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Pattern formation of quantum Kelvin-Helmholtz instability in binary superfluids
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We study theoretically the nonlinear dynamics induced by shear-flow instability in segregated two-component
Bose-Einstein condensates in terms of the Weber number, which is defined by extending the past theory on
the Kelvin-Helmholtz instability in classical fluids. Numerical simulations of the Gross-Pitaevskii equations
demonstrate that dynamics of pattern formation is well characterized by the Weber number We, clarifying the
microscopic aspects unique to the quantum fluid system. For We � 1, the Kelvin-Helmholtz instability induces
flutter-finger patterns of the interface and quantized vortices are generated at the tip of the fingers. The associated
nonlinear dynamics exhibits a universal behavior with respect to We. When We � 1 in which the interface
thickness is larger than the wavelength of the interface mode, the nonlinear dynamics is effectively initiated by
the counter-superflow instability. In a strongly segregated regime and a large relative velocity, the instability
causes transient zipper pattern formation instead of generating vortices due to the lack of circulation to form
a quantized vortex per a finger. In a weakly segregating regime and a small relative velocity, the instability
leads to the sealskin pattern in the overlapping region, in which the frictional relaxation of the superflow cannot
be explained only by the homogeneous counter-superflow instability. We discuss the details of the linear and
nonlinear characteristics of this dynamical crossover from small to large Weber numbers, where microscopic
properties of the interface become important for the large Weber number.
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I. INTRODUCTION

Hydrodynamic instability in superfluids is one of the im-
portant topics in a research field of quantum fluids, being
deeply related with a generation mechanism of quantum tur-
bulence [1]. The Kelvin-Helmholtz instability (KHI), one of
the fundamental instabilities in classical hydrodynamics, oc-
curs when two phase-separated fluid components undergo a
shear flow beyond the critical relative velocity [2,3]. The KHI
in quantum fluids, referred to as quantum KHI (QKHI), has
been studied in superfluid helium [4–6], atomic Bose-Einstein
condensates (BECs) [7–10], and nuclear superfluids in a neu-
tron stars [11]. A cold atomic BEC is a versatile system to
study the hydrodynamic instability and the associated nonlin-
ear dynamics because ideal configurations suitable to study
the relevant problems can be prepared in a well-controlled
manner; for example, a flat interface between different su-
perfluids can be prepared by using binary BECs with tunable
interatomic interactions [12–15]. The interface dynamics, the
hydrodynamic instabilities, and the nonlinear dynamics in
immiscible two-component BECs have been studied in some
papers [16–31]. Even for the miscible case, the binary BECs
exhibit the countersuperflow instability (CSI) [32], which re-
sults in a train of solitons in a one-dimensional (1D) case or
the complicated turbulent structure in two-dimensional (2D)
or three-dimensional (3D) systems [33–37].

The linear stability analysis of stationary flowing states in
immiscible binary superfluids can be explored in the hydro-

dynamic model based on the low-energy effective action of
a quantized interface excitation, i.e., a ripplon. In a previous
study [7], the QKHI of a thin interface of strongly segregated
binary BECs has been studied. The nonlinear stage of the evo-
lution has shown that, just above the critical relative velocity,
the initial flat interface between the two condensates deforms
into sawtooth waves and generates singly quantized vortices
on the peaks and troughs of the waves. The subsequent work
addresses the stability analysis and resulting nonlinear dy-
namics with increasing the interface thickness to the miscible
limit, revealing the crossover behavior from the KHI to the
CSI [8].

