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Pairwise interactions of ring dark solitons with vortices and other rings: Stationary
states, stability features, and nonlinear dynamics
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In the present work, we explore analytically and numerically the coexistence and interactions of ring dark
solitons (RDSs) with other RDSs, as well as with vortices. The azimuthal instabilities of the rings are explored
via the so-called filament method. As a result of their nonlinear interaction, the vortices are found to play a
stabilizing role on the rings, yet their effect is not sufficient to offer complete stabilization of RDSs. Nevertheless,
complete stabilization of the relevant configuration can be achieved by the presence of external ring-shaped
barrier potentials. Interactions of multiple rings are also explored, and their equilibrium positions (as a result of
their own curvature, the external trap, and their tail-tail interactions) are identified. In this case too, stabilization
is achieved via multiring external barrier potentials.
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I. INTRODUCTION

Over the past two and a half decades, Bose-Einstein con-
densation (BEC) [1–3] has served as a pristine example where
numerous exciting features of nonlinear dynamics of coherent
solitary wave structures can be studied and experimentally
observed. Solitary wave patterns, however, are not unique
to BECs, but rather appear generically in numerous other
physical contexts including, most notably, nonlinear optics
[4], plasma physics [5] and water waves [6]. In the atomic
physics setting, while BEC is known to be a fundamental
phenomenon connected, e.g., to superfluidity and supercon-
ductivity [7], BECs were only realized 70 years after their
prediction [8–10] and their broad relevance and impact were
rapidly acknowledged [11,12]. Furthermore, the experimental
observation of vortices [13,14] and of highly ordered, trian-
gular vortex lattices (predicted in Ref. [15]) in BECs [16]
were found to be connected with the Kosterlitz-Thouless (KT)
phase transition [17,18]. This transition has, indeed, found one
of its most canonical realizations in the context of BECs [19].

In addition to being at the epicenter of some of the most
important physical notions of the past two decades, the co-
herent structures considered herein have also been recognized
as being of potential relevance to applications. For instance,
solitary waves have been argued to provide the potential
for improved sensitivity in interferometers [20] and precise
force-sensing applications. Moreover, vortices may play a
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role similar to spinning black holes in the so-called “analog
gravity.” This allows us to observe, in experimentally con-
trollable environments, associated phenomena such as the
celebrated Hawking radiation [21], or simpler ones such as
super-radiant amplification of sonic waves scattered from
black holes [22]. It has also been recently argued that vor-
tices of a rotating BEC can collapse towards the generation
of supermassive black holes [23], and that supersonically
expanding BECs can emulate properties of an expanding uni-
verse in the laboratory [24].

Dark solitons have been of extensive interest within non-
linear optics [25] and over the last 20 years they have also
constituted a focal point in atomic BECs [26]. Vortices, on
the other hand, have attracted considerable attention broadly
within nonlinear field theory [27], more specifically in nonlin-
ear optics [28] and especially in atomic BECs [29,30]. These
two structures share an important link: when dark solitons are
embedded in higher dimensions, they are prone to transverse
(snaking) instability [31,32], and upon undulations, eventually
break up, leading to spontaneous emergence of vortices. This
feature has been experimentally demonstrated both in optics
[33] and in BECs [34].

Since the early work of Ref. [34], there have been numer-
ous proposals and associated experimental efforts for creating
vortices in BECs. These involved, among others, stirring the
BEC [14,35], dragging obstacles through it [36,37], using
the phase imprinting method [38], and exploiting nonlinear
interference [39]. The work of Ref. [40] enabled the use of
the Kibble-Zurek (KZ) mechanism to quench a gas of atoms
rapidly across the BEC transition, and “freeze” phase gradi-
ents resulting in the formation of vortices. Subsequently, a
technique was introduced that enabled the dynamical visual-
ization of vortices during an experiment [41]. This, in turn,
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led to a detailed study of effective particle models that were
used to better understand and predict various aspects of vortex
dynamics observed in the experiments [42–46].

It is interesting to explore the interaction of these two
fundamental entities that emerge in self-repulsive atomic con-
densates (and also, similarly, in defocusing nonlinear optical
media), namely, the dark soliton stripes and the vortices.
Relevant studies, concerning the scattering of linear and non-
linear waves (i.e., dark solitons) by an optical vortex, were
performed some time ago [47,48] in the context of nonlinear
optics. In these works, the scattering process was identified
as an optical analog of the Aharonov-Bohm scattering, due to
a classical analogy between the Aharonov-Bohm effect [49]
and the scattering of a linear wave by a vortex [50]. The works
[47,48] focused on the scattering of a planar dark soliton stripe
from a vortex and the resulting asymmetry of the scattered
wave. While they observed the subsequent transverse instabil-
ity, they did not try to quantify this type of phenomenology.
Our aim here is to provide some controlled settings where the
soliton-vortex interaction can be quantified. Specifically, we
will consider the case of the ring dark soliton (RDS), predicted
to occur in BECs in Ref. [51] (see also Refs. [52,53]), which
has been an object of considerable study in its own right (see
the reviews [26,54] and references therein). Various features
of this structure have recently been explored, including its
modes of instability, via the so-called “filament method” [55],
its potential stabilization via external potentials [56] and its
extension to higher dimensions [57].

