
PHYSICAL REVIEW A 104, 023313 (2021)
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In this work we establish constraints on the temperature dependence of the shear viscosity η in the superfluid
phase of a dilute Fermi gas in the unitary limit. Our results are based on analyzing experiments that measure
the aspect ratio of a deformed cloud after release from an optical trap. We discuss how to apply the two-fluid
formalism to the unitary gas and provide a suitable parametrization of the equation of state. We show that in
expansion experiments the difference between the normal and superfluid velocities remains small and can be
treated as a perturbation. We find that expansion experiments favor a shear viscosity that decreases significantly
in the superfluid regime. Using an exponential parametrization, we find η(Tc/2TF ) ∼< 0.37[η(Tc/TF )], where Tc

is the critical temperature and TF is the local Fermi temperature of the gas.
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I. INTRODUCTION

The dilute Fermi gas at unitarity has emerged as an im-
portant example of a strongly correlated quantum fluid [1,2].
Measurements of equilibrium and nonequilibrium properties
provide important benchmarks for a variety of physical sys-
tems, ranging from dilute neutron matter in neutron stars to
the quark gluon plasma probed in relativistic heavy-ion col-
lisions. The unitary Fermi gas is a system of nonrelativistic
spin- 1

2 particles interacting via an interaction of zero range
tuned to infinite scattering length. This means that the system
is strongly interacting, but the only scales in the problem
are those that can be defined in the noninteracting gas, for
example, the Fermi momentum kF = (3π2n)1/3, where n is
the density of the gas. From the Fermi momentum we can
construct the Fermi energy EF = k2

F /2m and the Fermi tem-
perature kBTF = EF , where kB is the Boltzmann constant. As
an example, consider the superfluid transition in a unitary
Fermi gas. Based on dimensional analysis, the critical tem-
perature must be proportional to the local Fermi temperature,
Tc ∼ TF . Indeed, experiments find Tc = 0.167(3)TF [3].

A remarkable property of the unitary Fermi gas is nearly
perfect hydrodynamic flow [4–8], originally discovered in [9].
In this experiment, the authors observed nearly ideal flow in
a dilute unitary Fermi gas after release from a deformed trap.
The deformation of the trap implies that pressure gradients in
the short (transverse) direction of the trap lead to preferential
acceleration in this direction. As a consequence, the aspect
ratio of the cloud changes from being elongated in the longi-
tudinal direction to being elongated in the transverse direction.
Viscosity counteracts this behavior, and detailed studies of the
time evolution can be used to extract the shear viscosity as a
function of T/TF .

Shear viscosity is a dimensionful quantity and it is natural
to consider the dimensionless ratio η/n or η/s, where s is
the entropy density. We have also set h̄ = kB = 1, where h̄
is Planck’s constant and kB is Boltzmann’s constant. Previ-

ous analysis finds that for T > TF the shear viscosity of the
gas can be understood in terms of kinetic theory and that in
this regime η/n > 1 [10]. Near the critical temperature the
shear viscosity enters the quantum regime η/n < 1 and the
viscosity is only weakly temperature dependent. At Tc, we
find η/n � 0.4 [11], in agreement with calculations based on
the Kubo relation and resummed perturbation theory [12] (see
also [13–15]).

Our main goal in the present work is to constrain the
behavior of η/n below the superfluid phase transition using
existing expansion experiments, in particular the results of
Joseph et al. [16]. Several, qualitatively different, predictions
and results regarding the behavior of η/n below Tc can be
found in the literature. In Ref. [17] we argued that for T � Tc

kinetic theory in terms of phonon quasiparticles is reliable
and that it predicts that η/n grows rapidly as T/TF → 0. On
the other hand, Ref. [18] proposed a different quasiparticle
model, which predicts η/n → 0 as T → 0. This behavior is
seen in the quantum Monte Carlo calculation of [19] and in
the simplified experimental analysis in [16]. A recent exper-
imental study of sound attenuation in a unitary Fermi gas
found that sound diffusivity is approximately constant below
Tc [20]. Different behaviors are also seen in the two isotopes
of helium. In 4He the viscosity is dominated by rotons and
phonons. It is approximately constant near Tc and grows very
steeply as T → 0 [4]. In 3He, on the other hand, the viscosity
shows a steep drop below Tc [18,21].

The basic tool for analyzing the expansion experiment be-
low Tc is superfluid (two-fluid) hydrodynamics. When solving
the two-fluid equations in an expanding system, careful atten-
tion has to be paid to the frame dependence of the equations
of motion. We review this issue in Secs. II and III. Section IV
discusses simplifications that appear if the fluid is scale invari-
ant, as is the case for the unitary Fermi gas. Sections II–IV can
be skipped if the reader is primarily interested in the analysis
of the experiments of Joseph et al. [16]. Simple solutions of
the two-fluid equations are discussed in Sec. V. We discuss an
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approach based on treating the difference between the super-
fluid and normal velocities as a small parameter and present an
analysis of the experimental data using this method in Sec. VI.
We summarize in Sec. VII. Details regarding the equation of
state and the initial conditions for two-fluid hydrodynamics
are discussed in several Appendixes.

II. SUPERFLUID HYDRODYNAMICS

Fluid dynamics is based on conservation laws, combined
with approximate local thermodynamic equilibrium. Thermo-
dynamic relations are encoded in an equation of state, which
can be measured in a fluid at rest in the laboratory frame. In
this section we review how this information is used in the fluid
dynamics description of an expanding fluid. For simplicity,
consider first a normal fluid, for example, the unitary Fermi
gas above Tc. There are five hydrodynamic variables, the mass
density ρ, the energy density E (or, alternatively, the entropy
density s), and the mass current �j . Note that the mass current
is equal to the density of momentum, so the total momentum
of the fluid is the integral of �j over the volume occupied by
the fluid.

