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We consider a hybrid system of matter and light as a sensing device and quantify the role of cooperative
effects. The latter generically enhance the precision with which modifications of the effective light-matter
coupling constant can be measured. In particular, considering a fundamental model of N qubits coupled to a
single electromagnetic mode, we demonstrate that the ultimate bound for the precision shows double-Heisenberg
scaling: �θ ∝ 1/(Nn), with N and n the number of qubits and photons, respectively. Moreover, even using
classical states and measuring only one subsystem, a Heisenberg-times-shot-noise scaling, i.e., 1/(N

√
n) or

1/(n
√

N ), is reached. As an application, we show that a Bose-Einstein condensate trapped in a double-well
optical lattice within an optical cavity can in principle be used to detect the gravitational acceleration g with the
relative precision of �g/g ∼ 10−4 Hz−1/2. The analytical approach presented in this study takes into account the
leakage of photons through the cavity mirrors, and allows one to determine the sensitivity when g is inferred via
measurements on atoms or photons.

DOI: 10.1103/PhysRevA.104.023315

I. INTRODUCTION

The use of hybrid light-matter systems has a large potential
for the development of classical and quantum technologies.
The idea of exploiting the best of both worlds culminates
in the concept of a quantum network [1–3], where photons
act as information carriers channeling between nodes, while
the matter is used for information storage and as source of
the nonlinearities needed for information processing. These
optical nonlinearities correlate matter with light, allowing one
to gain information and even modify the former by measuring
the latter. This permits one, for instance, to control the motion
of mechanical objects via light in optomechanical systems
[4,5], with important consequences for interferometry of dis-
placement measurements [6–11].

For such schemes it is crucial to reach a strong light-
matter coupling, which can be achieved by employing optical
resonators. Among the most promising kinds of matter, neu-
tral atoms stand out due to the high control achievable over
internal and external degrees of freedom [12–14]. For in-
stance, atom-light coupling can generate the entanglement
between the two subsystems [15–21] or be exploited to ef-
ficiently create entanglement in atomic ensembles [22–35].
This constitutes an alternative route to the use of intrin-
sic atom-atom nonlinearities [36–46], with applications for
quantum metrology beating the shot-noise limit [47–49].
Hybrid devices exploiting atom-light nonlinearities and coop-
erative effects for metrology and sensing include white-light
interferometers with anomalous dispersion [50,51], super-
radiance [52] and superradiant lasers [53,54], single-atom
cavity-QED platforms for nonclassical light [55], quantum
statetransfer protocols with information recycling [56–59],
and optical magnetometers [60,61] and their nonlinear version

[62]. In particular, in the field of inertial sensing with atoms
[63–67], the use of optical resonators has been shown to
enhance the precision of a Mach-Zehnder interferometer [68]
and is, for instance, expected to improve the sensitivity of
Bloch-oscillation-based metrology [69,70]. More recently, the
supersolid phase of ultracold bosons induced by the coupling
to an optical resonator has been predicted to allow for very
precise gravimetry [71,72]. Also, an optical cavity-QED set-
ting with strong cooperative atom-light interactions has been
used to create nonclassical states of light, which allow for
electric-field sensing beyond the standard quantum limit [73].
Despite these various applications, a systematic study of the
performance of hybrid light-matter systems is still lacking in
the regime where cooperative effects are dominant.

In this work, we characterize the different working regimes
of a hybrid light-matter sensor aiming at measuring modi-
fications of the effective light-matter coupling constant. We
consider a minimal model for cooperative effects, consisting
of N qubits coupled to a single electromagnetic mode. This
model allows for closed analytical expressions for the mea-
surement error, also called the precision or the sensitivity. We
find that the ultimate bound for the error satisfies a double-
Heisenberg scaling: �θ ∝ 1/(Nn), with both the number of
qubits N and of photons n. We also study the dependence
on different initial states (classical and nonclassical) of the
system, as well as on different measurements. Even for clas-
sical states of qubits and photons, and by simply measuring
a qubit or a photon observable, the error scales partially at
the Heisenberg limit, i.e., �θ ∝ 1/(

√
Nn) or �θ ∝ 1/(N

√
n),

respectively.
Finally, we consider a specific example where an atomic

Bose-Einstein condensate trapped in a double-well optical
lattice is dispersively coupled to a single mode of an optical
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cavity. The gravitational acceleration g modifies the effective
atom-photon coupling and this effect is amplified by the coop-
erative effects. We determine the dynamics of the system and
analytically calculate the precision assuming that g is deduced
either from the homodyne detection of the mean of the quadra-
ture of light or from the mean imbalance between the atomic
occupation of each well. We show that the relative error �g/g,
which scales inversely both with the numbers of atoms and
photons, can in principle reach the level of 10−4 Hz−1/2 with
realistic parameters and classical states of matter and light,
also including the effect of photon loss. Our results can be
easily extended to other input states, regimes of parameters,
or estimation protocols.

The paper is organized as follows: In Sec. II we introduce
the model and derive the ultimate bounds for the sensitivity, as
well as specific bounds for certain types of measurements and
input states. In Sec. III we consider a specific scheme where
the electromagnetic field is coherently driven and lossy and
the qubits are prepared in a Gaussian state. In Sec. IV we
present an application of our model in gravity sensing and its
possible precision using coherent atomic states. We conclude
in Sec. V. Detailed analytical calculations are presented in the
Appendices.

In this work, the numerical calculations were performed by
using a solver in-built in QuTip library, solving Schrödinger
equations for noiseless case and a master equation with the
photon losses included [74].

II. MODEL AND GENERAL PRECISION BOUNDS

In order to demonstrate how cooperative effects can en-
hance the sensitivity of a hybrid light-matter sensor we
consider a minimal model describing N qubits all equally
coupled to a single mode of an electromagnetic field, cor-
responding to the following Hamiltonian (for details, see
Ref. [75] and Sec. IV):

Ĥ = (−�c + c1N )n̂ + η(â + â†) + c2n̂Ĵx, (1)

where in the rotating frame �c is the characteristic frequency
of the electromagnetic mode which is coherently driven with
a strength η, n̂ = â†â is the number of photons in the mode,
and Ĵx = 1

2

∑N
i=1 σ̂ (i)

x is the x component of the collective spin
operator (σ̂ (i)

x is the x-axis Pauli matrix for the ith qubit). The
Hamiltonian from Eq. (1) contains two types of light-matter
coupling: a static collective shift of the electromagnetic mode
frequency quantified by the coupling constant c1, and a cavity-
induced “quantized effective magnetic field” coupled to the
collective spin operator (or, equivalently, a qubit-induced
dynamical shift of the mode frequency) with characteristic
strength c2. Note that we set h̄ = 1 throughout the text.