The main purpose of this work is to explore the interplay
of the RDS with the vortex, as well as with other RDSs. Part
of the scope of this work is to examine whether, e.g., the
presence of the vortex can affect the stability of the RDS
and accelerate or avert (or delay) the transverse instability.
This interaction is an especially interesting one because it is
effectively one “across dimensions,” as we are exploring the
interplay of an effective point particle (i.e., the vortex) with
a quasi one-dimensional (1D) structure (the RDS). Indeed,
our theoretical analysis leads to the conclusion that the effect
of the vortex is in the direction of stabilizing the RDS and,
the higher the vortex charge, the stronger this stabilization
effect. Nevertheless, this effect unfortunately weakens over
increasing chemical potential and becomes negligible in the
Thomas-Fermi (TF) large-density (large chemical potential)
limit. We also explore the case where additional RDSs may
exist. This is analogous to what was done, e.g., for dark
solitons in quasi-1D settings [26,54], as well as for multiple
solitonic stripes, a case studied more recently in Ref. [58].
Here, we find the equilibrium positions arising from the in-
terplay of the RDSs with the confining potential and with
each other. Finally, for both settings, we propose a method
of stabilizing the structures of interest, relying on the use
of external ring-shaped barrier potentials, which may enable
their experimental realization. It is important to highlight here
a report of experimental realization of such structures [59],
which suggests they can be observed not only in a single-
but also in a multicomponent BEC (in the form of dark-bright
soliton states [54]).

Our presentation is structured as follows. In Sec. II we
introduce the model and describe its basic features, while
Sec. III is devoted to our analytical results; these concern

existence and stability results for a RDS with a central vor-
tex, as well as multiple RDS states. In Sec. IV we present
our numerical results, while in Sec. V, we summarize our
conclusions and discuss possible relevant themes for future
studies.

II. MODEL AND SETUP

Our starting point, in both our analytical and numeri-
cal considerations, is the following dimensionless Gross–
Pitaevskii equation (GPE) in two dimensions:

i
∂u

∂t
= −1

2
∇2u + Vu + |u|2u, (1)

where u(x, y, t ) is the macroscopic wave function, and V =
(1/2)�2r2 (with r2 ≡ x2 + y2) is the radially symmetric har-
monic potential; for the relevant adimensionalization, see,
e.g., Ref. [54]. It is convenient to set � = 1 by scaling, with-
out loss of generality. Using u(x, y, t ) = u0(x, y) exp(−iμt ),
with μ being the chemical potential, one obtains the time-
independent GPE for u0(x, y):

μu0 = −1

2
∇2u0 + Vu0 + |u0|2u0. (2)

In this work, we focus on multiple RDS structures and also
on structures with a nesting central vortex of arbitrary charge.
Interestingly, these types of structures have their respective
linear limits as the linear two-dimensional (2D) quantum har-
monic oscillator states in polar coordinates. Specifically, the
normalized linear states take the following form (see, e.g.,
Ref. [60]):

ϕnr ,nθ
(r, θ ) =

√
nr!

π (nr + |nθ |)!L|nθ |
nr

(r2)r|nθ |e−�r2/2einθ θ , (3)

where L is the associated Laguerre polynomial. The cor-
responding eigenenergies are Enr ,nθ

= (2nr + |nθ | + 1)�,
where nr, |nθ | = 0, 1, 2, . . .. The two quantum numbers, in
turn, represent the number of circular nodes, and the angular
2π -phase winding number or the topological charge.

The above states are particularly useful for our numerical
procedure identifying such states. More concretely, our nu-
merical simulation includes identifying these stationary states,
studying their stability spectra via the so-called Bogolyubov-
de Gennes (BdG) analysis [54], and, finally, identifying their
dynamics. The states are continued in chemical potential from
the respective linear limits to the large-density, TF regime.
Because of the symmetry of the states up to a topological
charge, we compute the stationary states by solving the 1D
radial equation. The BdG spectrum is then computed by using
the so-called partial-wave method [61,62]. This consists of the
decomposition of the form

u(x, y, t ) = e−iμt eiSθ {u0(r)+[am(r)eimθ eλt+b∗
m(r)e−imθ eλ∗t ]},

(4)

and obtaining a radial eigenvalue problem for the eigenvec-
tor pair (am(r), bm(r)) in the case of each, integer, angular
(Fourier) mode, whose eigenvalues can be collected to for-
mulate the full spectrum of (generally complex) eigenvalues
λ. Here, S plays the same role as the quantum number nθ
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in the linear case mentioned above, representing the topo-
logical charge. In this work, we collect the low-lying modes
m = 0, 1, 2, . . . , 10 [55]. It is worth mentioning that this is
much more efficient than a direct 2D computation, allowing us
to study stationary states deep in the TF regime with improved
accuracy. When a full 2D state is needed, e.g., for dynamics, it
is initialized using the cubic spline interpolation. Next, before
focusing on these numerical results, let us discuss reduction
methods enabling us to understand the effective behavior of
rings in the presence of vortices, as well as in the presence of
other rings.

III. ANALYTICAL RESULTS

A. Angular instability of a ring dark soliton with a central
vortex

In the case of a ring harboring a vortex in its center we will
employ the filament method of Ref. [55]. The filament method
relies on assuming that the ring’s transverse (radial) profile
remains close to a (quasi-one-dimensional) dark soliton with
a radial location R that is allowed to vary transversely, thus
capturing the dynamical undulations of the rings. Therefore,
as long as the transverse profile of the ring is closely ap-
proximated by a dark soliton—which is valid as long as the
filamentary ring does not (i) break down into vortex pairs
under strong undulations or (ii) collide with another ring—the
filament method provides a dynamical reduction to a single
dynamical variable R(t, θ ) prescribing the radial location of
the ring as a function of time and the polar angle. The starting
point of the filament method is the Hamiltonian (energy) of
the system [55]:

H =
∫∫ {

1

2
|∇u|2 + 1

2
[μ − V (r) − |u|2]2

}
dxdy. (5)

We use the ansatz

u = e−iμt eiSθw,

w ≡ iRt + A tanh [A(r − R)], (6)

where R = R(t, θ ) is the ring radius, Rt ≡ ∂R/∂t is the radial
velocity of the ring, and A is the ring’s depth, given by

A = [
μ − V (R) − R2

t

]1/2
.

