0.5 �
mI/mB � 2. The reason is twofold. On the one hand, for
heavy impurities, homogeneous fields might not provide a
good description of static particles. On the other hand, for
light impurities, the attractive branch is strongly influenced by
Efimov trimers [92], which require careful treatment, beyond
the scope of the current work.

Having demonstrated that the Bose polaron can be success-
fully described with the FRG, there are several extensions of
this work that we plan to explore in the future. First, we intend
to consider the full momentum dependence of the flowing
couplings by employing a vertex expansion [51] in order to
give a more robust description of the Bose polaron. Including
momentum-dependent vertices will enable us to obtain the full
Green’s function, which is not accessible within the deriva-
tive expansion, and to study dynamical properties, as well as
decay rates. Furthermore, account for momentum-dependent
vertices is necessary to accurately capture few-body physics,
including the onset of Efimov states, which are beautifully
captured with the FRG as periodic cycles in the RG flow [55].
We also plan to explore the effect of four- and higher-body
correlations by adding higher-order couplings.

On top of the current works on Bose and Fermi polarons,
the FRG could be used to study impurities in other scenarios.
A small finite number of impurities is a natural extension of
this work, and systems with a small population of impurities
can be studied as quantum mixtures with large population
imbalances [67,71]. Furthermore, polarons in optical lattices
could be naturally studied by employing the lattice imple-
mentation of the FRG [96], which has proved very successful
in describing strongly correlated lattice gases [97]. Using
impurities to probe topological excitations is, presently, a
topic of great interest [98–100], and the FRG may be a good
tool to address them at strong coupling. Finally, polarons
at finite temperatures can be easily studied by using the

Matsubara formalism. Particularly interesting would be ex-
amining the impact of the Berezinskii-Kosterlitz-Thouless
transition on the properties of two-dimensional Bose polarons.
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APPENDIX A: RG FLOW OF THE REPULSIVE BRANCH

1. Flow equations

In the DE all the couplings are momentum independent,
f (q) = f , and their flows are simply obtained by differentiat-
ing the Wetterich equation (2). Because there is no feedback
of the impurity onto the medium, the flow equations for the
bosonic couplings (ρ0, λBB, ZB, SB, and VB) are identical
to those of a one-component Bose gas. Thus, we refer to
Ref. [74] for details. Also, note that it is not necessary to
follow the flow of the k-dependent pressure P, as it does not
affect the flow of the rest of the couplings.

The flows of the couplings associated with the impurity are
dictated by

∂kuI =∂k�
(2)
k,I†I

∣∣∣
ρ0,p=0

, (A1)

∂kλBI = ∂

∂ρB

(
∂k�

(2)
k,I†I

)∣∣
ρ0,p=0, (A2)

∂kZI =2mI
∂

∂p2

(
∂k�

(2)
k,I†I

)∣∣
ρ0,p=0, (A3)

∂kSI =i
∂

∂ωp

(
∂k�

(2)
k,I†I

)∣∣
ρ0,p=0, (A4)

where ∂k�k is obtained from the Wetterich equation (2), p =
(ωp, p) is an external momentum which is taken to zero after
differentiating, and the two-point function is defined as

�
(2)
k,I†I = δ2�

δψ
†
I δψI

. (A5)

We note that we take p = 0 because in a DE all the couplings
are momentum independent, and thus, we follow the flow at
zero momentum [52]. Studies at finite momenta can be im-
plemented within a vertex expansion, where the ansatz for �

is proposed in terms of momentum-dependent vertices instead
of simple derivatives [51]. However, to solve the RG flow in
a vertex expansion, we usually need to perform sophisticated
calculations, such as with the Blaizot-Méndez-Wschebor ap-
proximation [79], which are beyond the scope of this work.
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p

p

q q+p q

p

p

FIG. 9. Diagrams that contribute to the flow of �
(2)
k,I†I

. Solid and
dashed lines denote bosons and impurities, respectively. The cross
denotes a boson field evaluated at its background value 〈ψB〉 = √

ρB.

Because we follow the flow at the minimum ρ0, we evalu-
ate the flow equations at ρB = ρ0 after taking the derivatives.
The diagrams that contribute to the flow of �

(2)
k,I†I are shown in

Fig. 9. They give the following expression:

∂k�
(2)
k,I†I =∂̃k

∫
q

[
4ρBλ2

BI

[E2,k (q) + VBω2]EI,k (q + p)

detB(q) detI (q + p)

− λBI [E1,k (q) + E2,k (q) + 2VBω2]

2 detB(q)

]
, (A6)

where ∂̃k is a k derivative that acts on only the regulators; E1,
E2, and EI are given in Eqs. (11), (12), and (14); and

detB(q) =S2
Bω2 + [E1,k (q) + VBω2][E2,k (q) + VBω2], (A7)

detI (q) =S2
I ω

2 + EI,k (q)2. (A8)

