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Dynamical phase diagram of a one-dimensional Bose gas in a box with a tunable weak link:
From Bose-Josephson oscillations to shock waves
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We study the dynamics of one-dimensional bosons trapped in a box potential in the presence of a barrier
creating a tunable weak link, thus realizing a one-dimensional Bose-Josephson junction. By varying the initial
population imbalance and the barrier height, we evidence different dynamical regimes. In particular, we show
that at large barriers a two-mode model captures accurately the dynamics, while for low barriers the dynamics
involves dispersive shock waves and solitons. We study a quench protocol that can be readily implemented in
experiments and show that self-trapping resonances can occur. This phenomenon can be understood qualitatively
within the two-mode model.
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I. INTRODUCTION

The difference between classical and quantum dynamics
becomes strikingly evident when two macroscopic quantum
objects are coupled by a weak link. For example, the system
consisting of two superconductors separated by a thin insulat-
ing layer has attracted much attention due to the discovery
of the Josephson effect [1]: A direct current can flow in
this setup, even without applying any external voltage. Later,
the first experimental observation of the Josephson effect [2]
opened the way to many applications, including its general-
ization to other setups [3,4].

Although the theory of the Josephson junction was origi-
nally developed in the context of superconductivity, it can be
applied as well to describe two weakly coupled Bose-Einstein
condensates (BEC) [5–8], for example, by using a double-well
potential, thus realizing an atomic Bose-Josephson junction
(BJJ). Due to two-body interaction between atoms, the BJJ
exhibits new dynamical regimes such as macroscopic quan-
tum self-trapping (ST) [8,9], not present in the superconductor
Josephson junction. This new effect, as well as the observation
[10] of Josephson oscillations (JO), have been observed in
a single BJJ [11,12]. This has raised a lot of interest in the
study of BJJ and ongoing theoretical and experimental studies
deal with dissipative [5,13–16] and nondissipative oscillations
[17–19], supercurrent dynamics in ring-shaped condensates
[20–22], current phase relation of atomic BJJ [23,24], quan-
tum transport [25,26], and their counterparts with fermionic
superfluid atomic samples [27–32].

When studying the atomic Josephson junction, several fac-
tors must be taken into account, among which the geometry
and the effective dimension are of particular importance. Pre-
vious works have dealt with the double-well geometry, in
which two elongated gases are side by side [33–35], and the
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ring geometry, in which the gases are coupled head to toe
[36]. The former geometry is adapted for matter wave inter-
ferometry [33,34,37], while the latter enables the realization
of atomic circuits [21,23,38–40]. The effective dimension is
crucial to determine the excitations involved in the dynamics
[41,42]: in three dimensions vortex lines decay into vortex
rings [43], in two dimensions pointlike vortices carry phase
slips [44,45], and in one dimension (1D), for which no vor-
tex can exist, there are solitons and dispersive shock waves
(DSW) [22,46,47]. Furthermore, in all dimensions the excess
energy can be dissipated into a phonon bath, allowing for a
relaxation of the JO. In ultracold atom experiments, the ef-
fective dimension is controlled by the transverse confinement
and can be tuned [48–50].

In this work, we consider a zero-temperature one-
dimensional (1D) Bose gas confined in a box potential with a
tunable central barrier, thus defining two (left and right) reser-
voirs connected through a tunable weak link. In this geometry,
each reservoir contains many excitation modes that contribute
to the dynamics, in contrast to the simple two-mode model
picture [8]. As we will show below, this geometry is inter-
esting because it evidences the interplay between shock wave
dynamics and Josephson physics. In particular, we find a clear
unified framework to describe the whole dynamical phase
diagram, from the weak coupling regime, where the two-mode
model is valid [14], to the large coupling regime, where shock
waves emerge. Furthermore, we observe that soliton nucle-
ation at the weak link can induce a fast damping of the density
oscillations. We consider quench protocols that can be readily
implemented in experiments and show how the quench speed
affects the dynamics by inducing self-trapping resonances.