The above ansatz combines the radial analog of the dark soli-
ton, represented by the function w, and a vortex, represented
by a simple phase profile exp(iSθ ) and neglecting the associ-
ated density dip—as is often done in similar methodologies
[29,30].

Performing the relevant integrals, we obtain that, up to a
constant C, the Hamiltonian becomes

H =
∫ [

4

3
RA3

(
1 + R2

θ

2R2

)
− S2A

R

]
dθ + C. (7)

The dynamics of the ring is determined by the conservation of
energy, i.e., setting Ht = 0. Through lengthy, but straightfor-
ward calculations, similar to those presented in Ref. [55], we

obtain the following equation for the ring radius R:

Rtt

(
−3RA + 3

4

S2

AR

)
+ Rθθ

(
−A3

R

)
+ A3

− RA
3

2
V ′(R) + 3

4
S2

(
V ′(R)

2AR
+ A

R2

)
= 0. (8)

Considering the case of a parabolic trap and motion around
the R = 0 equilibrium such that R2

t � μ − V (R), one has

V (R) = 1

2
�2R2, A2 ∼ μ − V (R),

and, hence, Eq. (8) can be rewritten as

Rθθ + f (R)Rtt + g(R) = 0, (9)

where

f (R) = 3
R2

A2
− 3

4

S2

A4
,

g(R)

R
= −1 + R2A−2 3

2
�2 − 3

4
S2

(
�2

2A4
+ A−2

R2

)
.

Let R0 be the root of g, i.e., g(R0) = 0. Then, using the
ansatz

R = R0 + εeinθ eiωt ,

and substituting in Eq. (9), we linearize (for ε small) around
R0 and obtain

ω2 = − n2

f (R0)
+ g′(R0)

f (R0)
.

It is worthwhile to note that, in the absence of the topological
charge (i.e., for S = 0), the above equation reduces to the one
presented in Ref. [55], yet here the expression is systemati-
cally generalized for arbitrary vortex S.

Lastly, for the present considerations, it is possible to ex-
pand the above expressions in the TF limit of large μ. Series
expansions up to two orders then yield

R2
0 ∼ μ

2�2
+ S2

μ
+ O(μ−3), (10)

g′(R0) ∼ 8

3
+ 32

8

S2�2

μ2
,

f (R0) ∼ 2

�2
+ 4S2

μ2
, (11)

and thus finally lead to

ω2 ∼ �2n2

2

(
−1 + 2

S2�2

μ2

)
+ 4

3
�2

(
1 + 2

S2�2

μ2

)
. (12)

It is worthwhile to note that both contributions of S arise
with a positive sign, increasing the value of the squared
eigenfrequency ω2. Recalling that the latter is related to the
corresponding squared eigenvalue according to ω2 = −λ2,
one may conclude that the presence of the topological charge
alleviates the instability of the RDS. Nevertheless, the rele-
vant effect weakens rapidly with increasing chemical potential
and disappears deeply inside the TF limit with μ → ∞. Our
observations below support this feature, showcasing however
that it is not possible for this partial stabilization to “suffice”
towards countering the azimuthal destabilization effects.
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FIG. 1. Typical stationary-state profiles for the ground state, and a number of prototypical solitary wave states with various numbers of
circular (ring) nodes, and a central vortex of various charges. The top panels depict their magnitudes, while the bottom panels depict their
phases, the states here are numerically exact solutions at the chemical potential μ = 40. From left to right, we have the ground state, vortex
states of charges 1, 2, 3, the RDS state, one RDS with a central vortex of charges 1, 2, 3, two, three, and four RDSs, respectively. Multiple
RDSs can also nest a central vortex in the center, yet they are omitted here for clarity. All states are plotted in the (x, y) plane and all quantities
are dimensionless.

B. Multiple ring dark solitons

Equation (10) gives the radius of a single ring which was
derived using a variational approach. In Appendix we use a
solvability condition (Fredholm alternative) to give an alter-
native derivation of this radius. An advantage of the latter
method is that it can be generalized to derive asymptotics for
multiring positions. Multiring solutions are found to asymp-
totically approach the single-ring position r0 as μ → ∞. In
particular, in the Appendix we derive the following asymp-
totic formula estimating the radii positions r± for a two-ring
steady state:

exp (−bl ) = al, r± = r0 ± l/2, (13)

where r0 = ( μ

2�2 )1/2 [as derived in Eq. (A8)] and

a = 3−5/24μ−3/2�2, b =
√

3μ. (14)

The relevant solution can also be written in terms of the Lam-
bert w(η) function, which is defined as the inverse of η(w) =
wew. More specifically, l = (1/b)w(b/a). This is reminiscent
of the corresponding quasi-1D expression for the equilibrium
of two dark solitons in a trap [63] which, in turn, due to
the exponential decay of tail-tail interactions between dark
solitons, is described by a Toda lattice chain [64,65]. Indeed,
the intuitive aspects of this formula reveal the role of the
curvature toward balancing the trap effect within r0 (as for
a single RDS) and the role of intersoliton interaction, in turn,
balancing the effect of the trap via the contribution within l .

The procedure for two rings readily generalizes in a natural
way to any number of rings. Skipping the details, the end-
result is the following formula for N rings:

exp (−bl j ) − exp (−bl j+1) = ax j, j = 1, 2, . . . , N,

where a, b are given in Eq. (14),

r j = r0 + x j, j = 1, 2, . . . , N,

l j = x j − x j−1, j = 2, 3, . . . , N, (15)

l1 = lN+1 = ∞.