Note that E1, E2, and EI still depend on ρB, which is taken
to ρB = ρ0 only after taking all the derivatives. Finally, the
integral over internal momentum q = (ω, q) is defined as∫

q
=

∫ ∞

−∞

dω

2π

∫
dd q

(2π )d
. (A9)

2. Examples of flows

Figure 10 shows the flow of uI for different μI for the
chosen parameters for the bosonic medium and the boson-
impurity scattering length. At the physical polaron energy μ∗

I ,
the coupling uI flows to zero (solid black line), giving a van-
ishing q∗

0 (0). In contrast, for μI < μ∗
I the coupling uI saturates

to finite values greater than zero, whereas for μI < μ∗
I it goes

to negative values. Thus, values of μI 
= μ∗
I do not correspond

to physical energies of the impurity.
This behavior is found for any combination of parameters

in both two and three dimensions.

APPENDIX B: RG FLOW OF THE ATTRACTIVE BRANCH

1. Flow equations and k-dependent dimer fields

The strategy is similar to that used for the repulsive branch
in Appendix A, where the flow of the momentum-independent
couplings is obtained by differentiating the Wetterich equa-
tion. The flow of the bosonic couplings (ρ0, λBB, ZB, SB, and
VB) is given by those of a one-component Bose gas [74],

FIG. 10. Flow of uI in three dimensions in the repulsive branch
for n1/3aBB = 3.5 × 10−3 at (n1/3aBI )−1 = 10. The solid line corre-
sponds to the flow obtained for the ground-state energy μ∗

I , the thin
dashed line corresponds to the flow obtained with μI < μ∗

I , and the
thin dotted corresponds to the flow obtained with μI > μ∗

I .

whereas the flow of the couplings in Eqs. (21)–(23) can be
extracted from the flow of the two point functions

∂kUI = ∂k�
(2)
I†I

∣∣∣
p=0

, (B1)

∂kUφ = ∂k�
(2)
φ†φ

∣∣∣
p=0

, (B2)

∂kHφ = ∂k�
(2)
I†φ

∣∣∣
p=0

, (B3)

p

p

q q+p

p

p

q q+p

p

p

q q+p

(a)

(b)

p

p

q q+p

p

p

q q+p

(c)

q

p

p

FIG. 11. Diagrams that contribute to the flow of (a) �
(2)
k,I†I

,

(b) �
(2)
k,φ†φ

, and (c) �
(2)
k,φ†I

. Solid, dashed, and dotted lines denote
bosons, impurities, and dimers, respectively. The crosses denote bo-
son fields evaluated at their background value 〈ψB〉 = √

ρB.
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where the derivatives in �(2) are defined in the same way as
in Eq. (A5). We provide their explicit expression in the next
section. The specific flow of the different couplings within UI ,
Uφ , and Hφ are obtained by taking ρB derivatives and then
evaluating at ρB = ρ0. Also, as with the repulsive branch, we
follow the flow at zero momentum, and thus, we evaluate at
p = 0.

To simplify the flow equations, we introduce k-dependent
dimer fields φk to eliminate the flow of some of the couplings.
If we introduce k-dependent fields, the Wetterich equation
becomes [51]

∂k�k = 1
2 tr

[(
�

(2)
k + Rk

)−1
∂kRk

] + δ�k

δφ
· ∂kφk . (B4)

We choose the k-dependent fields so that they eliminate the
flow of the couplings λBI , λBBI , and hBφ . Similar eliminations
have been used in FRG studies of few bosons [56–58] and
Fermi gases [63]. This elimination means that these couplings
will not flow with k and will remain at zero during the entire
flow. We use k-dependent dimer fields defined as

∂kφk = f2B(k)ψBψI + f3B(k)(ρB − ρ0)ψBψI

+ g3B(k)(ρ − ρ0)φk, (B5)

∂kφ
†
k = f2B(k)ψ†

Bψ
†
I + f3B(k)(ρB − ρ0)ψ†

Bψ
†
I

+ g3B(k)(ρ − ρ0)φ†
k , (B6)

where the functions f2B, f3B, and g3B are chosen to eliminate
the flows of λBI , λBBI , and hBφ . Following Eq. (B4), the flow
of these couplings is dictated by

∂kλBI =∂kλBI |φ + 2 f2Bhφ + 2 f3Bhφρ0, (B7)

∂kλBBI =∂kλBBI |φ + 4 f3Bhφ, (B8)