This paper is organised as follows: In Sec. II, we describe
the model we study and the tools we use, and in Sec. III, we
report on a thorough study of the dynamical phase diagram of
the 1D Bose gas. We then discuss in Sec. IV how the quench
protocol modifies the dynamical phase diagram and finally
discuss how our results open new perspectives.
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FIG. 1. Setup and quench considered in the present work. Ini-
tially, a 1D Bose gas is prepared in two reservoirs with a population
imbalance, using an energy offset (double arrow) as shown with the
solid black potential curve. At t = 0 the energy offset is removed,
resulting in a new potential landscape shown as the solid blue curve.
The initial atomic density distribution is sketched by the dashed red
curve. The inset shows the initial population imbalance z0 as a func-
tion of Voffset obtained with this method (solid blue line), compared
to the naive expectation z0 = Voffset/(2gN ) (dashed red line).

II. MODEL AND QUENCH PROTOCOL

We consider N weakly interacting bosons of mass m with
repulsive contact interaction on a 1D ring of circumference
L, described at zero temperature by the mean-field Gross-
Pitaevskii equation (GPE):

ih̄
∂ψ

∂t
=

(
− h̄2

2m

∂2

∂x2
+ Vext (x, t ) + g1DN |ψ |2

)
ψ, (1)

where ψ (x, t ) is the condensate wave function, normalized
to unity

∫ L
0 dx |ψ |2 = 1, g1D = 2h̄ω⊥as is the 1D interaction

strength [51], where ω⊥ is the radial confinement frequency
and as is the three-dimensional s-wave scattering length, and
Vext (x, t ) is the external trapping potential.

We consider an external trap potential made by a combina-
tion of two Gaussian barriers:

Vtrap(x, t ) = V0 exp

[
− x2

σ 2

]
+ V (t ) exp

[
−

(
x − L

2

)2

σ 2

]
,

located at x = 0 and x = L/2. Because of the ring geometry
and periodic boundary conditions, this results in a effective
boxlike potential for large V0 with a tunable barrier V (t )
separating two reservoirs (see Fig. 1). We create the initial
population imbalance between the two reservoirs by using an
auxiliary potential:

Vimb(x) = Voffset

2

{
tanh

[ x

σ

]
+ tanh

[
x − L/2

σ

]}
,

where Voffset controls the initial population imbalance, as
shown in the inset of Fig. 1.

In this setup, we expect that the relevant energy scale
is fixed by the bare chemical potential μ0 = g1Dn0, where
n0 = N/L is the typical density, with a healing length ξ =
h̄/

√
2mg1Dn0. We consider a large V0 = 5μ0 barrier to create

the box with relatively narrow σ = 4ξ width.
To solve Eq. (1), we use its dimensionless form, in which

lengths are scaled by L, time by T = mL2/h̄, and interaction
strength by h̄2/(mL). Using these, units Eq. (1) becomes

i
∂ψ

∂t
=

(
−1

2

∂2

∂x2
+ Vext (x, t ) + gN |ψ |2

)
ψ. (2)

To numerically solve Eq. (2), we use a spectral method rely-
ing on fast Fourier transforms to evaluate exactly the kinetic
energy term [52], with a regular grid of 256 points and a
large dimensionless nonlinear parameter gN = 20 000, well
within the mean-field regime. The time integration is per-
formed using a standard fourth-order Runge-Kutta scheme
with a typical time step of δt = 2 × 10−5 [53]. We note that
the choice of this spectral method imposes the use of periodic
boundary conditions, hence the ring geometry, but the large
barrier at x = 0 transforms it to a box potential. The interplay
between box and ring geometry has been already studied in
Ref. [36].

To initialize the system, we use imaginary time propaga-
tion [54,55] in Eq. (2), in the presence of both the static initial
trap and imbalance potentials: Vext (x) = Vtrap(x, 0) + Vimb(x).
Once the evolution has converged to the ground state [56],
we abruptly remove the imbalance potential to initiate the
dynamics. We then explore two situations: V (t ) is either kept
constant (see Sec. III) or quenched in a time τ to a lower value
(see Sec. IV). For each case, we study how the central barrier
strength V1 affects the dynamics.

III. DYNAMICAL REGIMES FOR A
ONE-DIMENSIONAL BOSE GAS

In this section, we consider a static barrier V (t ) = V1 and
study the effect of Voffset, that is the initial population imbal-
ance between the reservoirs. After the preparation, we quench
the system by removing abruptly the imbalance potential at
t = 0 and study the dynamics.