For example, take N = 3, μ = 2, and � = 0.15. Then, the
above formulas yield r0 = 6.666, r1 = 4.46, r2 = r0, and r3 =
8.87. Indeed, this again bears the imprint of the curvature and
trap effects balancing via r0 and the RDS interactions and

trap effects balancing via the x j . Here, too, the situation is
reminiscent of the corresponding multisoliton generalization
in the 1D case (where only the intersoliton interaction and the
trap balance each other), as per the relevant discussion, e.g.,
in the review [54].

IV. NUMERICAL RESULTS

Let us follow the same sequence as in the previous section
for the analytical considerations, but now for our numerical
results. Namely, we start by considering a single RDS state
bearing a central vortex, and then move on to the multiple
RDS configurations.

A. A single ring dark soliton with a central vortex

First, some typical stationary states are shown in Fig. 1.
For the single RDS states, the radii of the rings are indeed
approximately independent of the charge S in the TF regime,
in line with the theoretical result. We defer the discussion of
their radii together with the multiring states for clarity and, for
now, we focus on the spectra.

The BdG spectra of the ground state (GS) and the single
vortex (VX) state are shown in Fig. 2. To our knowledge
[29,54], these two structures are likely the only fully robust
states stemming from Eq. (3) for all chemical potentials. The
asymptotic ground state (TF background) excitations are well
known and were analyzed in, e.g., Ref. [54]. These modes
(horizontal dashed gold lines) are in good agreement with
the numerical results. In addition to these modes, the vortex
spectrum bears an anomalous mode whose frequency tends to
0 as μ → ∞. The latter mode corresponds to the frequency
of precession (around the center) that a vortex will execute
if displaced from the trap center [29,54]. It is well known
that vortex states of higher vorticity are subject to instability
[66] (see also Ref. [62]). Indeed, the double-charge (VX2) and
triple-charge (VX3) vortex spectra have a series of additional
low-lying unstable bubbles associated with complex eigen-
value quartets. More generally, when the eigenvalue spectra
are purely imaginary (as for GS and VX), the waveform is
spectrally stable, while when it possesses eigenvalues with
non-negative real parts (as occurs in the bubbles for VX2 and
VX3), it is spectrally and dynamically unstable.
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FIG. 2. (top row) The BdG spectra of the ground state GS, the single-charged vortex state VX, the double-charged vortex state VX2,
and the triple-charged vortex VX3. Stable (imaginary) and unstable (real) modes are depicted in blue and red, respectively. The horizontal
dashed gold lines are the asymptotic ground-state modes (also shown in the last row of panels). The ground state GS and the single-charged
vortex state VX are spectrally stable. (middle and bottom rows) The BdG spectra for ring dark solitons with and without central vortices. In
particular, the panels from left to right correspond to the RDS, RDS+VX, RDS+VX2, RDS+VX3 with central topological charges of 0, 1, 2,
3, respectively. The real (middle row) and imaginary (bottom row) parts are plotted separately for clarity. In addition to the stable ground-state
modes, RDS modes are also present. The filament theory prediction for these RDS modes is depicted using solid horizontal violet and gold
lines, respectively, for the real (unstable) and imaginary (stable) parts.

The results of the RDS series, containing a ring with an
increasing central vorticity, are summarized in the second and
third rows of Fig. 2. The spectrum gets increasingly complex
with increasing topological charge S. Here, we compare the
full numerical results (in blue for the imaginary parts and
red for the real unstable parts) with those predicted by the
effective theory. It is important to recall that the latter has
two contributions. One comes from the corresponding state
above without the ring, and the other concerns the point
spectrum contributed by the vortex-RDS interaction, which
is the one characterized by Eq. (12). While the horizontal
dashed gold lines in Fig. 2 represent the former, the horizontal
solid gold and violet lines of the effective particle picture
developed above aspire to capture the latter. The asymptotic
behavior remains essentially the same as the RDS, in line
with the theoretical prediction that in the large μ case, the
topological charge effect disappears. Overall, it is found that
the central vortex has a rather marginal effect towards stabi-
lization. In fact, in the higher-topological charge cases, the
vortex tends to introduce more instabilities due to the con-
tribution from the multiply charged vortex, i.e., the low-lying
bubbles at the bottom of the states bearing topological charges

S � 2, in line with the classic work of Ref. [66] (see also
Ref. [67]).

Detailed inspection shows the following additional key
features:

(1) These states are stable with respect to perturbations
along the modes m = 0 and 1 for the entire chemical potential
domain studied.

(2) The asymptotic instability growth rates (not counting
the low-lying bubbles) in increasing order are due to the
modes of m = 2, 3, 4, and so on.

(3) The real RDS and the vortical RDS+VX (enclosing
a single-charge vortex) are exponentially unstable (purely
real eigenvalues), while all the higher-order RDS+VX2 and
RDS+VX3 (enclosing respective higher charge vortices) are
oscillatorily unstable (bearing complex eigenvalues).

(4) We find two types of oscillatory instabilities for the
structures that include vortices:

(A) There is a “cascade” of instabilities from the
RDS azimuthal Fourier modes (here shown for relatively
small values of μ as we are using azimuthal modes m =
0, . . . , 10). These instabilities emerge when two purely
imaginary eigenvalues, of opposite energies or Krein
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signature1 [54], traveling in opposite directions (one up
and one down) along the imaginary axis collide and cre-
ate a complex instability quartet. The growth rates (real
parts) for these instabilities monotonically increase and
tend towards our particle picture predictions (see horizon-
tal purple lines in Fig. 2). Indeed, this strongly suggests
that the modes participating in these instabilities are ones
associated with azimuthal modulations ∝einθ , as per the fil-
ament theory analysis provided in Sec. III. This instability
cascade is shared by all the configurations bearing vorticity
in their center.