∂khBφ =∂khBφ |φ + f2BλBφ + f3Buφ + g3Bhφ, (B9)

where ∂k f |φ corresponds to the flow of these couplings
when the dimer fields are kept fixed. By imposing that
the flow of these couplings remains at zero (∂k f = 0), we

obtain

f2B = − ∂λBI |φ
2hφ

+ ρ0

4hφ

∂kλBBI

∣∣∣
φ
, (B10)

f3B = − ∂kλBBI |φ
4hφ

, (B11)

g3B = − ∂khBφ |φ
hφ

+ λBφ

2h2
φ

∂kλBI

∣∣∣
φ

− λBφρ0 − uφ

4h2
φ

∂kλBBI

∣∣∣
φ
. (B12)

The flow of the rest of the couplings is then dictated by

∂kui =∂kui|φ,ρ0 + 2 f2Bhφρ0, (B13)

∂kuφ =∂kuφ|φ,ρ0 + λBφ∂kρ0, (B14)

∂kλBφ =∂kλBφ|φ,ρ0 + 2g3Buφ, (B15)

∂khφ =∂khφ|φ,ρ0 + f2Buφ, (B16)

where we have evaluated at ρB = ρ0. Note that although we
eliminate the flow of some couplings, their effect is taken into
account by the functions in Eqs. (B10)–(B12). We stress that
now λBφ carries the entire three-body physics.

Finally, the flow of the renormalization factors is simply
given by

∂kZa =2ma
∂

∂p2
�̇

(2)
a†a

∣∣∣
p=0,ρ0

, (B17)

∂kSa =i
∂

∂ωp
�̇

(2)
a†a

∣∣∣
p=0,ρ0

, (B18)

where a = I, φ and we evaluate at zero external momentum
after taking the momentum derivatives.

2. Expressions for the two-point function

As explained in the previous section, to follow the flow
of the couplings we need the two-point functions �

(2)
I†I , �

(2)
φ†φ

,

and �
(2)
I†φ

. The diagrams contributing to their flow are shown in
Fig. 11. Note that thanks to the elimination of some couplings,
only a few diagrams contribute.

The explicit expressions are

∂k�
(2)
k,I†I =∂̃k

∫
q

h2
φ

2

[
DB,+(q)DI,−(q + p)

detB(q) detIφ,−(q + p)
+ (+ ↔ −)

]
, (B19)

∂k�
(2)
k,φ†φ

= ∂̃k

∫
q

[
h2

φ

2

(
DB,−(q)Dφ,−(q + p)

detB(q) detIφ,−(q + p)
+ (+ ↔ −)

)
+ 2ρBλ2

BφC2(q)

detB(q)

(
DI,−(q + p)

detIφ,−(q + p)
+ (+ ↔ −)

)

− λBφ

2

C1(q) + C2(q)

detB(q)

]
, (B20)

∂k�
(2)
k,φ†I =∂̃k

∫
q

[
hφρ

1/2
B λBφ

(
D2,+(q)DI,−(q + p)

detB(q) detIφ,−(q + p)
+ (+ ↔ −)

)
+ h3

φρ
1/2
B

2

�EB(q)

detB(q)

(
1

detIφ,−(q + p)
− (+ ↔ −)

)]
,

(B21)
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(a)

(b)

(c)

FIG. 12. Renormalization-group flows in three dimensions at
unitarity a−1

BI = 0 for n1/3aBB = 3.5 × 10−3. The black lines corre-
spond to flows at the ground-state energy μ∗

I < 0 such that q∗
0,± → 0

(36) for k → 0. The thin gray lines correspond to energy μI < μ∗
I .

where ∂̃k is a k derivative that acts on only the regulators,
(+ ↔ −) denotes changing the signs in the subscripts of the
previous expression,

Ci(q) = Ek,i(q) + VBω2, i = 1, 2, (B22)

D2,±(q) = Ek,2(q) + 2VBω2 ± 2iSBω, (B23)

DB,±(q) = D2,±(q) + Ek,1(q), (B24)

Da,±(q) = Ek,a(q) + iSaω, a = I, φ, (B25)

detIφ,±(q) = DI,±(q)Dφ,±(q) − ρBh2
φ, (B26)

�EB(q) = E1,k (q) − E2,k (q), (B27)

and detB is defined in Eq. (A7). The regulated energies Ek,1

and Ek,2 are defined in Eqs. (11) and (12), and Ek,I and Ek,φ

are defined in Eqs. (34) and (35). We again stress that the reg-
ulated energies depend on ρB, which is evaluated at ρB = ρ0

only after taking the derivatives.

FIG. 13. Renormalization-group flow of uφ in three dimensions
for different boson-impurity scattering lengths aBI for n1/3aBB =
3.5 × 10−3. All the lines correspond to flow at the corresponding
ground-state energy μ∗

I .