For a fluid element centered at position �x with mass current
�j (�x) there is a Galilean boost with boost velocity �v = �j/ρ

that transforms the conserved charges into the local rest frame
of the fluid, defined by �j (�x) = 0. In this frame the energy
density of the fluid is E0 = E − �j 2/2ρ (see Appendix A).
The energy density in the rest frame satisfies the standard
thermodynamic identity

dE0 = μ0dn + T ds, (1)

where μ0 is the chemical potential in the fluid rest frame and
n = ρ/m is the particle number density. The energy in the
laboratory frame satisfies

dE = (
μ0 − 1

2 m�v 2
)
dn + T ds + �v · d�j . (2)

The pressure is given by the Legendre transform of Eq. (2)
with respect to n, s, and �j . We obtain P = μ0n + sT −
E0 and the pressure satisfies the Gibbs-Duhem relation
dP = ndμ0 + sdT .

In a superfluid there are three additional hydrodynamic
variables, the components of the superfluid velocity �vs. As a
result, there no longer is a unique local frame in which the
fluid is at rest. In this section we will follow Landau and
Lifshitz [22] and consider thermodynamics in the rest frame
of the superfluid. The final result is of course independent of
the choice of frame, and we describe thermodynamic relations
in the rest frame of the normal fluid in Appendix B. The mass
current in the frame of the superfluid is �j0 = �j − ρ�vs. Using
Galilean invariance, we can determine the energy density in
the superfluid rest frame

Es = E − �j0 · �vs − 1
2ρv2

s . (3)

We now view the energy density in the superfluid frame as a
function of �j0,

dEs = μsdn + T ds + �w · d�j0, (4)

where we have defined μs, the chemical potential in the
superfluid frame, and the velocity �w. For the energy in the

laboratory frame Eq. (4) implies

dE = μj0 dn + T ds + �vn · d�j0 + �j · d�vs, (5)

where

μj0 = μs + 1
2 mv2

s (6)

and we have defined �vn = �w + �vs, the velocity of the normal
fluid. We note that �w = �vn − �vs is Galilei invariant. We can
perform a Legendre transformation with respect to n, s, and
j0. We obtain the pressure

P = −Es + μsn + T s + �j0 · �w (7)

and the Gibbs-Duhem relation

dP = ndμs + sdT + �j0 · d �w. (8)

Based on Galilean invariance, we can write �j0 = ρn �w, which
defines the normal fluid density ρn, as well as the superfluid
density ρs = ρ − ρn. This definition leads to the standard two-
fluid relation �j = ρn�vn + ρs�vs. We note that

ρn = 2
∂P

∂w2

∣∣∣∣
μs,T

, (9)

and ρn � 0 implies that at fixed μs the pressure increases with
| �w|. Finally, we note that

P + E = μsn + T s + ρn �w · �vn + 1
2ρv2

s , (10)

which will be useful in the following section.

III. CONSERVATION LAWS

As in ordinary fluid dynamics there are conservation laws
for the mass density, the momentum density, and the energy
density of the fluid. Mass conservation is

∂tρ + �∇ · �j = 0, (11)

where ρ = ρn + ρs. The particle density is decomposed anal-
ogously, n = nn + ns. The mass equation does not receive any
dissipative corrections. Momentum conservation is

∂tji + �∇ j�i j = 0, (12)

where the stress tensor �i j can be split into an ideal and a
dissipative part �i j = �

(0)
i j + δ�i j . The ideal part is

�
(0)
i j = Pδi j + ρn(vn)i(vn) j + ρs(vs)i(vs) j . (13)

Note that the stress tensor in the superfluid rest frame
is �

(0,s)
i j = Pδi j + ρnwiw j . This expression follows from

Galilean invariance and the second law of thermodynamics.
The transformation of �i j under Galilean boosts is given in
Eq. (A5). The dissipative terms are given by

δ�i j = −ησi j − ζ2δi j ( �∇ · �vn) − ζ1 �∇ · (ρs �w), (14)

where η is the shear viscosity, the shear tensor is defined by

σi j = �∇i(vn) j + �∇ j (vn)i − 2
3δi j ( �∇ · �vn), (15)

and ζ1,2 are bulk viscosities. In a scale-invariant fluid both ζ1

and ζ2 vanish. Energy conservation is

∂tE + �∇ · �Q = 0, (16)
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with �Q = �Q(0) + δ �Q. The ideal energy current in the super-
fluid rest frame is proportional to �w. Using the second law
of thermodynamics, one can show that �Q(0,s) = (Es + P −
nsμs) �w and the energy current in the laboratory frame is

�Q(0) =
(

μs

m
+ v2

s

2

)
�j + sT �vn + ρn

(
v2

n − �vn · �vs
)
�vn. (17)

We observe that with the help of Eq. (10) the energy current
�Q(0) can be expressed as

�Q(0) = �vn(E + P) − ρs �w
(

μs

m
+ v2

s

2

)
. (18)

The dissipative correction is

δQi = −κ �∇iT + δ�i j (vn) j − δχρswi, (19)

where κ is the thermal conductivity and δχ is given in
Eq. (22). Finally, superfluid hydrodynamics requires an
equation of motion for the superfluid velocity. We have

∂t �vs + �∇χ = 0, (20)

where χ = χ (0) + δχ , with

χ (0) = μs

m
+ v2

s

2
. (21)

The dissipative term is

δχ = ζ4 �∇ · �vn + ζ3 �∇(ρs �w). (22)

In a scale-invariant gas ζ4 vanishes [23] but ζ3 is expected to
be nonzero.

IV. UNITARY FERMI GAS

In a normal fluid the pressure is a function of two variables
P = P(μ0, T ). In a scale-invariant fluid we can write

P(μ0, T ) = m3/2μ
5/2
0 p(T/μ0). (23)

In general, the function p(T/μ) has to be determined from
experiment. A parametrization of p(T/μ) for the dilute Fermi
gas at unitarity can be found in [11] and in Appendix C.
In a superfluid the pressure is a function of three variables
P(μs, T, �w). Using scale invariance, we can define a function
ps of two variables,

P(μs, T, �w) = m3/2μ5/2
s ps

(
T

μs
,

mw2

μs

)
, (24)

and for small w we can expand

P(μs, T, �w) = P0(μs, T ) + P1(μs, T )w2

= m3/2μ5/2
s ps0

(
T

μs

)

+ m5/2μ3/2
s w2 ps1

(
T

μs

)
. (25)

In a similar fashion, we can expand the density n = n0 + n1w
2

and the entropy density s = s0 + s1w
2. Note that for �w = 0

we have μs = μ0 so that the function ps0 is determined by the
pressure of a fluid at rest ps0(T/μ) = p(T/μ). The function

ps1 is related to the normal fluid density

ρn = 2m5/2μ3/2
s ps1

(
T

μs

)
. (26)