In this work, we study theoretically the nonlinear evolu-
tion in immiscible two-component BECs with a shear flow
in a wide range of system parameters. The characteristics of
the nonlinear dynamics is summarized in the phase diagram
parametrized by the relative velocity and the intercomponent
coupling strength. We find that the comparison relation of the
two important scales, namely, the wavelength of the unsta-
ble interface excitations and the thickness of the interface,
determines the boundary of different regimes of nonlinear
evolution of the QKHI. We introduce the Weber number We,
a dimensionless quantity given by the ratio of the inertial
force to the surface tension and extended to the segregated
superfluids, to characterize the dynamics of the QKHI. This
number is related to the ratio of the two above-mentioned
length scales, separating the dynamical behavior between the
universal macroscopic regime and the microscopic one. For
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relatively small Weber number less than unity, the interface
wave evolves to elongated flutter-finger patterns, as seen in the
classical fluid dynamics. The fingers are disintegrated through
the creation of quantized vortices at each tip of the fingers,
supported by the fact that the vorticity along the interface
with respect to one wavelength of the unstable wave is larger
than a single quantum circulation κ = h/m. When the Weber
number is typically larger than unity, the microscopic aspect
of the interface structure becomes important in the nonlin-
ear dynamics. We clarify the detailed characteristics of the
pattern-forming dynamics from not only the simulations of
the GP equations but also the linear stability analysis based on
the Bogoliubov-de Gennes (BdG) equations. For the strongly
segregated regime, a small-amplitude interface wave forms
a zipper pattern and does not emit the quantized vortices
at the tip of the wave, since the vorticity per wavelength is
not enough to evolve a single vortex. However, the nonlinear
dynamics causes multistep collapses of the interface, leading
eventually to the turbulent state. When the intercomponent
coupling strength is decreased to the miscibility limit, the in-
terface instability exhibits a crossover from the KHI dynamics
to the CSI-like behavior, as discussed in Ref. [8]. The analysis
reveals the mechanism of frictional relaxation of the shear
flow by forming a “sealskin” pattern through sheared CSI at
the inhomogeneous overlapping region.

This paper is organized as follows. In Sec. II, we intro-
duce the formulation and the setup of the problem to study
the QKHI in phase-separated two-component BECs. Several
characteristic length scales are introduced in order to classify
different regimes of the nonlinear dynamics. In Sec. III, we
introduce the Weber number and construct the phase diagram
(Fig. 2) of the nonlinear dynamics. After that, we show the
simulation results of the nonlinear dynamics associated with
the shear-flow instability in Secs. IV and V for the small and
large Weber numbers, respectively. Section VI is devoted to
the conclusion and discussion.

II. FORMULATION

We first give a brief introduction of the QKHI in phase-
separated two-component BECs. The details are found in
Refs. [1,7,8]. Also we introduce the several length scales of
the problem; in particular, the wavelength of the unstable
interface mode and the interface thickness play an important
role to understand the nonlinear dynamics.

A. Equations of motion

We consider two-component BECs in a homogeneous
space without an external potential. In the mean-field theory
at low temperatures, the two-component BECs are described
by the condensate wave functions � j (r, t ) = √

n j (r, t )eiθ j (r,t )

with the particle densities n j and phases θ j , obeying the cou-
pled GP equations [38]

ih̄
∂� j

∂t
=

(
− h̄2∇2

2mj
− μ j + g j |� j |2 + g j j |� j |2

)
� j

( j, j = 1, 2, j �= j). (1)

Here, mj is the atomic mass and g1, g2, and g12 are the cou-
pling constants in the nonlinear terms which are related to the
s-wave scattering lengths a1, a2, and a12, respectively, as g j =
4π h̄2a j/mi and g12 = 2π h̄2a12(m1 + m2)/m1m2. Throughout
this work, we consider immiscible BECs under the condition
g12 >

√
g1g2 [39,40]. The immiscible ground state for the

binary condensates with an equal particle number consists of
the configuration in which one component occupies half of
the space and the other does the rest; the stable interface is
formed between them. We assume that the first and second
components are located in y � 0 and y � 0, respectively, and
the interface between them is located near the y � 0 plane.

The QKHI can be studied by making the linear stability
analysis around the stationary state which has the straight
interface at y = 0 and the shear flow velocities v j = Vj x̂ with
V1 = VR/2 and V2 = −VR/2, the relative velocity being de-
termined as VR = |v1 − v2| along the x axis. Substituting the
form � j (r) = φ j (y)eimjVj x/h̄, the profile φ j (y) can be calcu-
lated by solving the time-independent GP equations(

− h̄2

2mj

∂2

∂y2
− μ j + mjV 2

j

2
+ g j |φ j |2 + g j j |φ j |2

)
φ j = 0.

(2)

Far from the interface, the bulk density for the jth compo-
nent is simply given by the constant n0 j = [μ j − mjV 2

j /2]/g j ,
which is used as a boundary condition for the solution of
Eq. (2).

B. The Kelvin-Helmholtz theory

There is one-to-one correspondence between classical hy-
drodynamics and the present system when one introduce the
scalar velocity potential � j = (h̄/mj )θ j , the velocity field
being given by v j = ∇� j . From the GP equation (1), the
equation of motion of � j is written as

∂� j

∂t
+ v2

j

2
− μ j

m j
+ Pj + Qj = 0, (3)

where Pj = g jn j/mj and Qj = −h̄2(∇2√n j )/(2m2
j
√

n j ) rep-
resent the pressure function and the quantum pressure,
respectively. When the quantum pressure term is neglected,
we have a problem similar to the classical hydrodynamics
of the KHI. The detail of the analysis has been described in
Refs. [7,8]. Note that, in the standard problem in classical
hydrodynamics, the interface between two species of fluids
is stabilized by the gravitational potential, which is absent in
our system.