3. RG flow examples

Here we show some examples of RG flows to illustrate the
behavior of the couplings as functions of k. Figure 12 shows
flows of the couplings ZI , SI , Zφ , Sφ , and uI in three dimen-
sions and unitarity (aBI → ∞) for a chosen gas parameter for
the bosonic medium. The black lines are flows at the physical
polaron energy μ∗

I which gives q∗
0,±(0) → 0 for k → 0 (see

Sec. IV B), whereas the thin gray lines correspond to flows
obtained with an energy μI < μ∗

I .
The renormalization factors [Figs. 12(a) and 12(b)] diverge

at μ∗
I . At this energy μ∗

I the rest of the couplings in Eq. (36)
vanish or saturate to finite values. For example, uI vanishes as
k goes to zero [Fig. 12(c)]. All this results in the vanishing of
q∗

0,±(0) at μ∗
I . On the other hand, for μI < μ∗

I the renormal-
ization factors saturate to finite values, and thus, q∗

0,±(0) 
= 0
for k → 0. This is true for any μI 
= μ∗

I .
Figure 13 shows the flow of uφ in three dimensions for

different values of (n1/3aBI )−1 at the corresponding ground-
state energies μ∗

I . This coupling saturates to finite values.
However, we observe that uφ saturates to values closer to
zero as (n1/3aBI )−1 increases. Our interpretation is that this
signals the polaron-to-molecule crossover. As we increase the
boson-impurity interaction, the molecule state dominates, so
the dimer self-energy in vacuum uφ decreases. Analogous
flows are obtained in two dimensions.

We stress that the coupling uI cannot be identified as the
impurity self-energy in vacuum because it contains the effect
of the higher-order couplings λBI and λBII (which have been
eliminated from the flow). Therefore, we do not observe a
change in uI for different (n1/3aBI )−1.

APPENDIX C: ESTIMATION OF THE EFFECTIVE MASS
IN THE REPULSIVE BRANCH

Because in the DE we follow the flow at zero momentum,
we cannot compute the complete Green’s function G(q), and
therefore, we cannot extract quantities such as the effective
mass and the residue [25]. However, here we propose a way

023317-13
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d=3
mI=mB

n1/3aBB=3.5x10-3

FIG. 14. Effective mass m∗
I /mI of the repulsive branch in three

dimensions as a function of (n1/3aBI )−1 for mB = mI and n1/3aBB =
3.5 × 10−3. The solid red line corresponds to FRG calculations,
whereas the dashed orange line corresponds to the perturbative so-
lution (C3).

to estimate the effective mass in the repulsive branch, which
can give us an idea of how the FRG could perform with a more
robust calculation.

From the pole (15), we can naively impose at k = 0 that

q2

2m∗
I

= 1

SI

(
ZI

q2

2mI
+ uI

)
, (C1)

where m∗
I is the estimated effective mass, in analogy to a rig-

orous definition [25]. At the physical ground-state energy μ∗
I ,

we have that uI = 0, which gives the following expression:

m∗
I

mI
= SI

ZI

∣∣∣∣
k=0

, (C2)

which enables us to extract the effective mass in the repulsive
branch. An analogous condition was proposed in Ref. [101]
to extract effective masses with the FRG in a Bose-Hubbard
model.

Figure 14 shows effective masses in three dimensions for
equal boson and impurity masses. We compare our results

d=2
mI=mB

n1/2aBB=10-20

FIG. 15. Effective mass m∗
I /mI of the repulsive branch in two

dimensions as a function of − ln(n1/2aBI ) for mB = mI and n1/2aBB =
10−20. The solid red line corresponds to FRG calculations, the blue
squares correspond to MC simulations [48], and the dashed orange
line corresponds to the perturbative solution (C4).

with the perturbative solution for mB = mI [102],

m∗
I

mI
= 1 + 64

45
√

π

√
na3

BB

a2
BI

a2
BB

, (C3)

which was shown to give a good description compared to
more sophisticated approaches [45]. Our estimate is in good
agreement with the perturbative solution, showing the correct
trend.

Figure 15 shows effective masses in two dimensions for
equal boson and impurity masses. We compare our results
with MC simulations from Ref. [48] and with the perturbative
LHY-type solution for mB = mI [48],

m∗
I

mI
= 1 + 1

2

ln(n1/2aBB)

ln2(n1/2aBI )
. (C4)

We obtain reasonable agreement again with the perturbative
solution and the MC results, especially with the latter. This
agreement suggests that, even within our approximation, the
FRG is able to give a good description of the effective mass.

We are not able to provide a similar expression in the
attractive branch where the poles have a much more compli-
cated structure. Furthermore, because the impurity and dimer
degrees of freedom are hybridized, the calculation of the ef-
fective mass is even less straightforward. We expect that in
future work, we will be able to provide an accurate description
by including the momentum dependence of the couplings.
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