In fluid dynamics we have to determine the pressure using
the values of the conserved charges. Consider first a normal
scale-invariant fluid. Given the energy density, we can deter-
mine the energy density in the rest frame, E0 = E − j 2/2ρ.
Using the Gibbs-Duhem relation, we get

E0 =
{
μ0

∂

∂μ0
+ T

∂

∂T
− 1

}
P(μ0, T ). (27)

Using the universal form of the equation of state in Eq. (23),
this implies P = 2

3E0 and

P = 2

3

{
E − j 2

2ρ

}
. (28)

We observe that the pressure can be determined without using
the explicit form of the function p(T/μ). Note that if the fluid
is not scale invariant, then we have to tabulate the equation of
state in the form P = P(E0, ρ) in order to determine the pres-
sure. We also note that transport coefficients are functions of
T/μ0. The determination of T/μ0 requires explicit knowledge
of the function p(T/μ). A procedure for extracting T/μ0 was
proposed in [11]. Consider the dimensionless ratio

x = 2

(2π )3/2

(mP)3/2

n5/2
. (29)

The quantity x is Galilean invariant and purely a function of
the inverse fugacity ζ = exp(−μ0/T ). The function ζ (x) can
be determined from the function p(T/μ) defined above. Once
ζ is determined we can compute the temperature from

T = G(x)
P

n
, (30)

where the dimensionless function G(x) is also determined by
p(T/μ) (see Appendix C). Once ζ and T are given, then the
chemical potential is determined by μ = −T ln (ζ ).

We can now study the analogous problem in the superfluid
phase. We first note that, given the local energy density E ,
we can compute Es using Eq. (3). This calculation only re-
quires the hydrodynamic variables ρ, �j , and �vs. Furthermore,
Eqs. (7) and (8) imply that

Es =
{
μs

∂

∂μs
+ T

∂

∂T
+ �w ∂

∂ �w − 1

}
P(μs, T,w). (31)

Using the equation of state of the unitary gas at O(w2), we get

P = 2
3

{
Es − 1

2 �j0 · �w
}
. (32)

This result is more difficult to use than Eq. (28) because,
whereas E , Es, and j0 are (primary) hydrodynamic variables,
�w is determined by the equation of state, �w = �j0/ρn with ρn =
ρn(ρ, Es, j0). One possible approach is to tabulate the function
ρn(ρ, Es, j0) for the equation of state given in Eq. (24). An-
other option is to solve for ρn and P perturbatively in w2/μs.
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In the perturbative approach we set1.

P({w0}) = 2
3Es (33)

and define

x({w0}) = 2

(2π )3/2

[mP({w0})]3/2

n5/2
. (34)

Here P({w0}) denotes the pressure at order w0, that is, the
exact pressure up to corrections of O(w2). We can com-
pute the inverse fugacity at this order in the expansion, ζ �
ζ (x({w0})), and the result determines the normal fluid fraction
at O(w0),(

ρn

ρ

)
{w0}

= 2ps1(x)
5
2 ps0(x) − xp′

s0(x)

∣∣∣∣
x=x({w0})

. (35)

This result can now be used to compute the pressure at O(w2),

P({w2}) = 2

3

{
Es −

(
j 2

0

2ρ

)(
ρ

ρn

)
{w0}

}
. (36)

If needed, these results can be used to compute μs and T at
order w2.

V. SIMPLE SOLUTIONS OF THE TWO-FLUID EQUATIONS

It is interesting to note that there are some simple solutions
to the equations of superfluid hydrodynamics that are relevant
to trapped atomic gases. We first observe that the solution of
the hydrostatic equation carries over directly from the normal
fluid case. Consider a fluid confined by an external potential
Vext (x). A static solution of the fluid dynamic equations is
given by

n(�x) = n(μs(�x), T ), μs(�x) = μc − Vext (�x), (37)

with �vn = �vs = 0. This follows directly from the Gibbs-
Duhem relation �∇P = n �∇μs for T = const and �w = 0. We
are mostly interested in approximately harmonic potentials
of the form Vext (�x) = mω2

i x2
i /2. A number of authors have

considered small oscillations around the hydrostatic case (see,
for example, [24,25]). The solutions are analogous to first and
second sound modes in an infinite system.

In the normal fluid case there is a simple exact scaling
solution to the Euler equation that describes the expansion
after a confining harmonic potential is turned off. For this so-
lution the density expands by a scale transformation n(xi, t ) =
n(xi/bi(t ), t =0), where n(xi, 0) is a solution of the hydro-
static equation. The velocity field is a Hubble flow vi(�x, t ) =
αi(t )xi (no sum over i), where αi(t ) = ḃi/bi. The temperature
T is only a function of time, but not of position. The equation
of motion for bi(t ) and T (t ) is reviewed in [26,27].

We can ask whether this solution generalizes to a solution
of superfluid hydrodynamics in which the normal and super-
fluid components move together, �vn = �vs = �v, where �v is the
velocity of a normal fluid satisfying the Euler equation with

1Note that P({w0}) is equal to the exact pressure up to errors of
order w2 but is different from the pressure in the limit w → 0, which
we denoted by P0 in Eq. (25)

the equation of state P(ρ, E ) = P(ρ, Es, �w=0). This is indeed
the case.

First we note that the momentum density is �j = ρn�vn +
ρs�vs = (ρn + ρs)�v = ρ�v. This implies that if �j = ρ�v satisfies
the continuity equations, so does the mass current in super-
fluid hydrodynamics. The same argument applies to the stress
tensor. For �vn = �vs the stress tensor given in Eq. (13) assumes
the normal fluid form �

(0)
i j = Pδi j + ρviv j . As a consequence,

momentum conservation (12) is satisfied. Finally, we can
study the energy current. If �w = 0 then Eq. (18) reduces to
�Q(0) = �v(E + P), which is the normal fluid form.