A. Ultimate bounds on the sensitivity

We now demonstrate that the system governed by the
Hamiltonian from Eq. (1) can be employed as a sensor for
the estimation of a parameter θ entering the light-matter cou-
pling constants c1 and/or c2, with the best possible precision
showing the double-Heisenberg scaling �θ ∝ n−1N−1, where
n = 〈n̂〉 is the number of photons.

To this end, we recall that according to the Cramer-Rao
lower bound [76], the sensitivity in estimating the value of θ

is bounded from below by

�θ � 1√
FQ

. (2)

Here FQ is the quantum Fisher information (QFI) [77] given
by

FQ =
∑
i, j

(λi − λ j )2

λi + λ j
|〈i|ĥ| j〉|2, (3)

where |i〉’s and λ’s are the eigenvectors and the corresponding
eigenvalues of the density matrix, i.e., �̂ = ∑

i λi|i〉〈i|. For
pure states, when only one λ is nonzero, this simplifies to

FQ = 4(〈ĥ2〉 − 〈ĥ〉2) ≡ 4〈(�ĥ)2〉, (4)

where the expectation values are calculated with the
state |ψ〉 = Û |ψ0〉 transformed by the evolution operator
Û = e−iĤt . The operator ĥ generates the Schrödinger-like
transformation in the parameter space, namely,

i∂θ |ψ〉 = i∂θÛ |ψ0〉 = i(∂θÛ )Û †Û |ψ0〉
= i(∂θÛ )Û †|ψ〉 = ĥ|ψ〉 (5)

hence ĥ = i(∂θÛ )Û † [77]. It can be rewritten in a more useful
form (see Appendix A), namely,

Û (t ) = D̂†(β̂ )e−iω̂t â†âD̂(β̂ )eiηt β̂ , (6)

where β̂ = ηω̂−1 and ω̂ = −�c + c1N + c2Ĵx, and D̂(β̂ ) =
eβ̂â†−β̂†â is a generalization of the displacement operator
[78,79]. With Eq. (6), the operator ĥ can be evaluated explic-
itly (see Appendix B for details):

ĥ = ∂ω̂

∂θ

(
− i

β̂2

η
(â† − â) + t (â† + β̂ )(â + β̂ )

+ i
β̂2

η
[(â† + β̂ )eitω̂ − (â + β̂ )e−itω̂] + t β̂2

)
. (7)

A large QFI and thereby a high sensitivity, is achieved when-
ever ĥ scales strongly, i.e., at least linearly, with the number
of particles and the time t . This is the case for the generator in
Eq. (7), which contains terms scaling linearly with the number
of qubits and photons, as well as with time t . To see it, we
rewrite ĥ as

ĥ = t
∂ω̂

∂θ
â†â + f̂ (ω̂, η, â, â†; t ), (8)

where the explicit form of f̂ can be read out from Eq. (7).
In the absence of the drive, f̂ is zero. In such a case, for a
light-matter state

∣∣ψ 〉 =
∣∣ − N

2

〉 + ∣∣N
2

〉
√

2
⊗ |n〉, (9)

which is composed of a superposition of eigenstates of Ĵx with
the minimal and the maximal eigenvalues (N-qubit cat state)
and a photon Fock state, we obtain

FQ = t2c′2
2 n2N2, (10)
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i.e., a Heisenberg scaling with both the number of qubits and
photons [80]. Here and below, primes denote the derivatives of
coefficients of the Hamiltonian (1) over the parameter θ . The
double-Heisenberg scaling of the QFI in (10) is a consequence
of cooperative effects which can be understood as follows. A
standard linear interferometer acting on a collection of qubits
is generated by the operator c2Ĵx and in this case, the maximal
attainable sensitivity is

FQ = t2c′2
2 N2. (11)

In our situation, taking a photon Fock state |n〉, the term pro-
portional to c2 in the Hamiltonian from Eq. (1) is c2nĴx. It is
this additional coefficient n that yields the double-Heisenberg
scaling in Eq. (10). Cooperative effects are present and en-
hance the sensitivity even using classical states of light and
nonentangled states of the qubits at the input.

Let us consider the tensor product of a coherent state of
light |α〉 and a coherent state of qubits, i.e., a state where all
qubits point in the z direction:

|ψA〉 =
N/2∑

m=−N/2

Cm|m〉, Cm = 1

2N/2

√(
N

N
2 ± m

)
, (12)

where the sign ± depends on the choice of the direction along
z and Cm’s are the coefficients of the state in the basis of
the eigenstates |m〉 of Ĵx. For this state we have 〈Ĵx〉 = 0 and
〈Ĵ2

x 〉 = N
4 , thus

FQ = nt2[4ϕ′2 + (c′
2)2N (n + 1)], (13)

where n = |α|2 and

ϕ = −�c + c1N. (14)

Though the QFI from Eq. (13) is missing the double-
Heisenberg scaling of Eq. (10), it still shows a Heisenberg
scaling with the number of qubits (since ϕ scales with N)
together with shot-noise scaling with the number of photons,
or vice versa. The fact that this happens also using nonen-
tangled input states tells us that the Heisenberg scaling in
this case is a classical cooperative effect where the dynamics
in the estimation-parameter space is accelerated by a factor
proportional to the number of qubits or photons. An equivalent
mechanism enhances the sensitivity of nonlinear interferome-
ters [62].

Finally, to go beyond the scaling N2n or Nn2 with initially
uncorrelated pure states of matter and light, and reach the
double-Heisenberg scaling, when the QFI scales as N2n2, the
state requires to be at least entangled in qubit or nonclassical
(i.e., having a nonclassical distribution into the overcom-
plete basis of coherent states [81,82]) in photonic degrees
of freedom. In the former case, the QFI contains the term
〈(�Ĵx )〉n2, which yields the desired precision if the variance
of the collective spin operator scales with N2. With the non-
classical photonic states, in the QFI the dominating term is
(c′

1N + c′
2〈Ĵx〉)2〈(�n̂)2〉, which leads to very high precision if

the variance of the photonic distribution scales with n2.