We suppose that a position of the time-dependent curved
interface can be described by the displacement field y =
η(x, z, t ) and neglect the z dependence by assuming the uni-
formity along the z axis. A small-amplitude interface wave is
represented by the localized small fluctuation of the velocity
potential δ� j = � j − Vjx and the small displacement η with
the form

δ� j = Aje
(−1) j kz cos (kx − ωt ), (4)

η = B sin (kx − ωt ), (5)
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where k and ω represent the wave number and the frequency
of the interface wave, respectively. The dispersion relation of
the interface wave is written as [7,8,41]

ω = (ρ1V1 + ρ2V2)k

ρ1 + ρ2
± 1√

ρ1 + ρ2

√
αk3 − ρ1ρ2

ρ1 + ρ2
V 2

R k2.

(6)

Here, k > 0 and ρ j = mjn0 j is the bulk mass density. The
parameter α stands for the surface tension of the interface,
corresponding to the excess energy due to the presence of the
interface [42] and being determined later as a function of g12.

When the inside of the square root in Eq. (6) becomes
negative, the imaginary part Im(ω) appears and the shear flow
states are dynamically unstable. From Eq. (6), the instability
occurs for the nonzero relative velocity VR > 0. The imagi-
nary part Im(ω) appears in a range 0 < k < k+ with

k+ = ρ1ρ2

α(ρ1 + ρ2)
V 2

R . (7)

The wave number of the most unstable (fastest growing) mode
of the QKHI corresponds to

k0 = 2

3
k+ = 2ρ1ρ2

3α(ρ1 + ρ2)
V 2

R , (8)

which means that Im(ω) takes a maximum at k = k0.
In the following, we confine ourselves to the situation

without the center-of-mass velocity of the two components,
corresponding to the vanishing first term of the right-hand
side of Eq. (6). The plus-minus sign represents the conjugate
modes propagating to the opposite directions; we shall take
only the plus sign below. If the center-of-mass velocity is
alive, there is another critical velocity associated with the
Landau instability given by the condition ω < 0. Although
this instability is significant when the system is subject to an
energy dissipation as in the system of the superfluid helium
[4–6], we will not consider this instability in the following by
supposing the cold atom system which is almost isolated from
a surrounded environment.

C. Characteristic length scales

Before the numerical simulations of the real time dynam-
ics, it is instructive to understand the aspect of the dynamical
instability and expected nonlinear dynamics by comparing
the several characteristic length scales in our problem. In the
following, we confine ourselves to the parameters as m1 =
m2 = m and g1 = g2 = g. We also assume the condition of
the chemical potential as μ1 − mV 2

1 /2 = μ2 − mV 2
2 /2 ≡ μ.

Then, the number density in the bulk region is n1 = n2 =
μ/g ≡ n0 and the mass density is written as ρ j = mn0 =
mμ/g ≡ ρ.

The first characteristic length scale is the healing length

ξ = h̄√
2mμ

, (9)

which determines the scale with which the amplitude of the
wave function of the one component heals from zero to the
bulk when the other component is absent. The healing length
comes from a purely quantum origin, which is a balance
between quantum pressure term and the nonlinear coupling

FIG. 1. The density profiles of the stationary solution of Eq. (2)
are shown in the left panel of panel (a) for � = 1, 10−1, 10−2, and
10−3 from the start to the end of the arrow. Here, the red solid
and blue dashed curves correspond to n1 = |φ1|2 and n2 = |φ2|2,
respectively, and their profiles are symmetric with respect to y = 0.
The right panel shows the enlarged view of the left one around y = 0.
Panels (b) and (c) show the surface tension α̃ = α/(2P0ξ ) and the
thickness of the interface ld/ξ as a function of � = (g12/g) − 1,
respectively, by the (red) solid curves. In panel (b), we also plot
the analytic formula of αweak [Eq. (12)] and αstrong [Eq. (13)] by the
thin dashed line and the thin dotted curve, respectively. In panel (c),
we draw the fitting line ld/ξ = 0.914�−1/2. The panel (d) shows the
distribution of the surface tension density divided by α for � = 10−1