In superfluid hydrodynamics there is one additional equa-
tion, which is the equation of motion for the superfluid
velocity (20). The superfluid is accelerated by gradients of μs,
not gradients of P, and Eq. (8) implies that

�∇μs = 1

n
( �∇P − s �∇T − ρnwi �∇wi ). (38)

We conclude that the equation of motion for �vs follows from
the Euler equation provided �w = 0 and �∇T = 0. As explained
above, these conditions are satisfied for the solution of the
Euler equation in an expanding cloud.

The correspondence between the solution of one- and two-
fluid hydrodynamics does not extend to the dissipative case,
except in very special circumstances. For �vn = �vs = �v the
dissipative contribution to the stress tensor (14) is given by

δ�i j = −η
[ �∇iv j + �∇ jvi − 2

3δi j ( �∇ · �v)
] − ζ2δi j ( �∇ · �v),

(39)
which is the same as the one-fluid expression (for ζ = ζ2).
However, the viscous correction to the energy current, δQi =
δ�i jv j [see Eq. (18)], leads to viscous heating and a nonzero
temperature gradient unless the functional form of the vis-
cosity η(n, T ) is specifically chosen. This implies that we
no longer have �∇P = n �∇μs, and the solution �vn = �vs is not
consistent.

However, given that viscous corrections are small, we can
treat �∇T and �w as perturbations and solve for �w at leading
order. Using Eqs. (11)–(17), we find(

∂

∂t
+ �v · �∇

)
�w = − s

ρn

�∇T + O(w2). (40)

In the absence of a background flow �v = 0, this equation
is well known from the study of small oscillations in a su-
perfluid, where it describes the restoring force in a second
sound mode [22]. We observe that the result remains valid
in a nontrivial background flow �vn � �vs 	= 0, provided the
advection of �w in the background flow is taken into account.

VI. HYDRODYNAMIC ANALYSIS IN THE
SMALL-W LIMIT

In this section we discuss an analysis of the data taken in
the superfluid regime by Joseph et al. [16]. The same data
were previously analyzed in the normal fluid regime in [11].
In the experiments the gas is released from a harmonic trap
Vext = 1

2 mω2
i x2

i with trap frequencies (ωx, ωy, ωz ) = 2π ×
(2210, 830, 64.3) Hz. After the optical trap is turned off there
is a residual magnetic bowl characterized by ωmag = 2π ×
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FIG. 1. Aspect ratio Ar as a function of the temperature T/TF in
units of the Fermi temperature at the center of the trap. The data show
AR at t∗ = 1.2 × 10−3 s after release from the trap [16]. The lines
show the prediction of viscous hydrodynamics for different values of
the dimensionless parameter α = (0, 0.5, 1, 2, 3, 4, 5) (from bottom
to top) defined in Eq. (43). The thick green line corresponds to α = 2.

21.5 Hz. The central temperature of the cloud varies between
T = 0.05TF and T = 1.10TF .

Expansion experiments measure the aspect ratio of the
cloud after the gas is released from the harmonic trap. Hy-
drodynamic flow develops because the pressure gradients in
the initial configuration accelerate the gas. If the initial trap is
deformed, differences in the pressure gradients in different di-
rections cause the expansion to be fastest in the short direction
of the trap. This phenomenon is known as elliptic flow.

Joseph et al. [16] measure the ratio AR ≡ σx/σy, where σx

and σy are Gaussian fit radii in the x and y direction obtained
from two-dimensional absorption images of the cloud. For
the trap configuration studied in the experiment, this ratio
evolves more quickly than σx/σz or σy/σz. Figure 1 shows
the dependence of AR(t∗) at a fixed time t∗ = 1.2 ms on the
initial temperature of the cloud. Note that AR(0) ∼ 0.37 and
the measured values AR(t∗) > 1 reflect the elliptic flow phe-
nomenon discussed above. The main idea of the experiment
is that shear viscosity counteracts the rise in AR as a function
of time and that the dependence of AR(t∗) on T/TF constrains
the dependence of shear viscosity on temperature and density.

In our previous work we analyzed the data above Tc as-
suming an expansion of the viscosity in the dimensionless
diluteness nλ3 of the gas, η(n, T ) � ηvir (n, T ), with

ηvir (n, T ) = η0(mT )3/2{1 + η2(nλ3) + η3(nλ3)2 + · · · }.
(41)

Here λ = (2π/mT )1/2 is the thermal de Broglie wavelength.
In [11] we obtained

η0 = 0.265 ± 0.02, η2 = 0.060 ± 0.02. (42)

We also found that η3 is consistent with zero. Note that η0 can
be compared to the kinetic theory result η0 = 15/(32

√
π ) �

0.264 [28]. Here we will study whether the data constrain the
behavior below Tc. We consider the parametrization

η(n, T < Tc(n)) = ηvir (n, T ) exp

(
α

[
1 − Tc(n)

T

])
, (43)

where α is a parameter that governs the low-temperature
behavior of the viscosity and Tc(n) � 0.167(3)TF (n) is
the critical temperature for the superfluid transition. This
parametrization is sufficiently flexible to accommodate the
main possible behaviors of the shear viscosity at low tem-
perature. For α > 0 the viscosity tends to zero as T → 0, for
α � 0 the viscosity is approximately constant, and for α < 0
the viscosity diverges as T → 0. We should note that the data
mainly constrain the viscosity in the regime 0.5 ∼< T/Tc ∼< 1.0
and that the value of α extracted from our analysis should not
be taken as a quantitative prediction for the shear viscosity at
very low temperature T/Tc ∼< 0.5.

We analyze the data in the superfluid regime using the
results from the preceding section. As a first approximation
we will solve the equation using the equation of state in the
superfluid regime but assume that the normal and superfluid
velocities are equal �vn � �vs ≡ �v. We will then check this
assumption by computing �w = �vn − �vs using Eq. (40). We
use the equation of state and the initial state described in
Appendixes C and D. The equations of fluid dynamics are
solved using the anisotropic fluid dynamics method described
in [11,29].