(B) There is a series of instability “bubbles.” In this
case, a negative Krein signature (see, in particular, the anal-
ysis of Ref. [62]) purely complex eigenvalue (cf. starting at
λ = 4i for RDS+VX2) travels up the imaginary axis as μ

increases and collides successively with downward moving
purely imaginary eigenvalues. These successive collisions
create small-μ windows where the colliding eigenvalue
pairs acquire a nonzero real part and, after a relatively small
increase in μ, return back to the imaginary axis (i.e., back
to stabilization). This negative Krein signature eigenvalue
then continues its course up along the imaginary axis and
collides with another downward moving purely imaginary
eigenvalue creating yet another instability bubble, and so
on. This series of collisions seems to continue indefinitely
(at least for the ranges of μ that we have probed for
μ � 80). We note that this type of instability bubbles is
present for higher vortex charges (i.e., for RDS+VX2 and
RDS+VX3) but they are completely absent for the single-
charge case of RDS+VX, in line with what is known about
the single VX configuration vs VX2 or VX3, as is also
shown in the top panels of Fig. 2.
Finally, we also briefly comment on the linear limit, recall-

ing that this occurs at small μ, where the asymptotic theory
of Eq. (12) is not applicable. As shown in earlier works, the
dominant unstable mode near the linear limit may differ. In
the neighborhood of the linear limit, the RDS is most unstable
due to the m = 2 mode, the RDS+VX due to the m = 3 mode,
and the RDS+VX2 due to the m = 4 mode. However, we
find that this pattern does not persist for yet higher charges,
e.g., the most unstable mode therein for the RDS+VX3 re-
mains the m = 4 mode. In addition, the presence of the charge
in this regime may either accelerate or delay the instabilities
depending on the modes. For example, in the RDS+VX spec-
trum, the m = 3 mode destabilizes almost immediately, while

1In Hamiltonian systems, the Krein signature (or sign) is a topo-
logical notion that remains invariant unless two distinct eigenvalues
collide and degenerate [68]. The Krein sign is responsible for the
fate of eigenvalues under perturbations. While the signature of eigen-
modes vanishes for eigenvalues with a nontrivial real part, the purely
imaginary ones may be subject to two distinct scenarios. Thus, in
Hamiltonian systems, if two imaginary eigenvalues of the same
signature collide, they undergo an “avoided crossing” and no insta-
bility arises. On the other hand, collision of opposite Krein-signature
eigenvalues generically in such systems leads to the formation of a
complex quartet of eigenvalues leading to oscillatory instabilities via
the so-called Hamiltonian-Hopf bifurcation.

the m = 2 mode remains stable in this eigendirection up to a
certain value of μ.

B. Multiple concentric ring dark soliton states

We now proceed with the ring radii of states involving
multiple RDS. The radii of the single and double rings at the
linear limit are

r1linear =
√

1 + |nθ |, (16)

r2linear =
√

|nθ | + 2 ±
√

|nθ | + 2. (17)

The numerical results (not shown) are in good agreement
with these predictions. In the opposite TF regime, the particle
picture radii compare favorably with the numerical results,
especially so as the TF limit is approached. In the limit of very
large μ, all radii converge to r0 = RTF/2 [see Eq. (A8)]. This
is the case where the intersoliton interaction effect disappears.
Nevertheless, the approach to the asymptotic theory, already
for μ � 30, is clearly evident, as is the ability of the theory
to capture the relevant trend of the two-soliton radii not only
qualitatively but also quantitatively. We have also extended
the analysis to three and four rings, and again the linear limit
radii agree with theoretical results, and the analytical and
numerical results closely match each other as we approach
the TF regime. In Fig. 3 we present the relevant results for the
single, double, triple, and quadruple RDS in the absence of
central vorticity. We note also that the corresponding results
when a central vortex is included are almost indistinguishable
from those presented in Fig. 3. As we will see below (see
Fig. 4 and its discussion), the role of the effective centrifugal
potential when central vortices are present is rather weak.
Figure 3 compares the RDS positions between the full numer-
ical results and the results obtained from our particle picture
theory. The first two rows of panels in the figure depict the
steady RDS radii as a function of μ for one to four rings. It
is interesting that the rings are approximately equally spaced,
featuring patterns reminiscent of the 1D equidistant lattices
of dark solitons, for the reasons revealed above, namely, the
pairwise balance of interaction and trapping effects (around
the equilibrium obtained from the balance of curvature and
trap effects). The bottom row of panels in Fig. 3 depicts the
relative errors of the predicted ring positions. As the figure
suggests, the error on the prediction of the ring locations is
small (note that these errors have been multiplied by 1000 for
ease of presentation) and further decreases as the chemical
potential μ is increased. In fact, for μ > 30, the ring positions
prediction for all the studied cases (namely, single, double,
triple, and quadruple rings with and without vortices) have
(relative) errors smaller than 1%. Therefore, as per the re-
sults depicted in Fig. 3, not only are the theoretical results
in good qualitative agreement with the actual PDE results
as μ is varied, but more importantly, they are in excellent
quantitative agreement for moderate and large values of μ.
For example, for the triple ring at μ = 20, the particle theory
yields (r1, r2 = r0, r3) = (2.3756, 3.1623, 3.9490) while the
full numerics yield (r1, r2, r3) = (2.2964, 3.0618, 3.8798).
The relative errors are (3.3%, 3.1%, 1.7%), in good agreement
with the theoretical prediction. On the other hand, for the
larger value of μ = 100, the particle theory yields (r1, r2 =
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FIG. 3. Equilibrium RDS radii and the prediction using our par-
ticle theory. The different columns of panels depict, from left to right,
the results for the single (RDS1), double (RDS2), triple (RDS3), and
quadruple (RDS4) RDS in the absence of central vorticity. Curves
correspond, from bottom to top, to increasing ring radii ri (i.e.,
increasing i values). The results including a central vortex are almost
indistinguishable from those depicted here and are thus not shown
(see Fig. 4 and its discussion in the text for more details on the
effect of the centrifugal potential when central vortices are present).
The first row of panels depicts the RDS radii ri as a function μ

from the numerically computed steady states of the original PDE
(small black dots) and from our theoretical prediction using the
particle picture (solid lines) for � = 1. The second row of panels
depicts the corresponding radii rescaled by half of the TF radius
RTF/2 = √