To analyze the dynamics, we measure the time-dependent
density n(x, t ) = |ψ (x, t )|2, the total current per particle [57]
J (t ) = h̄

imL

∫ L
0 dx ψ∗ ∂ψ

∂x , and the population imbalance be-

tween the two reservoirs z(t ) = ∫ L
L/2 dx |ψ |2 − ∫ L/2

0 dx |ψ |2.
As expected from previous studies of the BJJ, we find mainly
three different regimes for the population imbalance dynam-
ics [58]: oscillations, self-trapping, and damped oscillations.
However, we also uncover particular regimes that are unique
to the 1D geometry, involving dispersive shock waves and
solitons.

In order to classify simply the different regimes, we will
use three quantitative figure of merit, as shown in Fig. 2.
The first two are based on the power spectrum density of
z(t ), defined as C(ω) = |ẑ(ω)|2, where ẑ(ω) is the Fourier
transform of z(t ). As is well known in signal analysis, C(ω)
is a measure of the power distribution among frequencies in
a signal. To determine if the system is time dependent, we
compute the relative weight of the zero-frequency term in to
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FIG. 2. Dynamical phase diagram of a one-dimensional Bose gas
in a box, varying the central barrier strength (V1) and the initial
imbalance z0 (controlled by Voffset), based on the three criteria de-
scribed in the text, defining four main regimes [self-trapping (ST),
dispersive shock wave (DSW), overdamped oscillations (ODO), and
regular oscillations] with a smooth crossover (gray shaded area)
from Josephson oscillations (JO) to shock wave (SW). The dashed
lines indicate analytical results. Note the logarithmic scale on the
horizontal axis. The labels (a)–(f) refer to the examples shown in
Fig. 3 and Table I.

the total power of the signal: C0 = C(0)/
∫

dωC(ω) ∈ [0, 1].
By computing C0 for various V1 and Voffset, we observe that
it defines well-separated regions of high (close to 1) and low
(close to 0) values, with sharp boundaries. We choose arbitrar-
ily the value C0 = 0.95 to distinguish the different regimes
(solid black line in Fig. 2): For C0 > 0.95 the dynamics is
“frozen,” while for C0 < 0.95 the time evolution is dominant.
Then, to distinguish between the different dynamical regimes,
we compute the frequency ωmax at which the maximum of
C(ω) occurs. In order to define criteria, we compare it to a
typical frequency, related to sound propagation in the system:
ωs = π × c/L, where c is the initial speed of sound in the left
reservoir. We consider that the system is mainly oscillating
when ωmax > ωs/10 (solid blue line in Fig. 2). Finally, to
decide if the dynamics is relaxing toward a steady state, we
evaluate the damping time by computing the half-amplitude
decay time, thalf = max {t, such that |z(t )| > |z0|/2}, where
z0 is the initial imbalance, and consider that the dissipation
is small when thalf > 0.35 × mL2/h̄ (solid red line in Fig. 2).

Figure 2 shows the different dynamical regimes of the
1D Bose gas when the central barrier height V1 and the
initial population imbalance z0 are varied. We identify four
regimes: frozen dynamics, corresponding to the self-trapping
(ST) regime, for C0 > 0.95, or equivalently ωmax < ωs/10
and thalf > 0.35 × mL2/h̄; regular oscillations for C0 < 0.95,
ωmax > ωs/10, thalf > 0.35 × mL2/h̄; damped dynamics, cor-
responding to dispersive shock wave (DSW), for C0 < 0.95,
ωmax > ωs/10, and thalf < 0.35 × mL2/h̄; overdamped dy-
namics, corresponding to overdamped oscillations (ODO),
for C0 < 0.95, ωmax < ωs/10, and thalf < 0.35 × mL2/h̄. As
discussed below, at large barriers we find results very close to
the regular two-mode model of the BJJ [14], while at low bar-
riers we find that the dynamics are mediated by propagating
shock waves. Therefore, in the regular oscillations regime, we
distinguish the (JO) and shock wave (SW) regimes: The light
gray area indicates approximately the transition region from
JO to SW. The SW regime is uniquely identified by the fact

that the density imbalance oscillations occurs exactly at the
sound frequency.

We note that the three criteria are in reasonable agreement
to define the ST regime, which indicates that the arbitrary
thresholds we choose are self-consistent. In order to confirm
this interpretation of the dynamical phase diagram, we show
example trajectories in Fig. 3.