The results are shown in Fig. 1. We plot the data for AR(t∗)
as a function of the initial central temperature T/TF of the
cloud. Note that the critical temperature is Tc/TF = 0.167(3).
We also remark that in a trap, the superfluid initially appears
in the center of cloud and that near Tc the size of the super-
fluid core is small (see Appendix D for an illustration of the
superfluid and normal density profiles). As a consequence,
we observe that in the regime T/Tc ∈ [0.8, 1.0] the aspect
ratio is only very weakly dependent on the viscosity in the
superfluid. The data show a noticeable change in slope of AR

as a function of T/TF at lower temperatures T ∼< 0.8Tc. We
find that a good description of the data in this regime can only
be achieved if the viscosity at low temperature drops below
the extrapolation from the normal phase. It is difficult to fully
quantify this statement, because the data contain some outliers
and the hydrodynamic prediction for AR(t∗) is only weakly
sensitive to the value of α beyond α � 5. Based on Fig. 1, we
conclude that the data tend toward α ∼> 2 (the prediction for
α = 2 is shown as the thick green line in the figure).

The corresponding behavior of η/n as a function of T/TF

is shown in Fig. 2. We observe that the viscosity exhibits
a fairly steep drop below the critical temperature. This be-
havior is in agreement with the reconstruction performed
as part of the original experimental work in [16]. Therein
Joseph et al. found2η(0.8Tc) = (0.32 ± 0.22)η(Tc), compared
to η(0.8Tc) � 0.53[η(Tc)] from Fig. 2. The analysis in [16] is
based on a number of simplifying assumptions. It assumes,
in particular, that there is a critical radial distance in the
expansion beyond which the cloud becomes freestreaming.
This radius is adjusted to reproduce the theoretically known
value of the shear viscosity at large temperature [28]. In our
work the transitions to freestreaming happens dynamically,
governed by an extended hydrodynamic description that has

2To be more precise, if we define αn ≡ η/n as a function of the ratio
T/TF then αn[0.8(T/TF )c] = 0.32αn(T/TF )c.
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FIG. 2. Viscosity to density ratio η/n as a function of T/TF ,
where TF is the local Fermi temperature. The lines show the fit
obtained in this work for different values of the parameter α. The
lines are labeled as in Fig. 1. In particular, the thick line corresponds
to α = 2.

been tested by comparison with exact numerical simulations
of the Boltzmann equation [11,30].

Finally, we can go beyond earlier work and test the con-
sistency of the assumption that the normal and superfluid
velocities are equal. For this purpose we solve Eq. (40) on
the fluid dynamics background of the expanding solution with
�w = 0. The viscous heating rate is given by Eqs. (16) and (19),

Ė = η

2
(σi j )

2, (44)

where σi j is the strain tensor defined in Eq. (15). If the vis-
cosity is small then the velocity is approximately linear in
distance, and σi j is spatially constant. This implies that spatial
gradients in the rate of energy dissipation are mostly governed
by the functional form of the shear viscosity. Note that a
possible nonzero ζ3 does not contribute to energy dissipation
in the limit �w → 0.

The change in temperature is given by Ṫ = Ė/cV , where
cV is the specific heat (see Appendix C). Note that cV drops
rapidly as T/TF → 0, so the spatial structure of the tem-
perature profile is very sensitive to the rate at which η and
cV approach their low-temperature values. The equation of
motion for �w also involves the ratio s/ρn = s/mnn. Both the
numerator and the denominator vanish in the limit T → 0,
but for the unitary Fermi gas the ratio is s/nn close to unity

and only weakly dependent on temperature, as shown in Ap-
pendix C. A numerical solution of Eq. (40) is shown in Fig. 3.
We observe that spatial variations in dissipative heating do
indeed generate a second soundlike perturbation. We note,
however, that the amplitude of this perturbation is smaller than
the mean fluid velocity by almost two orders of magnitude.
This means that the approximation �w = 0 is consistent.

VII. SUMMARY AND OUTLOOK

In this work we have summarized the formalism for ap-
plying superfluid hydrodynamics to the dilute Fermi gas at
unitarity and constructed a suitable equation of state. We have
shown that, unless the viscosity is very large, the equations
can be solved perturbatively in the variable �w = �vn − �vs. We
have numerically studied the evolution of a trapped Fermi gas
after release from a deformed trap in the regime where the
core of the cloud is superfluid. Comparing our simulations
to the experimental data obtained in [16] we concluded that
the viscosity must drop significantly below Tc. This drop can
be parametrized as an exponential decrease proportional to
exp[−α(Tc/T )], where α ∼> 2.

Our results are in some tension with the data obtained
in [20]. Patel et al. measured the sound attenuation in a
unitary Fermi gas confined in a box trap at approximately
constant density and different temperatures, both above and
below Tc. They found that the sound diffusivity is approxi-
mately constant around Tc and does not exhibit a pronounced
decrease. The sound attenuation constant involves several
transport coefficients, including the shear viscosity, the ther-
mal conductivity, and, below Tc, the bulk viscosity coefficient
ζ3. These transport coefficients can be disentangled using lin-
ear response measurements, as demonstrated in [31], but this
analysis has not been performed below Tc. This implies that it
is possible that the sound diffusivity remains constant despite
the fact that the viscosity is decreasing, but this behavior
appears unlikely and is not predicted by any transport theory
analysis available in the literature.

It seems more plausible that the difference is explained by
differences in the experimental approach. For example, it is
possible that the viscosity of the superfluid phase is governed
by a fairly dilute gas of quasiparticles, whereas transport in
the normal phase is controlled by a system of dense, strongly
correlated, excitations. In this case the superfluid core of an

- 0.5 0.5
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x
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- 0.5 0.5
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FIG. 3. Perturbative estimate of the superfluid velocity �w = �vn − �vs. (a) Average velocity in the x direction vx � (vn)x � (vs )x from a
simulation of trapped gas with central temperature T/TF = 0.094. The position x̄ = x/x0 and velocity v̄ = v/v0 are given in dimensionless
units (see Appendix D). The curves correspond to three different times t = (0.25, 0.50, 0.75)ω̄−1 (blue, red, and olive). (b) Perturbative solution
for wx , as explained in the text. Note that the scale in (b) is two orders of magnitude smaller.
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expanding gas cloud might be too small to exhibit dissipative
two-fluid dynamics. This option can be addressed by studying
linear response in a box trap; an extension of our analysis to
these systems is left for future work. The breakdown of super-
fluid dissipative hydrodynamics is observed in the collective
mode experiments [20]. Dissipative fluid dynamics predicts
that sound wave damping scales as the wave number squared.
This is seen over a wide range of wave numbers above Tc, but
only in much narrower window below Tc.
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APPENDIX A: GALILEAN TRANSFORMATIONS

Under a Galilean transformation with boost velocity �u
we have

ρ ′ = ρ, (A1)

E ′ = E + �j · �u + 1
2ρu2, (A2)

j ′
i = ji + ρui, (A3)

Q′
i = Qi + u j�i j + 1

2 u2ji + E ′ui, (A4)

�′
i j = �i j + uij j + u jji + uiu jρ, (A5)

where ρ is the mass density, E is the energy density, �j is the
mass current (momentum density), �Q is the energy current,
and �i j is the stress tensor. The pressure and the entropy
density of the fluid are Galilean invariant

P′ = P, s′ = s. (A6)

In a superfluid the normal and superfluid densities are sepa-
rately Galilean invariant. The fluid velocities transforms as

�v ′
α = �vα + �u, (A7)

where α = (n, s).