B. Bounds for specific measurements

Having found favorable scaling bounds for the sensitiv-
ity, one has to determine which estimation strategies—that

is, which measurement observables and data processing
protocols—saturate those bounds.

In this section, we address this issue by considering the
case where the electromagnetic field is not driven. This sim-
pler case is generalized to the driven-dissipative case in the
next section. We specifically consider the bound given by
Eq. (13), which corresponds to the uncorrelated light-matter
input state of photonic coherent state |α〉 (with the mean
number of photons n = |α|2) and the coherent state of qubits
given in Eq. (12).

We first consider the case where the measurement is per-
formed on the qubits with the photonic degree of freedom
traced out; specifically, the z component of the collective
spin operator. The simplest estimation strategy is to deduce
θ from the mean value of the measurements of Ĵz. It gives the
well-known error propagation formula for the sensitivity

�2θ = �2Ĵz(
∂〈Ĵz〉
∂θ

)2 = 1

t2

1

N

1

n(n + 1)

1

c′2
2

, (15)

where the last equality is evaluated at optimal times such
that c2t = k×2π, k ∈ N (for the detailed derivation and a
general formula valid for all times, see Appendix C1). This
sensitivity, due to the missing ϕ′2 term, does not reach the
bound from Eq. (13). We thus conclude that, whenever the θ

dependence of c2 is stronger than the one of ϕ, most of the
information about the parameter is accessible only with the
qubit subsystem. The estimation from the measurement of Ĵz

is sensitive only to the dynamical qubit-induced phase shift of
the mode frequency.

Let us now instead consider the case where the measure-
ment is performed on the photons with the qubit degree of
freedom traced out, via the quadrature operator [78,79]

X̂φ = 1
2

(
âe−i(φ/2) + â†ei(φ/2)), (16)

where φ is a phase that can be adjusted to maximize the signal.
With the help of Eq. (6) and a coherent state of light at the
input with η = 0, we obtain (see Appendix C2 for details)

�2θ = �2X̂φ( ∂〈X̂φ〉
∂θ

)2
= 1

t2

1

4n

1

ϕ′2 , (17)

again at optimal times c2t = 2πk, k ∈ N and with φ chosen
such that sin2(ϕ + φ/2) = 1. We see that a measurement per-
formed on the photons saturates the bound from Eq. (13) if
the contribution proportional to c2 can be neglected. For these
optimal times, the estimation of θ with the measurement of
quadrature is sensitive only to the static collective shift of the
cavity frequency but insensitive to the dynamical shift.

Therefore, given a classical input state of light and matter,
by performing the measurement on the qubits one can reach
a sensitivity scaling at the Heisenberg limit with the photon
number and at the shot-noise limit with the qubit number. If
the measurement is performed on the photons, the Heisen-
berg scaling is achieved with respect to the number of qubits
instead. This can be understood by the following reasoning.
The estimation by measuring a subsystem is equivalent to
averaging out over the remaining parts of the whole system.
Since the measured subsystem is described by a classical state,
the precision cannot surpass the respective shot-noise limit.
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The precision is enhanced due to the collective effects inher-
ent to the Hamiltonian from Eq. (1). However, to reach the
double-Heisenberg scaling, as in Eq. (10), one should restore
to the simultaneous measurement on both the qubit and the
photonic subspace.

III. IMPACT OF CAVITY PUMP AND LOSS

In this section, we consider a more realistic case where
the electromagnetic field is coherently driven, later addressing
also the impact of the photon loss.

A. Lossless case

Starting from a vacuum state of the photons together with
all qubits pointing in the z direction [see Eq. (12)], the state at
time t is described by the following density matrix:

�̂(t ) =
∑
m,m′

CmCm′ |γm〉〈γm′ | ⊗ |m〉〈m′|

× eiη(βm−βm′ )t e−i[β2
m sin(ωmt )−β2

m′ sin(ωm′ t )], (18)

where |γm〉 denotes a coherent state of light with the ampli-
tude γm = βm(e−iωmt − 1), with ωm = −�c + c1N + c2m and
βm = η/ωm (see Appendix A).

The state of the light, tracing out the subspace of qubits, is
a mixture of coherent states

�̂L(t ) = Tr[�̂(t )]A =
∑

m

C2
m|γm〉〈γm|. (19)

We note that the average number of photons is given by

n = 〈n̂〉 = Tr[n̂�̂L(t )] =
∑

m

C2
m|γm|2. (20)

Depending on the relative strength of the parameters entering
the Hamiltonian and the properties of the state of the system,
we can specify two different limits: coherent and incoherent
regime. Below, we address these in more detail.

1. Coherent regime

For small times, the impact of the dynamical phase shift on
the dynamics is negligible. In such a case, ωm is independent
of the state of the matter and is given only by the static
shift of the cavity frequency, i.e., ωm ≈ ϕ [see Eq. (14)]. The
requirement is that the following condition

|−�c + c1N | � |c2|m (21)

is satisfied for all m that significantly contribute to the state in
Eq. (18).

The state remains in this coherent regime, as long as the
time t is sufficiently short so that the amplitude Cm with
maximal m’s that significantly contribute to the state, i.e., with
m = ±√

N , has approximately the same phase. This is true up
to t 
 τc = 2√

N |c2| where the subscript “c” stands for a “col-

lapse.” Within this time frame we have γm 
 γ = η

ϕ
(e−iϕt −1)

for all m and the sum Eq. (19) can be explicitly calculated,
giving a pure coherent state of light �̂L(t ) 
 |γ 〉〈γ |. Conse-
quently, the number of photons oscillates as

〈n̂〉 
 |γ |2 = 2n̄ sin2

(
ϕt

2

)
, (22)

where n̄ = 2 η2

ϕ2 is the number of photons averaged over one
period of oscillations of 〈n̂〉. When the time t exceeds τc, con-
tributions to Eq. (20) oscillate out of phase, giving 〈n̂〉 
 n̄.
Time oscillations of the mean photon number revive when
t 
 τr = π

c2
, giving a pattern of collapses and revivals, in

analogy to the dynamics of a two-level atom within the
Jaynes-Cummings model, driven by a monochromatic coher-
ent state of light [78,79].