In order to gain more insight into this dynamical phase dia-
gram, we show in Fig. 3 a few example cases corresponding to
the labels (a)–(f) in Fig. 2 and simulation parameters detailed
in Table I. We have found that the best way of studying
the various dynamical regimes is to plot the density fluctua-
tions: δn(x, t ) = n(x, t ) − 1

T

∫ T
0 dt n(x, t ) and the current J (t )

versus imbalance z(t ) trajectory. For the sake of clarity, we
display only the early time dynamics for density fluctuations
(up to t = 0.1 × mL2/h̄). Studying the density fluctuations al-
lows us to remove the background density variations imposed
by the barriers and thus focus on the excitations propagating
through the system. Plotting the J (t ) versus z(t ) trajectory al-
lows a direct comparison with other realizations of Josephson
junctions and in particular emphasizes the specificity of the
1D case. In order to compare different regimes, we use a nor-
malized plot, where the current is normalized to its maximum
value and the imbalance is normalized to its initial value.

Figure 3(a) shows a regime very similar to the usual two-
mode model of the BJJ, demonstrating that for small initial
imbalance and large barrier height the dynamics involves few
modes, exhibiting a quasicircular J (t ) versus z(t ) trajectory.

Figure 3(b) shows the intermediate regime between JO and
ST, also reminiscent of the simple two-mode model.

Figure 3(c) shows the ST regime, where the dynamics is
quasifrozen and the imbalance remains very close to its initial
value. The small propagating density oscillations are induced
by the initial quench; however, the excitations in the two
reservoirs remain decoupled.

Figure 3(d) shows the SW appearing at low barrier and
low initial imbalance, for which regular oscillations occur
with extremely small damping. The density oscillations show
almost piecewise constant profiles with sharp fronts propa-
gating at a well-defined velocity. This can be understood in
the framework of the recent prediction of universal shock
wave dynamics in quenched 1D Bose gases trapped in a box
[47]. The quench protocol studied here results also in two
counterpropagating dispersive shock waves that bounce on the
box boundaries.

Figure 3(e) shows damped oscillations in a regime dom-
inated by dispersive shock wave propagation [47]: As the
fronts propagate the rarefaction front broadens while the
shock front dissolves into a soliton train, as described by
Whitham’s modulation theory [59]. In this regime, the effect
of the barrier is small.

For both Figs. 3(d) and 3(e), the oscillation is sustained by
a fully nonlinear propagating density shock wave, resulting in
the peculiar diamond shape of the J (t ) versus z(t ) trajectory,
as opposed to the usual two mode BJJ dynamics of Figs. 3(a)
and 3(b).

Figure 3(f) shows the overdamped regime, for which the
J (t ) versus z(t ) trajectory quickly relaxes to the origin. A
close inspection of the density fluctuations shows that this
quick damping is associated to the nucleation of individual
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FIG. 3. Detail of the density fluctuations dynamics in different regimes (color map), corresponding to the parameters of Table I and the
phase portrait showing the normalized current (J/Jmax) vs normalized population imbalance (z/z0). (a) JO, (b) transition to ST, (c) ST regime,
(d) SW, (e) DSW, and (f) ODO. [(i), (ii), (iii)] Phase portraits of the two-mode model for the same parameters as in panels (a), (b), and
(c) respectively. In all phase portraits, the blue disk indicates the initial condition (z = z0 and J = 0). See text for details.

solitons at the central barrier, on the density-depleted side,
that remain confined in their reservoir. This soliton nucleation
process occurs when the local density at the barrier vanishes
[60], enabled by the large density fluctuations at increasing z0.

This study evidences the peculiarity of the 1D Bose gas
dynamics in contrast with the recent work of Ref. [58] that
investigated the three-dimensional (3D) BJJ. As is well known
in 1D physics, there are fewer available decay channels result-
ing in long-lived excitations as dispersive shock waves, for
example [46,47], that sustain regular oscillations. This can be
seen as a consequence of the underlying integrability of the
Lieb-Liniger model. As was shown in Ref. [47], the DSW
results in a dephasing of the total current and hence, in the
context of BJJ, gives a damped oscillation. This damping is
therefore not directly related to the effect of the central barrier.
However, the barrier is crucial to explain the appearance of
the overdamped regime, associated to spontaneous soliton
nucleation at the barrier, a phenomenon similar to the phase
slip mechanism observed in Ref. [22].