APPENDIX B: SUPERFLUID HYDRODYNAMICS IN THE
NORMAL FLUID REST FRAME

In Sec. II we studied the thermodynamics of a moving
superfluid by constructing the energy density in the superfluid
rest frame. This procedure is well defined, even in the limit
T → Tc. However, one may be concerned that this method
is not the best choice in the limit that the superfluid density
is much smaller than the total density of the fluid. In this
Appendix we consider an alternative approach based on ther-
modynamic identities in the rest frame of the normal fluid.
Consider the total energy density of a superfluid. Following
[32], we write

dE = μj dn + T ds + �vn · d�j + �jn · d�vs. (B1)

which defines �vn and �jn as variables conjugate to the mo-
mentum density �j and the superfluid velocity �vs. We use the
symbol μj to indicate that the chemical potential is defined
at fixed �j . Using Galilean invariance, Ref. [32] shows that

�jn = �j − ρ�vn, so that �jn is the current in the normal fluid
rest frame. We can also write �j = ρn�vn + ρs�vs, so that �jn =
ρs(�vs − �vn) ≡ −ρs �w. We obtain the pressure by performing a
Legendre transformation

P = −E + μj n + T s + �vn · �j (B2)

so that

dP = ndμj + sdT + �j · d�vn − �jn · d�vs. (B3)

Using the explicit form of the currents in terms of the normal
and superfluid densities as well as velocities, we find the
Gibbs-Duhem relation

dP = n dμn + s dT − ρs

2
dw2, (B4)

where we have defined the chemical potential in the normal
fluid frame

μn = μj + 1
2 mv2

n . (B5)

This Gibbs-Duhem relation implies that the superfluid density
can be defined as

ρs = −2
∂P

∂w2

∣∣∣∣
μn,T

. (B6)

This result should be compared with Eq. (9). We note that the
dependence of P on �w depends crucially on what chemical
potential, μn or μs, is held constant. The energy density in the
normal fluid frame can be obtained via a Galilei transforma-
tion. We have

En = E − �j · �vn + 1
2ρv2

n, (B7)

which implies that the pressure can be written as

P = −En + μnn + T s. (B8)

Note that in the normal fluid frame we have the usual (one-
fluid) relation P + En = μnn + sT .

In a scale-invariant Fermi gas we can write

P(μn, T, �w) = m3/2μ5/2
n Fn

(
T

μn
,

mw2

μn

)
. (B9)

As before, we can try to simplify the problem by expanding
the pressure in �w,

P(μn, T, �w) = m3/2μ5/2
n pn0

(
T

μn

)
− m5/2μ3/2

n w2 pn1

(
T

μn

)
.

(B10)

In the limit �w → 0 this function must agree with Eq. (25)
so that pn0(s) = ps0(x) = p(x). The second function pn1(x)
determines the superfluid mass density

ρs = 2m5/2μ
3/2
0 pn1

(
T

μn

)
, (B11)

which has been measured in [20,33]. Note that ρs is positive,
so the term proportional to w2 lowers the pressure at fixed μn

and T . The energy density in the normal fluid rest frame can
be determined using

En =
{
μn

∂

∂μn
+ T

∂

∂T
− 1

}
P, (B12)
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FIG. 4. Pressure P(ζ ) as a function of inverse fugacity ζ =
exp(−μ/T ) in units of the pressure PF of a free Fermi gas. The blue
circles show the data from [3]. The solid line is our parametrization,
which has a discontinuity at ζ = ζc = 0.082.

where P(μn, T,w) is given in Eq. (B10) above. At O(w2) we
find that

P = 2
3En − 1

3ρsw
2. (B13)

At this order we also find that

P = 2
3

{
E − 1

2ρnv
2
n − 1

2ρsv
2
s

}
. (B14)

Like the results in Sec. II, the expressions (B13) and (B14)
are not given in terms of the primary variables (E, ρ, �j , �vs),
and the equation of state is needed to determine ρn, ρs, and �vn.
This can be accomplished by tabulating the equation of state
or by solving for ρs iteratively in �w.

APPENDIX C: EQUATION OF STATE

In this Appendix we describe a parametrization of the
equation of state of the unitary Fermi gas. We follow the basic
strategy described in Appendix B of [11], but we extend the
method to the regime below the critical temperature. We begin
by considering the pressure of a Fermi gas at rest. We write the
pressure as3

P(T, μ) = T λ−3 f (ζ ), (C1)

where λ = (2π/mT )1/2 is the thermal de Broglie wavelength
and ζ = exp(−μ/T ) is the inverse fugacity. In the regime
above the critical temperature Tc it is useful to represent the
function f (ζ ) in terms of the result for a free Fermi gas

f (ζ ) = h(ζ )pF (ζ ), pF (T, μ) = −Li5/2(−ζ−1). (C2)

The function h(ζ ) was measured in [3] (see Fig. 4). We follow
our previous work and parametrize h(ζ ) in the normal fluid
regime by a Padé approximant

h(ζ )

2
= ζ 2 + c1ζ + c2

ζ 2 + c3ζ + c4
(ζ > ζc = 0.082), (C3)

3Note that the function p(x) defined in Eq. (23) is given by p(x) =
(2π )−3/2x5/2 f [exp(−1/x)].

with

c1 = 1.321 09, c2 = 0.026 341,

c3 = 0.541 993, c4 = 0.005 660. (C4)