μ/2/� [corresponding to the predicted location of the
single RDS as per Eq. (A8)]. The bottom row of panels depicts the
corresponding relative errors between the steady-state radii and our
prediction defined by δri/ri ≡ (ri,ODE − ri,PDE )/ri,PDE. Note that, for
convenience, the relative errors have been multiplied by 1000, yet
they are never above 6% for all the cases and chemical potential
shown.

r0, r3) = (6.5555, 7.0711, 7.5867) while the full numerics
yield (r1, r2, r3) = (6.5433, 7.0538, 7.5751). The relative er-
rors are (0.18%, 0.28%, 0.15%), in excellent agreement with
the theoretical prediction.

Finally, Fig. 4 depicts the effect of including central vor-
tices on the positions of the rings. The figure suggests that
the role of the effective centrifugal force induced by the cen-
tral vortex is to slightly increase the ring radii. In fact, for
μ � 20 the relative displacement for a higher charge S = 4
is only about 1% and further decays for larger values of μ.
As expected from the theory, the centrifugal effect is pro-
portional to S2 (note that S appears as S2 in the treatment
of Sec. III) as evinced in the middle panel of the figure
where all displacement curves coincide when rescaled by S2.
Finally, the bottom panel in the figure shows that the effect of
the centrifugal potential has a power-law decay as μ−3/2. In

FIG. 4. Centrifugal effect on the ring positions as the central
vortex charge S is varied. The left (right) column corresponds to the
single (double) RDS. The top panels depict the rings’ displacement
�i = ri(S) − ri(S = 0), with respect to the case with no central
vortex (S = 0), when a central vortex of charge S = 1, 2, 3, 4 is
introduced. Curves correspond, from bottom to top, to increasing
values of S. The net effect of introducing a centrifugal potential
through a central vortex is to sightly push out the rings’ position. By
normalizing the displacement by S2, all the curves for the different
values of S overlap (see middle panels). The bottom panels depict the
rings’ displacement in log-log scale showing the power-law decay of
the centrifugal effect ∝μ−3/2; see text for details. Note that, for con-
venience, in the first two rows of panels, the relative displacements
have been multiplied by 1000.

fact, it is straightforward to check that, within our analytical
considerations of Sec. III, expanding the expression for the
rings displacement using the radii given in Eq. (10) yields the
(approximate) power-law decay for the displacement as �i �
S2�μ−3/2/

√
2. The numerical results for the displacement

decay depicted in the bottom panels of the figure perfectly
match this power-law decay (thin black lines). Corresponding
numerics as those depicted in Fig. 4 but for the triple and
quadruple RDSs show equivalent results and thus, for brevity,
are not shown here.

Having studied the static properties of our particle predic-
tion for the single and multiple RDS configurations bearing
(or not) central vortices, we now turn our attention to the
stability of such structures. Here, we focus on the RDS2
state for simplicity and shall not explore all the struc-
tures systematically. Indeed, even this structure with two
rings is significantly more complex than a single RDS. The

023314-7



WENLONG WANG et al. PHYSICAL REVIEW A 104, 023314 (2021)

FIG. 5. The full double ring RDS2 spectrum (first panel) is quite complicated compared with the single RDS, therefore, the spectrum of
modes m = 0, 1, . . . , 10 is, in turn, shown separately in the successive panels. RDS2 is not generically stable upon perturbation along the
m = 0 mode, but it is only unstable in a finite interval, i.e., the bubble, within our parameter range. The single RDS asymptotic eigenvalues
remain relevant, despite the fact that new modes emerge. Same line styles and color scheme as in Fig. 2.

corresponding spectrum is depicted in Fig. 5. The perturbation
of the RDS2 along the mode m = 0 is neither fully stable nor
always unstable. Indeed, it appears to be oscillatorily unstable
in the interval [43.6, 57.6] with a peak real maximum of only
approximately 0.028. The RDS2 spectrum has an unusual fea-
ture around μ = 50 whereby two eigenvalues collide at λ = 0
along the real axis and become purely imaginary. Detailed
inspection shows that this instability is an m = 5 mode, and
the corresponding BdG eigenvector is radially concentrated
around the two rings with the exp(i5θ ) phase signature. As

Fig. 6 shows, upon perturbing the stationary state with this
m = 5 eigenvector (of approximately 5% in norm, and the
final state is renormalized to keep the norm unchanged), we
find dynamically that the two rings deform towards two anti-
aligned pentagons, i.e., the inner one is rotated with respect
to the outer one by π/5. As the inner corners approach the
outer edges, the rings nucleate numerous vortex pairs. The
nucleation and the subsequent vortex dynamics depends on
the specific chemical potential, and the number of vortices
increases quite rapidly as the chemical potential increases

FIG. 6. Destabilization dynamics for the double ring RDS2 along the m = 5 eigenmode at μ = 30. The initial state was taken to be a
stationary double ring slightly (5%) perturbed by the unstable m = 5 eigenmode. See Ref. [69] for a movie of this destabilization dynamics.
All states are plotted in the (x, y) plane and all quantities are dimensionless.
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FIG. 7. Destabilization dynamics for the double ring RDS2 for a random perturbation. Similar to Fig. 6 but for a small random perturbation.
See Ref. [69] for a movie of this destabilization dynamics. All states are plotted in the (x, y) plane and all quantities are dimensionless.

within the regime of instability, but the decaying pathway and
the subsequent fivefold symmetry are rather generic (in the
direct numerical simulations that we conducted). Finally, we
show in Fig. 7 the destabilization of the double ring starting
from a small random perturbation. In this case the dynamics
lacks the fivefold symmetry of the previous figure as the
destabilization occurs along a competition of different modes
(around m = 13). In fact, in Fig. 8 we depict the instability
growth rates for the different azimuthal m modes. The figure
indicates a maximal instability growth rate for m = 13 with
its nearest neighbors having similar, albeit slightly smaller,
growth rates. This confirms the azimuthal modes (m ≈ 13) se-
lected in the destabilization of the randomly perturbed double
ring depicted in Fig. 7.