As shown in Fig. 2 the transition from SW to DSW is
almost a vertical line, meaning that it depends mainly on
the initial imbalance. This can be understood by consider-
ing the dephasing time of the underlying shock wave [47].

Indeed, the shock fronts broaden due to the difference be-
tween the highest cmax and the lowest cmin velocities. We may
expect that the oscillation reaches its half-amplitude at a time
τ = L/(cmax − cmin). Using then very simple estimates (see
Appendix A), we find cmax − cmin � √

gN/Lz0, and therefore
z0 = L/(τ

√
gN/L). The brown vertical dashed line in Fig. 2

corresponds to a time τ = 0.35 × mL2/h̄, and therefore a
initial imbalance of: z0 � 0.02. This very simple estimate is
already in good agreement with the simulations; small cor-
rections are expected due to the effect of the box boundaries.
We find convenient to distinguish between the SW and DSW
regimes based on this arbitrary criterion but we note that there
is in fact a smooth and continuous transition from weakly
dispersive shock waves to strongly dispersive shock waves as
z0 increases.

Similarly one can use modulation theory to estimate when
independent solitons can be nucleated at the barrier. In par-
ticular, the lowest density nb can be written as a function of
the population imbalance; see Appendix A for details. Then,
using local density approximation, the critical barrier for soli-
ton nucleation is V s

1 � gnb [see Eq. (A1)], corresponding to
the blue dashed line in Fig. 2, that captures the DSW to ODO
transition up to V1 � gN .

TABLE I. Parameters used in Fig. 3 to illustrate the different dynamical regimes.

V1/gN Voffset/gN z0 Regime

(a) 1.9 0.015 0.007 Josephson oscillation (JO)
(b) 1.9 0.0215 0.010 JO to ST transition point
(c) 1.9 0.25 0.114 Self-trapping (ST)
(d) 0.5 0.008 0.004 Shock wave (SW)
(e) 0.5 0.25 0.115 Dispersive shock wave (DSW)
(f) 0.5 1 0.460 Overdamped oscillations (ODO)
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We note that for large barriers V1 > 1.5 × gN , the dy-
namics is very similar to the canonical two-mode model
predictions for the BJJ. To compute the relevant param-
eters for the two-mode model, we follow the method of
Refs. [8,58]. Briefly, we derive the usual BJJ equations:

ż = −2|K|
√

1 − z2 sin θ, (3a)

θ̇ =
[
U + 2|K| cos θ√

1 − z2

]
z, (3b)

where the tunneling rate |K| and the interaction energy U
can be related to the microscopic parameters of the GPE (see
Appendix B for details). Equation (3) allows us, for example,
to predict the critical imbalance at which the self-trapping
transition occurs [8], for a given barrier strength V1. The agree-
ment with the full GPE simulation is remarkable, as shown
by the dashed magenta line in Fig. 2. Using Eq. (3), one can
also predict the current versus imbalance phase portrait of the
two-mode model. To define the quantity corresponding to the
current J (t ), we follow the standard definition in superconduc-
tor Josephson junction [4,61], for which the current is given
by the rate of change of the population imbalance: I (t ) = ż(t ).

Figures 3(i)–3(iii) directly compare the current versus im-
balance computed within the two-mode model, with the full
GPE result, for the same parameters as in Figs. 3(a)–3(c).
We observe that the shape of the trajectories are correctly
captured within the two-mode approximation. We conclude
that our protocol is able to simulate the two-mode Josephson
physics at large barriers and allows us to study the interplay
with shock-wave physics at smaller barriers.

More precisely, we can study quantitatively this crossover
by monitoring the oscillation frequency at small imbalance
as a function of the central barrier height V1 (see Fig. 4), for
which the two-mode model predicts:

ωTM = 2|K|
√

1 + U

2|K| . (4)
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FIG. 5. Modification of the quench protocol: The system is ini-
tialized with a large central barrier, quenched to its final value in a
time τ , as sketched by the dashed arrow. As in Fig. 1, the solid black
line is the initial potential, the blue line is the postquench potential,
and the dashed red line is the initial density profile. The inset shows
z0 as a function of Voffset obtained with this method.