Here ζc = 0.082 is the critical value of the inverse fugacity
obtained in [3]. Once the pressure is given, other thermody-
namic observables are easily determined. We can write the
density and entropy density as

n(μ, T ) = λ−3g(ζ ), s(μ, T ) = λ−3k(ζ ), (C5)

where

g(ζ ) = −Li3/2(−ζ−1)h(ζ ) + ζLi5/2(−ζ−1)h′(ζ ), (C6)

k(ζ ) = −[ln (ζ )Li3/2(−ζ−1) + 5
2 Li5/2(−ζ−1)]h(ζ )

+ ζ ln (ζ )Li5/2(−ζ−1)h′(ζ ). (C7)

Other thermodynamic functions can be computed by taking
additional derivatives. For example, the specific heat is given
by

cV = T

V

∂S

∂T

∣∣∣∣
V

= T

[
∂s

∂T

∣∣∣∣
μ

− [(∂n/∂T )|μ]2

(∂n/∂μ)|T

]
. (C8)

The parametrization in Eq. (C3) is quite accurate, even at
temperatures below Tc. However, T = Tc is a genuine critical
point and the parametrization should exhibit a nonanalyticity
at ζ = ζc. Furthermore, Eq. (C3) does not very accurately
describe derivatives of the pressure in the regime ζ < ζc.
In particular, the entropy density is unphysical for small
values of ζ .

In order to address these issues we employ a separate
fit of the pressure in the regime ζ < ζc. We have chosen
a physically motivated model of the pressure, which is of
the form

P(μ, T ) = 23/2μ5/2m3/2

15π2ξ 3/2
+ π2T 4

90

(
3m

2μ

)3/2

+ Aμ5/2m3/2

√
T

μ
e−μB/T . (C9)

Here the first term is the zero-temperature pressure expressed
in terms of the Bertsch parameter ξ = 0.376. The second term
is the contribution of phonons in the superfluid phase (see,
for example, Ref. [34]). The third term takes into account
thermally excited fermionic quasiparticles, where A and B are
treated as fit parameters. The structure of this term is taken
from mean-field calculations of the pressure in the BCS limit
(see [35]). We fix the values of A and B by requiring the
pressure and density to be continuous (but not differentiable)
at ζ = ζc. This procedure ensures that the entropy density is
continuous as well. We obtain

A = 4.6699, B = 2.154 36. (C10)

Note that we have not attempted to reproduce the exact critical
behavior of the equation of state, which is expected to be that
of the three-dimensional O(2) model. In a harmonic trap, the
critical region is only a narrow shell in coordinate space and
critical behavior is difficult to observe.
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FIG. 5. Entropy per particle S/N as a function of temperature
in units of Fermi temperature T/TF . Here TF is the local Fermi
temperature of the gas, defined by kBTF = k2

F /2m, with k3
F = 3π 2n.

The data points are from [3].

In terms of the functions f (ζ ) and g(ζ ) defined in Eqs. (C1)
and (C5), the low-temperature model of the equation of
state is

fs(ζ ) = 25/2(2π )3/2

15π2ξ 3/2
[−ln (ζ )]5/2 + π2(2π )3/2

90

(
3

2

)3/2

× [−ln (ζ )]−3/2 + A(2π )3/2[ln (ζ )]2ζ B, (C11)

gs(ζ ) = 25/2(2π )3/2

6π2ξ 3/2
[−ln(ζ )]3/2 − π2(2π )3/2

90

(
3

2

)5/2

× [−ln(ζ )]−5/2 − A(2π )3/2

× [2 + Bln(ζ )]ln(ζ )ζ B, (C12)

where fs(ζ ) = f (ζ < ζc) and gs(ζ ) = g(ζ < ζc). Equations
(C1)–(C3) and (C11) define our equation of state. To illustrate
the accuracy of this parametrization, we show in Fig. 4 the
pressure as a function of ζ and in Fig. 5 the entropy per parti-
cle as a function of T/TF , both compared to the experimental
results of Ku et al. [3].

In fluid dynamics we have to reconstruct ζ from the density
and pressure of the gas. For this purpose we consider the
function

F (ζ ) = 2 f (ζ )3/2

g(ζ )5/2
, (C13)

where f (ζ ) and g(ζ ) are defined piecewise for ζ larger and
smaller than ζc. The function F (ζ ) is proportional to the
dimensionless ratio (mP)3/2/n5/2. We have

ζ = F−1

(
2

(2π )3/2

(mP)3/2

n5/2

)
. (C14)

The function F (ζ ) is defined so that F (ζ � ζc) � ζ , and as a
result F−1(x � xc) � x. We show F−1(x) for all x in Fig. 6.
Note that there is a minimum value of x, given by x0 = F (0).
In practice, we employ parametrization of F−1(x). This func-
tion is also defined piecewise for x > xc (corresponding to
T > Tc) and x < xc (the regime T < Tc), where xc = 0.1285.

F
-

1
(x

)
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0.01
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0.50
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x

FIG. 6. Plot of the function ζ = F−1(x) that determines the in-
verse fugacity in terms of a dimensionless ratio of the pressure
and the density, x ∼ (mP)3/2/n5/2. The blue solid line shows the
two-component fit to the pressure and density. The green dashed
horizontal line is ζc = 0.082 and the orange dotted line is the high-
temperature limit F−1(x) � x. The gray band is a fit to F−1(x)
described in the text.

For x > xc we again use a Padé approximant

F−1
fit (x) = x

1 + h1/x + h2/x2

1 + h3/x + h4/x2
(x > xc = 0.1285), (C15)

with

h1 = 1.1601, h2 = −0.0927,

h3 = 0.2119, h4 = 0.077 29. (C16)

In the superfluid regime x < xc we write

F−1
fit (x) = ζ fit

c

{
1 −

( xc − x

xc − x0

)3/2
}2/3

, (C17)

with

ζ fit
c = 0.077 32, xc = 0.1285, x0 = 0.0775. (C18)

The function F−1(x), together with the fit given above, is
shown in Fig. 6.