C. Stabilization of the structures

We now investigate whether it is possible to stabilize the
structures, so that they can be more readily created and studied
in experiments. We use a radial Gaussian potential barrier,
motivated by the earlier work of Ref. [56], but apply multiple
ones, when needed, in a way tailored to our problem. We insert
a barrier at each radial node, including the origin if a central
vortex is present there. Nevertheless, it should be clarified

FIG. 8. Mode instability for the double rings RDS2 for μ = 30.
Depicted is the maximal real part of the eigenvalue for azimuthal
modes m = 0, . . . , 21.

that a radial node at the origin is not always “indispensable”
because a vortex pattern is not generically unstable (in the
TF limit). This touches upon the issue of persistent currents
discussed, e.g., in Ref. [70]. More concretely, for a total of k
radial nodes, the additional perturbation potential reads

Vpert =
k∑

i=1

Ai exp
[−(r − r0i )

2/
(
2σ 2

i

)]
. (18)

Here, r0i is the ith node (or barrier) location in the absence of
the perturbation, and Ai and σi are the corresponding strength
(amplitude) and width of the ith barrier, respectively. We work
with the simple but sufficient, for our stabilization purposes,
case where all the barriers have the same amplitude A and
width σ . We have also studied a few cases of unequal barriers
and find that the effects are qualitatively similar.

We first choose a typical state close to the linear limit
such that it is neither too close to the linear limit nor already
possesses numerous unstable modes (as in the TF limit); in
other words, we focus on a regime of intermediate chemi-
cal potentials. Then, we fix a reasonable width σ and scan
the strength A, starting from 0 to a threshold A f beyond
which the soliton ceases to exist. We find that σ appears to
work best if it is reasonably wide but the nearest barriers
do not significantly overlap, i.e., sharp and strong barriers
interestingly do not appear to be particularly efficient towards
the stabilization of these structures. Nevertheless, with these
guiding rules, it is typically not difficult to stabilize the struc-
tures, i.e., there are presumably wide ranges of parameters in
the (A, σ ) parameter space which feature spectral stability.
Indeed, we have stabilized all of the structures considered
with our simple perturbation potential. Considering the large
number of solitary waves we are studying here, we present
some typical parameters where these solitary waves are fully
stable to illustrate the proof of principle, and we shall not
explore here the full (μ, A, σ ) parameter space further. The
results are summarized in Table I. The stability properties of
these waves are confirmed dynamically for each state up to as
large as t = 1000 (results not shown here).

V. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have revisited a widely studied
structure in the form of the ring dark soliton (RDS). Motivated
in part by earlier explorations in nonlinear optics [47,48] (and
associated optical experiments) of vortex-stripe interactions
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TABLE I. Prototypical parameter regimes where the pertinent
solitary waves are stable. The states are stable for the chosen μ and
σ in the interval Astable, the stability at Ady is confirmed dynamically
with direct numerical simulations up to t = 1000. Here, the growth
rates typically get suppressed as A grows until a state becomes fully
stable, and it remains stable until A is too large, beyond which the
soliton no longer exists.

States μ σ Astable Ady

RDS+VX 5.5 0.5 [1.7, 3.8] 2.0
RDS+VX2 6.0 0.5 [0.6, 2.8] 1.0
RDS+VX3 7.0 0.5 [1.5, 3.0] 2.0
RDS2 6.3 0.4 [1.9, 3.0] 2.0
RDS3 8.2 0.3 [2.1, 3.1] 2.4
RDS4 10.2 0.25 [2.2, 3.3] 2.4

and the corresponding nonlinear Aharonov-Bohm scattering
considerations, but also by much more recent considerations
of multiring structures constructed in single- as well as in
multiple-component atomic BECs [59], we have explored
both classes of such configurations. Namely, we have exam-
ined RDS structures harboring vortices at their centers, as well
as multiple RDS configurations interacting with each other,
while sustaining the effects of curvature and of the external
parabolic trap, as is typically relevant to the BEC setting.

We have found that, generically, the composite configu-
rations involving a RDS are unstable. While vortices appear
to have a stabilizing effect, this effect is too weak in the
Thomas-Fermi large-density limit in which we could analyt-
ically quantify it. The multiring configurations were found
to naturally generalize the 1D ordered (equidistant) lattices
of dark solitons. Here, we could reveal the balance of the
different “forces” on the rings, namely, the balance between
curvature pushing the rings outwards and the trap restoring
them towards its center, as well as the quasi-1D balance be-
tween the intersoliton interaction and the above two features.
The interplay of these different effects leads to the existence of
steady states which we could quantify in good agreement with
numerical computations. Nevertheless, these structures were
also typically found to be unstable with the corresponding
instability dynamics leading to the (transient) formation of
complex multivortex-lattice configurations. Interestingly, in
all the cases of the different nonlinear waves, stabilization
could be achieved by the presence of external radial poten-
tials. This feature was found to be generic for all the states
considered herein.