As ωT M diverges when V1 decreases, one can define a critical
barrier V c

1 such that ωTM(V c
1 ) = ωs, which provides a natural

upper limit associated to sound-mediated transport. Interest-
ingly, we have found that V c

1 is always very close to the lowest
boundary of the self-trapping regime, as shown in the inset of
Fig. 4 for various central barrier width. This allows us to add a
horizontal black dashed line in the dynamical phase diagram
of Fig. 2, above which the two-mode model is valid, for all
imbalances. We note that for small imbalance the SW regime
is reached when V1 � μ, which corresponds to direct transport
above the barrier, without tunneling effects.

Our work thus provides a comprehensive study of the dy-
namical phase diagram of a 1D Bose gas in a box with a
tunable barrier, evidencing the interplay of Josephson oscil-
lations and shock-waves dynamics.

IV. DYNAMICS AFTER A BARRIER QUENCH

In this section, we consider an additional quench of the
barrier strength:

V (t ) =
{

V0 + (V1 − V0) t
τ

t < τ,

V1 t � τ.
(5)

The population imbalance is initially prepared in two de-
coupled reservoirs at large barrier using imaginary time
propagation as in Sec. III. Then, at t = 0 the imbalance po-
tential is removed and Eq. (2) is solved while the central
barrier height is linearly decreased to its final value according
to Eq. (5). This quench protocol is relevant to experiments as it
ensures a clean preparation of two independent reservoirs by
initially suppressing the coupling through the central barrier
and restoring it in a controlled way, as shown in Fig. 5. As
in Sec. III, we investigate the tunneling dynamics between
the two reservoirs as a function of the initial imbalance and
the final barrier strength V1. The main, surprising, difference
we find is an inhibition of the Josephson oscillations thus ex-
panding the self-trapping regime: We call this a self-trapping
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FIG. 6. Normalized power spectrum density at zero frequency
as a function of central barrier height V1 and initial imbalance z0

for a quench of τ = 0.01. The magenta dashed line indicates the
prediction of the two-mode model for the self-trapping transition.
The red vertical dashed line corresponds to a self-trapping resonance,
as discussed in the text. The green line and markers correspond to the
example trajectories shown in Fig. 7.

resonance (depending on z0) and show hereafter that it can
be predicted from the two-mode model equations (3). We
evidence this behavior by focusing on the C0 value, as shown
in Fig. 6.

We find that at low initial imbalance the self-trapping
region extends to unusual low barrier values, well below
the two-mode model prediction. To confirm this unexpected
behavior we study a few trajectories, shown in Fig. 7 and
corresponding to increasing values of initial imbalance at
fixed final barrier V1 = 1.6 × gN . This confirms that the sys-
tem undergoes a first transition from a Josephson oscillation
regime to self-trapping, and then reverts to an oscillating
behavior before reaching the usual self-trapping regime. Due
to the extra energy provided by the quench, the maximum
imbalance can be larger than z0 and therefore we normalize
the phase portrait by zmax. However, we observe that the shape
of the trajectories remains comparable to the two-mode model
predictions. We have tested several values of the quench time
and found qualitatively the same behavior for a wide range of
quenching times from τ = 0.005 to τ = 0.1 × mL2/h̄.

This self-trapping resonance can be explained qualitatively
within the two-mode model (3). The crucial point here is that

the initial barrier is high so that the system is always in the self
trapping at t = 0. Then for t < τ the barrier is lowered and the
self-trapping persists up to a given barrier height. During this
time, the imbalance remains approximately constant z(t ) � z0

but the phase evolves and using the fact that U � |K| we find
θ (t ) = Uz0t . When the dynamics is still frozen at t = τ , this
accumulated phase difference modifies the critical point of
the self-trapping regime. The critical barrier is then minimal
[see Eq. (B2)] at the resonance condition θ (τ ) = nπ , with
n ∈ N∗, that is for z0 = nπ/(Uτ ). For our parameters, this
gives z0,res = 0.007, in good agreement with the observed
resonance.

To test this explanation, we repeat the same procedure for
various values of τ . We find that the number of resonances
increase with τ and that their position is in good agreement
with our simple prediction; see Appendix C for details.