Finally, given the local fugacity, we have to determine the
temperature and chemical potential of the fluid. In the high-
temperature limit this is straightforward; we can use T = P/n.
In the general case we can write

T = G(x)
P

n
, (C19)

where G(x) is a correction factor, given by

G(x) = g(ζ (x))
f (ζ (x))

= g(F−1(x))
f (F−1(x))

. (C20)

The function G(x) extracted from our parametrization of the
pressure and density is shown in Fig. 7. We note that for x >

xc the function G(x) is close to the high-temperature limit G =
1. In the low-temperature regime x < xc the correction factor
G(x) drops very steeply, with G(x0) = 0 at x0 = 0.0775. This
behavior results in a simple two-component fit, similar to the
one for F−1(x). We write

Gfit (x) = 1 + d1/x + d2/x2

1 + d3/x + d4/x2
(x > xc = 0.1285), (C21)
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FIG. 7. Temperature correction factor G(x) = P/nT as a func-
tion of the dimensionless variable x ∼ (mP)3/2/n5/2. The blue solid
line shows the two-component fit to the pressure and density. The
green dotted horizontal line is the high-temperature limit G = 1 and
the orange dashed line shows the critical value Gc. The gray band is
a fit to G(x) described in the text.

with

d1 = 1.8052, d2 = −0.0022,

d3 = 1.3668, d4 = 0.1179. (C22)

In the superfluid regime x < xc we write

Gfit (x) = Gfit
c

{
1 −

( xc − x

xc − x0

)4
}1/4

, (C23)

with Gfit
c = 0.7944.

As explained in the main text, in the superfluid phase there
is an additional thermodynamic function, the superfluid mass
density ρs(μ, T ). The superfluid mass fraction was deter-
mined in [33] (see also the recent work in [20]). We show
the results of [33] in Fig. 8. A simple quasiparticle model for
these results is discussed by Baym and Pethick [36]. Here we

s/
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FIG. 8. Superfluid mass fraction ρs/ρ as a function of the tem-
perature T in units of the local Fermi temperature TF . The points
show the data from [33] and the line shows the fit discussed in the
text. Note that the data points have uncertainties of order 10%, in
both T/TF and ρs/ρ, that are not shown here.
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FIG. 9. Entropy density over superfluid density (solid line) and
entropy density over total density (dashed line) in the superfluid
regime, plotted as a function of the inverse fugacity ζ .

use an even simpler parametrization, given by

ρs

ρ
= 1 −

( T

Tc

)9/2

, (C24)

where Tc is the critical temperature. This parametrization is
not directly induced by a physical model, but is numerically
close to the theory of Baym and Pethick. Note that the su-
perfluid density of a dilute Bose gas scales as ρs/ρ = 1 −
(T/Tc)3/2. Finally, based on this result, we can compute the ra-
tio of the entropy density over the normal fluid density, which
enters the equation for the acceleration of �w [see Eq. (40)].
The result is shown in Fig. 9.

APPENDIX D: TRAPPED FERMI GAS

A trapped Fermi gas in thermal equilibrium is a solution of
the hydrostatic equation. As explained in Sec. V, in both the
normal and the superfluid regime the solution is given by

n(�x, t ) = n(μs(�x), T ), μs(�x) = μc − Vext (�x). (D1)

In the experiment we consider trapped clouds with a given
number of particles N at a fixed temperature T or total energy
E . Given N and T , the central inverse fugacity ζ0 = ζ (0) is
fixed by the condition

3

(2π )3

(
T

T trap
F

) ∫
d3x g

(
ζ0 exp

(
x2

2

))
≡ 1, (D2)

where T trap
F = 3N1/3ω̄ is the Fermi temperature of the trap.

Once ζ0 is determined the total energy can be computed using
the virial theorem. Making use of the virial theorem, we can
calculate the energy of the trapped gas

E

NE trap
F

=
(

T

T trap
F

)3
∫

d3x x2g
(
ζ0 exp

(
x2

2

))
∫

d3x g
(
ζ0 exp

(
x2

2

)) . (D3)

Figure 10 shows E/NE trap
F as a function of T/T trap

F for a
harmonically trapped Fermi gas. The critical temperature and
energy, that is, the values of T and E at which superfluidity
appears at the center of the trap, are

Tc/T trap
F = 0.222, Ec/NE trap

F = 0.695. (D4)
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FIG. 10. Energy versus temperature for a harmonically trapped
Fermi gas. The energy is given in units of NE trap

F , where E trap
F =

3N1/3ω̄. The temperature is given in units of T trap
F = E trap

F (where
kB = 1). The points are computed from our parametrization of the
equation of state and the dotted line is an interpolating function.
The dashed diagonal line corresponds to the high-temperature limit
E = 3

2 T . The horizontal and vertical lines indicate the critical values
Tc/T trap

F = 0.222 and Ec/E trap
F = 0.695, respectively.

The zero-temperature limit of the energy is E0/NE trap
F =

(3
√

ξ )/4 = 0.460.
An example of the density profile of a harmonically

trapped Fermi gas in the superfluid regime is shown in Fig. 11.
In this example the inverse fugacity at the trap center is ζ0 =
0.05, corresponding to a central temperature T/TF = 0.13.
We note that there is a two-fluid mixture in the core. The
superfluid appears at some critical radius xc, but the total
density only shows a very mild nonanalyticity at xc. In the
figure the position x is shown in dimensionless units x̄ = x/x0

n,
n n

,n
s
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FIG. 11. Density profile of a harmonically trapped Fermi gas
below the critical temperature at which superfluidity appears at the
center of the trap. We show the total (blue solid line), normal (orange
dashed line), and superfluid (green dotted line) densities n, nn, and ns,
respectively, in units of λ−3 as a function of x in units of the length
x0 defined in the text. Here the central inverse fugacity was chosen as
ζ0 = 0.05.

with

x0 =
[

2

3

(3N )1/3

mω̄

]1/2

. (D5)

Similar dimensionless units can be employed for time t̄ = t/t0
with t0 = ω̄−1 and velocity v̄ = v/v0 with v0 = t0/x0. In our
hydrodynamic simulations we also use dimensionless vari-
ables for thermodynamic quantities, such as density n̄ = n/n0,
pressure P̄ = P/P0, temperature T̄ = T/T0, and viscosity η̄ =
η/η0,

n0 = x−3
0 , P0 = mω̄2x−1

0 , T0 = mω̄2x2
0, η0 = mω̄x−1

0 .
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