We now focus on this oscillatory regime and calculate
the sensitivity using the estimation strategies discussed in
Sec. II B. Let us first consider the measurement of the light
quadrature, for which the sensitivity, calculated again with the
error propagation formula reads

�2θ = 〈(�X̂φ )2〉( ∂〈X̂φ〉
∂θ

)2

 1

t2

1

2n̄

1

ϕ′2 (23)

with the phase chosen such that φ + 2ϕt = (2k + 1)π, k ∈ N
(see Appendix D for details). We used Eq. (19) to get

〈X̂φ〉 = Re[γ e−i(φ/2)], 〈(�X̂φ )2〉 ≡ 〈
X̂ 2

φ

〉 − 〈X̂φ〉2 = 1
4 , (24)

where Re[·] stands for the real part. We see that in the driven
case, the measurement of the quadrature in the coherent oscil-
latory regime gives the same sensitivity as predicted by using
an input coherent photon state with amplitude set by η/ϕ.
Here, since ωm ≈ ϕ, the dynamical frequency shift does not
significantly modify the state, and the information about the
parameter is encoded in the static shift of the cavity frequency.

We now turn to the measurement of the qubits Ĵz. We use
the Heisenberg equations of motion for the collective spin
operators

∂t Ĵz/y(t ) = −i[Ĵz/y(t ), Ĥ ] = ±c2Ĵy/z(t )n̂(t ). (25)

In the oscillatory regime, when light is in a pure coherent
state, we approximately replace n̂(t ) with the average number
of photons, i.e., ∂t Ĵz/y(t ) 
 ±c2Ĵy/z(t )|γ |2. This gives Ĵz(t ) =
Ĵz cos(χ ) + Ĵy sin(χ ), with

χ ≡ c2

∫ t

0
dτ |γ |2 = n̄[1 − sinc(ϕt )]c2t . (26)

The error propagation formula then yields

�2θ = �2Ĵz(t )

(∂θ 〈Ĵz(t )〉)2
= 1

(χ ′)2

1

N

 1

t2

1

N

1

n̄2

1

c′2
2

, (27)

if | c2
c′

2

ϕ′
ϕ
| � 1 and sinc(ϕt ) � 1. Note that, although the os-

cillations of the photonic dynamics revive periodically, the
mean-field approximation used above can be safely applied
only once. This is because in the long collapse periods, though
the dynamics of the photonic population is virtually frozen,
the atomic operators undergo a complex dynamics, setting
an unknown initial condition for the solution in the next os-
cillatory regime. Also for this estimation strategy, within the
first coherent oscillatory regime the sensitivity form Eq. (27)
coincides with the expression from Eq. (15) if the mean num-
ber of photons n̄ equals the intensity of the coherent state
n and n � 1, so that in Eq. (15), the term n(n + 1) can be
approximated with n2.
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For times larger than τc, the photonic dynamics is frozen
so we do not expect the t−2 scaling of the sensitivity encoun-
tered in the oscillatory case [see Eq. (23)]. Indeed, the mean
quadrature and its variance are now

〈X̂φ〉 = −
√

n̄

2
cos

(
φ

2

)
, 〈(�X̂φ )2〉 = 1

4
(n̄ + 1), (28)

thus

�2θ 
 1

2n̄

ϕ2

ϕ′2 , (29)

when n̄ � 1. Here, the inverse scaling with time as well as
with the number of qubits is lost, due to presence of ϕ2 in the
numerator. For the case where the measurement is performed
on the qubits, an analytical calculation similar to that pre-
sented in Eqs. (25)–(27) is not possible after τc, as light is not
in a pure coherent state anymore. Therefore, we must rely on
the numerical exact diagonalization of the Hamiltonian from
(1) which gives a sensitivity which is orders of magnitude
smaller than in the oscillatory regime.

2. Incoherent regime

When the impact of the dynamical phase shift due to the
presence of qubits cannot be neglected, the state of the pho-
tons cannot be described by a single coherent state. In such
a case, when the condition in Eq. (21) is not satisfied, the
replacement of the mixture in Eq. (19) with a pure coherent
state is not justified at all times, and the mean number of
photons is given with the general formula from Eq. (20). The
first two moments of the quadrature are now

〈X̂φ〉 =
∑

m

C2
mRe[γme−i(φ/2)], (30a)

〈
X̂ 2

φ

〉 =
∑

m

C2
mRe[γme−i(φ/2)]2 + 1

4
. (30b)

Although one has to resort to numerical simulations in this
general case, we show that in the presence of the photon loss,
the sensitivity from (23) can be still determined even in the
incoherent regime.

B. Impact of photon losses

In this section we include the possibility for photons to
be lost from the electromagnetic mode at a rate κ . We do
not consider additional effective losses which could come
from unwanted coupling between the qubit and other photon
modes. The dynamics of the system is then described by the
following quantum master equation [83] for the density matrix
of the system:

d

dt
�̂ = −i[Ĥ , �̂] + κ

(
â�̂â† − 1

2
{â†â, �̂}

)
. (31)

To proceed, we again separately distinguish the coherent
and the incoherent dynamics regime, according to the condi-
tion from Eq. (21).

1. Coherent regime

In the coherent regime, when t � τc, we model the photon
dynamics by effectively including the loss term in the equa-

tion for the coherent amplitude, i.e., ∂tγ = (−iϕ − κ
2 )γ − iη.

With the solution of the photonic state, which is given by

γ = η

ϕ − i κ
2

(e−iϕt−(κ/2)t − 1), (32)

we determine the mean and the variance of the quadrature by
inserting γ from Eq. (32) into Eq. (24). In the short-time limit
κt � 1, we obtain the following sensitivity:

�2θ 
 1

2n̄κ (ϕ′t )2

ϕ2 + κ2

4

ϕ2
, (33)

where n̄κ = 2 η2

ϕ2+ κ2
4

is the time-averaged number of photons.