V. CONCLUSION

In this work, we show that several quantitative criteria can
be combined to uniquely determine the dynamical diagram
of the one dimensional Bose gas and identify the different
regimes. We uncover the interplay between Bose-Josephson
oscillations and shock wave propagation and show that the
same experimental protocol can be used to produce both.
Importantly our analysis relies only on a measure of the time-
dependent density oscillations, which is routinely achieved
in ultracold-atom experiments. Furthermore, the realization
of a one-dimensional Bose gas confined in a box potential,
including a tunable weak link is within reach [62].

We also demonstrate that the phase portrait (current versus
imbalance) is an appropriate tool to compare the numerical
simulations to simple analytical models and that it is suffi-
cient to identify the different regimes. In particular, despite
the intrinsic multimode dynamics, we evidence that the main
dynamical features are well captured by the two-mode model,
for sufficiently large barriers.

It is worth emphasizing that the dispersive shock-wave dy-
namics observed in this work is expected to be universal with
respect to the interaction strength, upon a proper rescaling
of the dynamical quantities [47]. It would be interesting to
investigate this assumption using exact methods at large in-
teractions strength or a hydrodynamic description at arbitrary
interactions.

-1 0 1
z/z max

-1

0

1

J/
J m

ax

JO JO JO→ST ST ST→JO JO JO→ST ST

FIG. 7. Trajectories in the J (t ) vs z(t ) plane, normalized to the maximal current Jmax and maximal imbalance zmax, corresponding to the
examples shown in Fig. 6. From left to right, increasing initial imbalance, going from the JO regime to ST, then back to JO, and finally entering
the ST regime again. In all phase portraits, the green disk indicates the initial condition (z = z0 and J = 0).
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FIG. 8. Density profile in the box at time t = 1.5 × 10−3 ×
mL2/h̄ (solid blue line) for a initial dam-break problem (dotted black
line), with V1 = 0 and Voffset = gN . The four horizontal dashed lines
correspond to the analytical formula for nR, nc, nL , nb, respectively.
The small discrepancy with the numerical solution may be attributed
to finite-size effects.
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APPENDIX A: ESTIMATES FOR DISPERSIVE
SHOCK WAVES

We provide here simple estimates to compute the relevant
speed of sound in the system. We will assume that finite-size
effects are small and in particular neglect the bend of the
wave function near the box boundaries, which occurs on a
scale of the healing length ξ ∼ 1/

√
2gn0, where n0 ≡ N/L

is the average density. We recall that the speed of sound is
given by c = √

gn, where n is the local density. Now, in the
presence of the imbalance potential, the right and left atom
numbers are N1,2 = N (1 ± z0)/2, where the initial imbalance
z0 = (N1 − N2)/N is normalized to the total atom number N ,
as in the main text. The associated speed of sounds are c1,2 =√

gn0(1 ± z0) and assuming z0 
 1 we obtain cmax − cmin =
c1 − c2 � √

gN/Lz0, corresponding to the main text formula.
We now discuss the nucleation mechanism of individual

solitons at the central barrier, for large initial imbalance.
The initial state is very similar to the one of the dam break
problem [59,63] in dispersive shock waves. The time evolu-
tion involves the appearance of an intermediate plateau at a
density nc = (

√
nL + √

nR)2/4, where nL < nR are the initial
left and right densities; see Fig. 8. Modulation theory then
predicts that the density jump nc → nL is made of a soliton
train and that the lowest density point of the oscillations is
nb = (

√
nc − 2

√
nL )2; see Eq. (3.55) of Ref. [59]. Finally,

assuming local density approximation, we can expect that
additional individual solitons will be nucleated at the barrier
when the local chemical potential vanishes, which occurs first
when V s

1 � gnb, resulting in

V s
1 = μ

(
√

1 + z0 − 3
√

1 − z0)2

4
. (A1)

APPENDIX B: Two mode model

We summarize here the derivation of a two-mode model
capturing the BJJ dynamics, following the approach of
Ref. [8]. The idea is to look for a solution of Eq. (2) of the
form

ψ (x, t ) = ψ1(t )φ1(x) + ψ2(t )φ2(x),

where the two modes φ1,2(x) are build by combining the
lowest symmetric φs(x) and antisymmetric φa(x) energy states
of Eq. (1):

φ1(x) = φs(x) + φa(x)√
2

and φ2(x) = φs(x) − φa(x)√
2

.