These findings suggest a number of possibilities for future
efforts. It is well known that 3D generalizations of RDS exist
but are also dynamically unstable [57]. Hence, it is perhaps
of more interest to examine the interactions of vortex rings
with vortex lines [71] and to analyze the relevant particle
(filament) picture for which we are not aware of any theo-
retical results. In the same spirit as our multiring structures
herein, one can also explore multivortex-ring entities and
lattices thereof in 3D BECs, which are also of interest in
their own right [72]. Such studies will be reported in future
presentations.
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APPENDIX: ASYMPTOTICS OF SINGLE
AND MULTIPLE RING RADII

In this Appendix we use asymptotic theory borrowed from
the pattern-formation literature [73] to derive the asymptotics
of single and multiple ring radius positions.

We start with the stationary GPE (2) for a purely radial
profile u0(r), which, when expressed in polar coordinates,
yields

1

2

(
u0,rr + 1

r
u0,r

)
+ f (r)u0 − u3

0 = 0, (A1)

f (r) = μ − 1

2
�2r2. (A2)

We consider a single stationary RDS of large radius r = r0.
Then, expanding near r0, i.e., r = r0 + y, we write

u0 = U0(y) + P(y),

where P(y) ∼ O(1/r0) contains higher-order corrections.
Then, at the leading order, Eq. (A1) yields the equation:

1

2
U0yy + f0U0 − U 3

0 = 0, (A3)

where f0 = f (r0). Hence, at this order, we obtain via
Eq. (A3), the exact stationary RDS solution:

U0(y) =
√

f0 tanh(
√

f0y). (A4)

The next-order equation reads

1

2
Pyy + f (r0)P − 3U 2

0 P + 1

2r0
U0y + f ′

0yU0 = 0, (A5)

where f ′
0 = f ′(r0). Employing the Fredholm alternative, one

may obtain the solvability condition of Eq. (A5), upon
multiplying it by U0y and integrating over y. This yields∫ ∞

−∞

(
1

2r0
U 2

0y + f ′
0yU0U0y

)
dy = 0. (A6)

Then, we compute the integrals, namely:∫ ∞

−∞
U 2

0ydy = 4

3
f 3/2
0 ,

∫ ∞

−∞
yU0U0ydy = f 1/2

0 , (A7)

and substitute the relevant results into Eq. (A6). Furthermore,
employing Eq. (A2), and after some algebra, we obtain the
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radius of the stationary RDS, namely,

r0 =
√

μ

2�2
= RTF

2
, (A8)

where we have introduced the TF radius RTF = √
2μ/� mea-

suring the spatial extent of the background solution where the
RDS is embedded. This result recovers the one obtained previ-
ously in Refs. [55,56,74], and it also agrees with formula (10)
obtained using a variational approach (upon setting S = 0).

1. The two-ring dark soliton state

We proceed with the stationary two-RDS state, which may
be described by an ansatz of the form

u(r) =
√

f (r){tanh[
√

f (r)(r − r+)]

− tanh[
√

f (r)(r − r−)] + 1},
where r± are the rings’ interface locations, to be determined.
One expects that, to leading order, the rings’ locations will
be close to r0 found in Eq. (A8). A more precise calculation
of their relative positions requires the examination of their
mutual interaction. Similarly to their purely 1D counterparts
[63], the two RDSs interact through their exponentially small
tails, which determines their position relative to r0.

As before, we expand near each interface. First, expanding
near r+, and letting r = r+ + y, we write

u ∼
√

f+ tanh(
√

f+y)

+
√

f+{1 − tanh[
√

f+(y + r+ − r−)]} = U0 + P.

Let L be any arbitrary constant, with 0 � L � r+ − r−, such
that r+ − L ∈ (r−, r+). Then, multiplying Eq. (A5) by U0y and
integrating on y ∈ (−L,∞), we obtain

1

2
(PyU0y − PU0yy)|∞−L + F (r+) = 0,

where

F (r) =
∫ ∞

−∞

(
1

2r
U 2

0y + f ′(r)yU0U0y

)
dy

= f 1/2(r)

(
2

3r
f (r) + f ′(r)

)
,

and U0 is given by Eq. (A4). Next we evaluate the boundary
term. Recalling that

tanh z ∼
{

1 − 2e−2z, z → +∞,

−1 + 2e2z, z → −∞,

we find that, for y near −L, one has

U0 ∼ −
√

f+ + 2
√

f exp(2
√

f y), y � −1,

P ∼ 2
√

f exp[−(y + r+ − r−)2
√

f ], y � −1.

Hence, for y � −1, the boundary term reads

PyU0y − PU0yy ∼ −8 f 2 exp[−2
√

f (r+ − r−)].

On the other hand, a similar expansion for positive y yields
PyU0y − PU0yy ≈ 0 as y → ∞. In short, we obtain

1

2
(PyU0y − PU0yy)|∞−L ∼ 16 f 2 exp[−2

√
f (r+ − r−)]

∼ −F (r+). (A9)

A similar computation near r− yields

16 f 2 exp[−2
√

f−(r+ − r−)] ∼ +F (r−). (A10)

Assume that f± is large. Then, to leading order, this implies
that r± ∼ r0 is the root of F (r0) = 0 given by Eq. (A8). To
estimate its correction, we expand

r± = r0 + x±, with |x±| � r0.

We then estimate f± ∼ f (r0) and F (r+) ∼ x±F ′(r0), so that
Eqs. (A9) and (A10) become

16 f 2(r0) exp[−2
√

f (r0)(x+ − x−)] ∼ −F ′(r0)x+, (A11)

16 f 2(r0) exp[−2
√

f (r0)(x+ − x−)] ∼ +F ′(r0)x−. (A12)

Furthermore, we find

f (r0) = 3

4
μ, F ′(r0) = − 4√

3
μ1/2�2,

so that Eqs. (A11) and (A12) simplify to Eqs. (13) and (14).
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