In the opposite limit, when κt � 1, but still t � τc, we have
γ 
 − η

ϕ−i κ
2
. This gives the sensitivity from the mean quadra-

ture:

�2θ = 1

n̄κϕ′2

(
ϕ2 + κ2

4

)3

(
ϕ2 − κ2

4

)2 . (34)

Similarly to Eq. (29), the presence of ϕ2 in the numerator
compensates for the scaling of ϕ′2 with the number of qubits
and thus the collective effect is absent.

Adapting the approach from Eqs. (25)–(27) to the presence
of photon loss, we determine the sensitivity from the measure-
ment of Ĵz(t ) [see Eq. (26)]:

χ = 1

2
c2n̄κ

[
t + 1 − e−κt

κ
− 1

ϕ2 + κ2

4

× [κ − e−κt/2κ cos(ϕt ) + 2e−κt/2ϕ sin(ϕt )]

]
.

(35)

When κt � 1, the error propagation formula reproduces
Eq. (27) with n̄ replaced by n̄κ , namely,

�2θ 
 1

t2

1

N

1

n̄2
κ

1

c′2
2

. (36)

In the limit κt → ∞, we obtain the sensitivity

�2θ 
 1

t2

1

N

1

n̄2
κ

1(
a′

2
2 − ϕϕ′

ϕ2+ κ2
4

)2 . (37)

The solutions presented here are compared with numerical
calculations in Figs. 1 and 2. To illustrate the usefulness of
the formulas we derived, we take, as the initial state, the
vacuum state of the photons together with N = 20 qubits
pointing in the z direction, and, setting the unit of frequency
to |�c|, the other parameters we consider are: c1 = −0.5,
c2 = −0.2, �c = −1, c′

1 = c′
2 = 1, η = 8, and κ = 0.3, so

that both oscillations and collapse are visible. Here, we also
assumed for simplicity that θ is dimensionless. In this case,
the important timescale is given by τc|�c| = 2.24. Estimation
from the mean quadrature agrees perfectly with the analytical
expression presented in this section, recovering both collapse
and revival. On the other hand, the estimation from the qubits
deviates once the initial oscillations are damped, which is
when t > τc.

The results of Eqs. (33) and (37), show that the collective
scalings of the sensitivity with the number of photons and
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FIG. 1. Dynamics and sensitivity for the photonic subspace. The
average value of the quadrature X̂φ for φ = 0 (top) and inverse of
the error propagation formula (bottom) for quadrature as a function
of t |�c|; the axes are in dimensionless units. Black points represent
results of numerical calculations, while the red solid line stands
for the analytic solution. With the unit of frequency set to |�c| we
consider the following parameters: N = 20, c1 = −0.5, c2 = −0.2,
�c = −1, c′

1 = c′
2 = 1, η = 8, and κ = 0.3, while the initial state

consists of a vacuum state of the photons together with all qubits
pointing in the z direction.

qubits can be retained in the presence of losses for both
estimation strategies.

2. Incoherent regime

We now turn to the incoherent regime where the condition
from (21) does not hold. In this case, we solve the same
equation for the coherent amplitude γm as above, this time in
each subspace of fixed m. We obtain

γm = η

ωm − i κ
2

(e−iωmt−κt − 1). (38)

Although an analytical expression for the sensitivity is not
available in general, a closed formula for �θ from the quadra-
ture measurement can be found in some regimes, which
provides insight into the scalings.

First, taking the limit of large times κt � 1 and as-
suming that κ can be neglected in comparison to ωm for
all m, we get γm = −η/ωm. We can now calculate the
mean number of photons using Eq. (20), and similarly
the two lowest moments of the quadrature with Eqs. (30),
yielding 〈X̂φ〉 = − cos(φ/2)

∑
m C2

mη/ωm and 〈X̂ 2
φ 〉 = 1/4 +

cos2(φ/2)〈n̂〉. Now, if 〈n̂〉 � 1 and ωm � η for those m’s

FIG. 2. Dynamics and sensitivity for the qubit subspace. The
average value of the operator Ĵz (top) and inverse of the error prop-
agation formula (bottom) for Ĵz as a function of t |�c|; the axes are
in dimensionless units. Black points represent results of numerical
calculations, while the red solid line stands for the analytic solution
valid when t < τc = 2.24 |�c|−1. Parameters used for calculations
are the same as in Fig. 1.

where Cm are significantly nonzero, we have 〈X̂φ〉 � 〈n̂〉 and
〈X̂ 2

φ 〉 
 cos2(φ/2)〈n̂〉, and thus �2X̂ 
 cos2(φ/2)〈n̂〉. The er-
ror propagation formula then yields the shot-noise scaling
with the photon number and the enhanced scaling with the
number of qubits:

�2θ = 〈n̂〉(∑
m C2

m
η

ω2
m
ω′

m

)2 ≈ η2

N2c′2
1 〈n̂〉 , (39)

where in the last step we approximated ω′
m = c′

1N − c′
2m ≈

c′
1N .

In the next section, we use our results to calculate the
sensitivity of the estimation of the gravitational acceleration
in a realistic setting.

IV. APPLICATION TO GRAVIMETRY

Here we offer a concrete example where the cooperative
enhancement of the sensitivity can be exploited to measure
precisely the gravitational acceleration.

Specifically, we consider an optical cavity with resonance
frequency ωc, driven by a laser with a strength η and fre-
quency ωl , far detuned from an electronic transition of atoms
(with resonance frequency ωa), i.e., �a = ωl − ωa is by far
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FIG. 3. The scheme of a hybrid light-matter system used as a
gravitational sensor. The standing wave (yellow beam) of the cavity
formed between two mirrors (gray) modifies the tunneling barrier
between the two wells (blue) formed by the trapping light (blue
arrows). The cavity is driven by an external laser (see the main text
in Sec. IV), and the outgoing light can be analyzed in a homodyne
detector.

the largest scale, so that the excited state can be adiabati-
cally eliminated. The atoms are trapped in an optical lattice,
which has the same wave vector k as the cavity mode has
in the cavity-axis direction. The cavity mode is chosen to be
the TEM00 with a broad Gaussian envelope in the direction
transverse to the cavity axis, such that the transverse spatial
variation (with characteristic scale w0; see below) is negligible
over the length of the lattice. The cavity-Hubbard model cor-
responding to this configuration is derived in [84]. In order to
implement an N-qubit Hamiltonian, we include an additional
superlattice modulation along the cavity axis and increase the
lattice depth in the transverse direction, such to create an array
of decoupled double wells, as depicted in Fig. 3. In this case,
since the cavity model couples equally to each double well,
the system’s Hamiltonian simplifies to