This definition ensures that φ1,2(x) are normalized to unity
and orthogonal. Without loss of generality, we may assume
that φ1,2(x) are real-valued functions. Inserting this ansatz into
Eq. (2) and projecting onto the modes result in the following
equations for the mode amplitudes ψ1,2(t ):

iψ̇1 = I11ψ1 + I12ψ2 + gN
∫

dx φ1|ψ |2ψ,

iψ̇2 = I21ψ1 + I22ψ2 + gN
∫

dx φ2|ψ |2ψ,

where we defined the overlap integrals Ii, j =∫
dx φi(− 1

2
∂2

∂x2 + V (x))φ j . Here V (x) is the final potential,
with a central barrier of strength V1. To proceed, we need to
evaluate the nonlinear term: We keep only the dominant term
and the first correction [64], resulting in

iψ̇1 = I11ψ1 + Kψ2 + U1|ψ1|2ψ1,

iψ̇2 = Kψ1 + I22ψ2 + U2|ψ2|2ψ2,

where we defined U1,2 = gN
∫

dx |φ1,2|4 and introduced the
coupling

K = I12 + gN

4

∫
dx

(
φ4

s − φ4
a

)
.

It is then straightforward to show that

K = E [φs] − E [φa]

2
,

where

E [φ] =
∫

dx φ

[
−1

2

∂2

∂x2
+ V (x) + gN

2
|φ|2

]
φ (B1)

is the mean field energy of the state with N particles in
mode φ.

We then change variables for ψ1,2 = √
N1,2e−iθ1,2 and ob-

tain

Ṅ1 = 2K
√

N1N2 sin (θ1 − θ2),

θ̇1 = I11 + K

√
N2

N1
cos (θ1 − θ2) + U1N1,

Ṅ2 = 2K
√

N1N2 sin (θ2 − θ1),

θ̇2 = K

√
N1

N2
cos (θ2 − θ1) + I22 + U2N2.
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We then introduce the population imbalance z = N1 − N2

(with the constrain N1 + N2 = 1, due to the choice of mode
function normalization) and the phase difference θ = θ1 − θ2,
resulting in

ż = 2K
√

1 − z2 sin θ,

θ̇ =
[
U − 2K

cos θ√
1 − z2

]
z + I11 − I22 + U1 − U2

2
,

where U = (U1 + U2)/2. The constant term in the second
equation is very small such that we recover the usual Bose-
Josephson equations (with our definitions K < 0), as shown
in Eq. (3).

To connect the GPE simulations and the two-mode model,
we minimize the energy (B1) for a given central barrier V1

with a parity constraint [65] to find the two states φs and
φa and their energy, thus obtaining the value of K . We then
combine them to build states φ1 and φ2 and compute the
interaction energy U . Combining K and U , we obtain the
parameter � = U/(2|K|) controlling the dynamics as a func-
tion of V1. Finally, using the fact that the transition from
oscillations to self-trapping occurs at a critical � [8]:

�c =
1 +

√
1 − z2

0 cos θ0

z2
0/2

, (B2)

where z0 and θ0 are the initial imbalance and phase difference
between the reservoirs. As each value of � corresponds to a
unique value of V1, Eq. (B2) allows us to plot the two-mode
prediction for the JO to ST boundary in Fig. 2.

FIG. 9. Normalized power spectrum density at zero frequency as
a function of central barrier height V1 and initial imbalance z0 for a
quench of τ = {0.02, 0.03, 0.04} (top, middle, bottom). The magenta
dashed line indicates the prediction of the two-mode model for the
self-trapping transition. The dashed vertical green lines correspond
to the predicted resonances.

APPENDIX C: ADDITIONAL DATA FOR
THE BARRIER QUENCH

Figure 9 shows how the quench time τ affects the self-
trapping resonance described in the main text. In particular,
it confirms the interpretation based on the two-mode model
equations and shows the predictive powers of this simple
model. We note that the number of resonances increases with
τ but are also less pronounced. For τ > 0.05, they are indis-
tinguishable from the two-mode model boundary, shown by
the dashed magenta curve in Fig. 9.
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