Ĥ = Ĥl + Ĥa + Ĥa+l, (40)

where

Ĥl = −�cn̂ + η(â + â†), (41a)

Ĥa = ωJ Ĵx, (41b)

Ĥa+l = (U0J0N̂ + 2U0JĴx )n̂, (41c)

where the collective angular momentum operators

Ĵx = 1

2
(b̂†

1b̂2 + b̂2b̂†
1), (42a)

Ĵy = 1

2i
(b̂†

1b̂2 − b̂2b̂†
1), (42b)

Ĵz = 1

2
(b̂†

1b̂1 − b̂†
2b̂2), (42c)

are composed of the annihilation operators b̂1,2 of the left
(right) mode of a double well. The hopping rate within a given
double well takes the standard form

ωJ = −2
∫

dx w(x − x1)

(
− 1

2m

d2

dx2
+ cos2 (kx)

)

× w(x − x2), (43)

with w(x − x1,2) being the Wannier-like states localized at
the corresponding site of the double well. The atom-cavity
coupling constants U0J0 = c1 and 2U0J = c2 depend on the

dispersive shift of the cavity frequency per atom U0 = �2
R

�a
,

where �R is the vacuum Rabi frequency corresponding to the
cavity mode, as well as on the overlap integrals

J0 =
∫

dx|w(x − x1,2)|2 cos2 (kx) (44)

and

J =
∫

dx w(x − x1) cos2 (kx)w(x − x2). (45)

The linear gravitational potential Vgrav(x) = mgx is di-
rected along the cavity axis (see Fig. 3 for the schematic
representation of the setup) and has a twofold impact on the
system. First, it modifies the Hamiltonian parameters given by
the overlap integrals by shifting the double-well minima x1,2,
i.e.,

w(x − x1,2) → w(x − x1,2 + x0), (46)

where x0 = g/ω2
x and ωx is the oscillator frequency corre-

sponding to the harmonic part of the potential around a given
site of the double well. Second, it adds an energy-imbalance
term δĴz to the Hamiltonian, where

δ =
∫

dx Vgrav(x)[|w(x − x1)|2 − |w2(x − x2)|2]. (47)

However, for the parameters considered below, δ is small
enough for this term to be neglected. We thus see that the
setup considered allows one to implement the desired model
of Eq. (1).

In order to provide a realistic estimate for the sensitivity
of the measurement of g, we use parameters corresponding to
the current experiment in Zurich [85]. We take a cavity with
finesse F = 2.08×105, length L = 2.45 mm, the Gaussian
envelope width w0 ∼ 50 μm, and loss rate κ = 147×2π kHz.
Setting the distance between the wells D = λ/2, with the
wavelength of the cavity mode λ = 785 nm [85]. By choosing
a lattice depth of 57 kHz we get ωx = 2π×18.2 kHz. We
choose 87Rb atoms and the detuning from the atomic tran-
sition �a = −1.97 GHz, which gives c1 = −66.6 kHz and
c2 = −3.3 kHz. The derivatives of these two coefficients with
respect to parameter x0 are c′

1 = 3.9 GHz
m and c′

2 = 192 MHz
m .

With N ≈ 106 atoms, the renormalized cavity detuning ϕ

can be tuned to 9.04 MHz (the bare detuning being �c =
−66.6 GHz), giving the mean number of photons n̄ 
 137
for η = 100 MHz. If t > 1/κ , and when the input state of
atoms is the coherent spin state [see Eq. (12)], the formula
from Eq. (39) yields the precision per shot �g = 6×10−1g.
Such sensitivity can be reached within a measurement time
on the order of κ: �g

g ∼ 6.25×10−4 1√
Hz

. If we use N ≈ 107

atoms instead, the same setup can be adjusted by changing the
bare detuning to �c = −666.2 GHz. The normalized cavity
detuning ϕ is tuned to 25.4 MHz, giving the mean number
of photons n̄ 
 20 for η = 100 MHz. For t > 1/κ we obtain
then �g = 2.1×10−1g and �g

g ∼ 2.22×10−4 1√
Hz

.
In order to make our predictions even more realistic, the

model could be refined, most notably including atomic mul-
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timode effects and limitations in the detection efficiency. At
this stage we can already claim that the protocol considered
should be less sensitive to these effects than protocols relying
on reaching the genuine, i.e., entanglement based, Heisenberg
scaling [86].

V. CONCLUSIONS

We have shown that a hybrid system of matter and light can
act as a sensing device in which the cooperative effects play
a prominent role. These effects generically enhance the preci-
sion by improving the scaling with the number of particles in
both subsystems.

By considering a fundamental model of N qubits coupled
to a single electromagnetic mode, we showed that the preci-
sion in estimating the light-matter coupling constant exhibits a
double-Heisenberg scaling �θ ∝ 1/(Nn), where n is the num-
ber of photons. This scaling requires the use of an entangled
state of matter or a nonclassical state of photons. However,
even for classical states a Heisenberg scaling with the number
of qubits or photons can be reached.

To illustrate the usefulness of our hybrid light-matter sen-
sor, we proposed a specific, experimentally feasible scheme in
which a Bose-Einstein condensate is trapped in a double-well
optical lattice within an optical cavity. We predicted that, even
taking into account photon loss, the sensor can potentially
determine the gravitational acceleration g with a relative preci-
sion reaching �g

g ∼ 2.22×10−4 Hz−1/2. Such a precision can
still be improved by employing nonclassical states of matter
and light.
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APPENDIX A: EVOLUTION OPERATOR

We now derive the expression for the evolution operator.
The Hamiltonian from Eq. (1) can be written as

Ĥ = ω̂â†â + η(â + â†), (A1)

where ω̂ = c1N − �c + c2Ĵx. Now we observe that

Ĥ = ω̂D̂†(β̂ )â†âD̂(β̂ ) − ηβ̂, (A2)

where β̂ = ηω̂−1, while

D̂(β̂ ) = eβ̂â†−β̂†â (A3)

is the generalized displacement operator. Since [ω̂, β̂] = 0, we
can write the evolution operator as follows:

Û (t ) = D̂†(β̂ )e−iω̂t â†âD̂(β̂ )eiηt β̂ . (A4)

The initial state has a general form

�̂(0) =
∞∑

n,n′=0

N/2∑
m,m′=−(N/2)

�mm′
nn′ |n, m〉〈n′, m′|, (A5)

where |n, m〉 denoted a photonic Fock state and an eigenstate
of the atomic operator Ĵx, namely,

|n, m〉 = |n〉 ⊗ |m〉, â†â|n〉 = n|n〉, Ĵx|m〉 = m|m〉.
(A6)

The action of the evolution operator (A4) on the density ma-
trix from Eq. (A5) gives

�̂(t ) =
∑
n,n′
m,m′

�mm′
nn′ D̂†(βm)e−iωmt â†âD̂(βm)eiη(βm−βm′ )t

× |n, m〉〈n′, m′|D̂†(βm′ )eiωm′ t â†âD̂(βm′ ), (A7)

where γm = βm(e−iωmt − 1), ωm = −�c + c1N + c2m, and
βm = η

ωm
. Note that

|�1〉 ≡ D̂(β )|n〉 = 1√
n!

D̂(β )(â†)n|0〉

× 1√
n!

D̂(β )(â†)nD̂†(β )D̂(β )|0〉 = 1√
n!

(â†−β )n|β〉,

(A8)

as β ∈ R. With this expression at hand, we can take the next
step and act with the free-evolution term

|�2〉 ≡ e−iωâ†ât |�1〉 = 1√
n!

e−iωâ†ât (â† − β )n|β〉

= 1√
n!

e−iωâ†ât (â† − β )neiωâ†ât e−iωâ†ât |β〉

= 1√
n!

(â†e−iωt − β )n|βe−iωt 〉. (A9)

In the last step, we add the second displacement operator, to
get

D̂†(β )|�2〉 = 1√
n!

D̂†(β )(â†e−iωt − β )n|βe−iωt 〉

= 1√
n!

D̂†(β )(â†e−iωt − β )nD̂(β )D̂†(β )|βe−iωt 〉

= 1√
n!

e−iβ2 sin(ωt )[(â†+β )e−iωt − β]n|βe−iωt− β〉

= 1√
n!

e−iβ2 sin(ωt )(â†e−iωt + γ )n|γ 〉, (A10)

where γ = β(e−iωt − 1). We again use the displacement op-
erator

(â†e−iωt + γ )n|γ 〉 = 1√
n!

(â†e−iωt + γ )nD̂(γ )|0〉

= D̂(γ )D̂†(γ )(â†e−iωt + γ )nD̂(γ )|0〉
= D̂(γ )[(â† + γ ∗)e−iωt + γ ]n|0〉. (A11)

But note that

γ ∗e−iωt + γ = β(eiωt − 1)e−iωt + γ

= β(1 − e−iωt ) + γ = −γ + γ = 0. (A12)
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Therefore, we obtain the final expression

D̂†(β )e−iωâ† ât D̂(β )|n〉 = eiβ2 sin(ωt )

√
n!

D̂(γ )(â†e−iωt )n|0〉

= e−inωt e−iβ2 sin(ωt )D̂(γ )|n〉. (A13)

We now plug this result into Eq. (A7) and obtain

�̂(t ) =
∑
m,m′

CmCm′ |γm〉〈γm′ | ⊗ |m〉〈m′|

× eiη(βm−βm′ )t e−i[β2
m sin(ωmt )−β2

m′ sin(ωm′ t )] (A14)

as used in the main text.

APPENDIX B: DERIVATION OF THE GENERATOR
ĥ FROM EQ. (7)

The generator of the interferometric or metrological trans-
formation is equal to

ĥ = i(∂θÛ )Û †. (B1)

The derivative over the parameter will hit all the parameter-
dependent parts of the evolution operator. For instance,

∂θ β̂ = −ηω̂−2 ∂ω̂

∂θ
= − β̂2

η

∂ω̂

∂θ
. (B2)

All other steps leading to Eq. (7) follow immediately from the
properties of the displacement operator.

APPENDIX C: SENSITIVITIES IN THE η = 0 CASE

We now separately consider the no-pump case where ini-
tially light is in a coherent state |α〉, and derive the expressions
for the error propagation formula for atoms and photons only.
The complete density matrix in such case is given by

�̂(t ) =
∑
m,m′

�
(A)
m,m′ |γm〉〈γm′ | ⊗ |m〉〈m′|, (C1)

where γm = αe−iωmt [note that �(A)
m,m′ = CmCm′ , so �̂(t ) is pure].

However, the density-matrix representation is useful for the
calculation of the reduced matrices. This is the starting point
for the discussion in the remaining part of this Appendix.

1. Error propagation formula for atoms

We first calculate the atomic density matrix by tracing out
the photonic degree of freedom. We obtain

�̂A = Tr[�̂(t )]L =
N∑

m,m′=0

�
(A)
m,m′ 〈γm′ |γm〉|m〉〈m′|

=
N∑

m,m′=0

�
(A)
m,m′e−α2{1−cos [δ(m−m′ )]}

× eiα2 sin [δ(m−m′ )]|m〉〈m′|, (C2)

where δ = c2t . To calculate the error propagation formula, we
note that

Ĵz|m〉 = 1

2

[√(
N

2
+ m + 1

)(
N

2
− m

)
|m + 1〉

+
√(

N

2
+ m

)(
N

2
− m + 1

)
|m − 1〉

]
(C3)

and analogically for Ĵ2
z . Therefore we obtain

〈Ĵz〉 = N

2
en(cos δ−1) cos(n sin δ), (C4a)

〈
Ĵ2

z

〉 = N

8
(N − 1)[en(cos 2δ−1) cos(n sin 2δ) + 1] + N

4
,

(C4b)

∂θ 〈Ĵz〉 = −N

2
nc′

2ten(cos δ−1) sin [δ + n sin δ]. (C4c)

These expressions, plugged into the error propagation for-
mula (15) give

�2θ = 1

Nn2(c′
2t )2

�2Ĵz
1
4 e2n(cos δ−1) sin2 [δ + n sin δ]

. (C5)

This can be optimized by setting δ = k×2π, k ∈ N, which
gives Eq. (15).

2. Error propagation formula for photons

We now take the state from Eq. (C1) and trace out the
atomic degree of freedom to obtain

�̂L = Tr[�̂(t )]A =
N∑

m=0

�(A)
m,m|γm〉〈γm|, (C6)

i.e., the state is an incoherent mixture of coherent states. From
this representation of the photonic state, we immediately ob-
tain

〈X̂ 〉 = 1

2

∑
m

C2
m

(
γme−i(φ/2) + γ ∗

mei(φ/2))

= α

2

∑
m

C2
m

(
e−i[ωmt+(φ/2)] + γ ∗

mei[ωmt+(φ/2)]
)

= α cos

(
ϕt + φ

2

)
cosN

(
δ

2

)
, (C7)

where in the last step we used the explicit expression for Cm

from Eq. (12). In a similar fashion, we obtain

〈X̂ 2〉 = 1

4
+

∑
m

C2
m

(
γ 2

me−iφ + γ ∗2
m eiφ + 2|γm|2)

= 1

4
+ α2

2
+ α2

2
cos(2ϕt + φ) cosN (δ) (C8)

for the mean of its square.
From these two results, the variance of X̂ can be obtained

and minimized with respect to δ. By picking δ = k×2π, k ∈
N, we obtain

〈(�X̂ )2〉 = 1
4 (C9)

and the error propagation formula gives the sensitivity equal to

�2θ = 1

t2

1

4n

1

ϕ′2 sin2(ϕ + φ/2)
. (C10)

Once we set sin2(ϕ + φ/2) = 1, we recover Eq. (C10).
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APPENDIX D: SENSITIVITIES FOR η �= 0

The photonic quadrature is

X̂φ = 1
2

(
âe−i(φ/2) + â†ei(φ/2)), (D1)

and using Eq. (30) and Eq. (A14) we obtain the mean and the
mean square

〈X̂φ〉 =
∑

m

C2
m

η

ωm

[
cos

(
ωmt + φ

2

)
− cos

(
φ

2

)]
, (D2a)

〈
X̂ 2

φ

〉 =
∑

m

C2
m

η2

ω2
m

[
cos

(
ωmt + φ

2

)
− cos

(
φ

2

)]2

+ 1

4
.

(D2b)

In the oscillatory regime and when the approximation from
(21) holds, the dependence of ωm on m can be dropped, giving

〈X̂φ〉 

[

cos

(
ϕt + φ

2

)
− cos

(
φ

2

)]
η

ϕ
. (D3a)

〈
X̂ 2

φ

〉 
 〈X̂φ〉2 + 1

4
. (D3b)

The sensitivity is inversely proportional to the square of the
derivative of 〈X̂φ〉, equal to

∂〈X̂φ〉
∂θ

= − η

ϕ2
ϕ′

[
cos

(
ϕt + φ

2

)
− cos

(
φ

2

)

+ sin

(
ϕt + φ

2

)
ϕt

]
, (D4)

thus by choosing φ in such a way that ϕt + φ

2 = π
2 +kπ, k ∈N,

we obtain

�2θ 
 1

t2

1

2n̄

1

ϕ′2 . (D5)

For atoms, the mean-field approximation described in the
main text gives with

�2θ = �2Ĵz(t )

(∂θ 〈Ĵz(t )〉)2
= 1

N

1

(χ ′)2
, (D6)

where

χ (t ) = c2

∫ t

0
dτ |γ |2 = 2c2t

η2

ϕ2
[1 − sinc(ϕt )]. (D7)

For those sufficiently late instants of time t , when sinc(ϕt ) �
1, the error propagation formula gives

�2θ = �2Ĵz(t )

(∂θ 〈Ĵz(t )〉)2
= 1

t2

1

N

1

n̄2

1

(c′
2)2

1(
1 − 2 c2

c′
2

ϕ′
ϕ

)2 . (D8)

In the collapse regime, the cosine functions cancel out in
Eqs. (D2), while the cosine squared averages to 1/2, giving

〈X̂φ〉 
 −η

ϕ
cos

(
φ

2

)
, (D9a)

〈
X̂ 2

φ

〉 
 η2

ϕ2

[
1

2
+ cos2

(
φ

2

)]
+ 1

4
. (D9b)

The variance is bigger than in the oscillatory regime and
the mean grows with time. The sensitivity at φ = 0 is

�2θ =
1
2

η2

ϕ2 + 1
4

η4

ϕ4
ϕ′2
ϕ2


 1

n̄ ϕ′2
ϕ2

, (D10)

which is 2t2ϕ2 worse than Eq. (D5).
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[17] L. Salvi, N. Poli, V. Vuletić, and G. M. Tino, Phys. Rev. Lett.
120, 033601 (2018).

[18] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A.
Kasevich, Nature (London) 529, 505 (2016).

[19] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N.
Behbood, and M. W. Mitchell, Phys. Rev. Lett. 109, 253605
(2012).

[20] A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N.
Kjaergaard, and E. S. Polzik, New J. Phys. 12, 065032 (2010).

[21] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N.
Kjærgaard, and E. S. Polzik, Proc. Natl. Acad. Sci. USA 106,
10960 (2009).

023315-10

https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature11023
https://doi.org/10.1103/PhysRevLett.78.3221
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1103/PhysRevLett.45.75
https://doi.org/10.1364/JOSAB.2.001830
https://doi.org/10.1103/RevModPhys.68.1
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1038/nphys1304
https://doi.org/10.1126/science.1253258
https://doi.org/10.1238/Physica.Topical.076a00127
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1126/science.1078446
https://doi.org/10.1038/s41586-020-3006-1
https://doi.org/10.1088/2058-9565/ab455d
https://doi.org/10.1103/PhysRevLett.120.033601
https://doi.org/10.1038/nature16176
https://doi.org/10.1103/PhysRevLett.109.253605
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1073/pnas.0901550106


COOPERATIVELY ENHANCED PRECISION OF HYBRID … PHYSICAL REVIEW A 104, 023315 (2021)

[22] J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, Phys. Rev.
Lett. 83, 1319 (1999).

[23] I. Teper, G. Vrijsen, J. Lee, and M. A. Kasevich, Phys. Rev. A
78, 051803(R) (2008).

[24] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod.
Phys. 82, 1041 (2010).

[25] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Phys. Rev.
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