(red solid curve), 10−2 (blue dashed curve), and 10−3 (green dotted
curve).

constant, providing a length scale not found in classical hy-
drodynamics. In this work, all lengths are scaled by ξ . By
scaling the coordinate and the wave function as r → ξr and
φ j → √

n0φ j , the stationary GP equation (2) has a single
parameter g12/g. Figure 1(a) shows the density profile of
the stationary state for several values of the parameter � ≡
(g12/g) − 1. Although the interface is located at y = 0, there
is a thickness of the interface since the density of the one
component penetrates into that of the other component. The
thickness of the interface is ≈ξ for � 	 1, while it extends
over from dozen to hundreds of times of ξ as � → 0. This
thickness is determined more precisely in the following.

The second length scale is the wavelength of the growing
interface displacement. We take this value as the inverse of the
wave number of the most unstable mode:

λ0 = 2π

k0
= 6πα

ρV 2
R

, (10)
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k0 being given by Eq. (8) with ρ = ρ1 = ρ2. The form of
the surface tension α can be calculated by the excess ground
potential per unit area due to the presence of the interface as
[42,43]

α =
∫ +∞

−∞
dy

∑
j=1,2

h̄2

m

∣∣∣∣dφ j (y)

dy

∣∣∣∣
2

≡
∫ +∞

−∞
dyσ (y). (11)

In Fig. 1(b), we show the value of α as a function of
� ≡ g12/g − 1 > 0, where the numerical solution of φ j (y)
obtained from Eq. (2) is used to calculate Eq. (11). The ap-
proximate analytic formula of α without an external potential
has been obtained as

αweak � 2P0ξ

√
g12

g
− 1 (12)

in the weakly segregating limit g12/g � 1 [44] and

αstrong �4P0ξ

[
2
√

2

3
− 0.514

(
g12

g

)−1/4

− 0.110

(
g12

g

)−3/4

− 0.134

(
g12

g

)−5/4]
(13)

in the strongly segregating limit g12/g 	 1 [42,43]. Here,
P0 = μ2/2g represents the equilibrium pressure. We confirm
that the two analytical formulas can describe well the numer-
ical result for the corresponding limits.

The surface tension density σ (y) in Eq. (11) is localized
around the position of the interface, as shown in Fig. 1(d).
From the distribution of σ (y), we can obtain the third length
scale

ld =
√∫

dy[y2σ (y)]

α
, (14)

which represents the thickness of the interface. Figure 1(c)
shows ld as a function of �. In the weakly segregating limit
(� � 1), we have ld ∼ ξ/

√
�, consistent with the analyti-

cal evaluations in Refs. [40,42,44], where the total density
n1 + n2 is almost uniform. With increasing � in the strongly
segregating regime (� 	 1), ld takes a minimum ld ≈ 0.67ξ

around � � 10 and approaches slowly the value ≈0.8ξ ,
which is obtained in the limit � → ∞. The latter behavior
is due to the fact that, after the interface becomes thinnest, the
condensate domains are repelled further to get rid of the over-
lapping region completely, which leads to the imperceptible
increase of ld . At � → ∞ the total density at the interface
becomes zero and the profile is given by the dark-soliton
solution [42].

III. PHASE DIAGRAM BASED ON WEBER NUMBER

A. Weber number

In the classical hydrodynamics, when discussing the inter-
face dynamics of the phase separated fluid, the Weber number

We = ρV 2
R L

α
, (15)

which is the ratio of the inertial force of the fluid to the
surface tension force, is a useful dimensionless quantity to

characterize the nonlinear dynamics [45,46]. The Weber num-
ber includes the characteristic length L, which is taken as
the wavelength of the initial perturbation in the classical
case.

In our simulations below, since the dynamical instability is
caused by the random noise, L is naturally given by λ0. Then,
the Weber number is simply given by We = 6π (=const.)
from Eq. (10), which is not suitable to classify the dynamics
of our problem. Instead of using λ0, we take here the interface
thickness as the length scale L = ld ; the Weber number in our
problem is thus written as

We = 6π ld
λ0

. (16)

This definition is generally applicable to any system in terms
of the thickness of the interface between two separated fluids.

The thickness ld depends on the system parameters through
the internal structure of the interface described by the “micro-
scopic theory” beyond the hydrodynamic theory of KHI. In
our case, the structure and thus the thickness are uniquely de-
termined by the dimensionless parameter �. In this sense, the
definition of the Weber number as Eq. (16) enables us to ac-
cess more microscopic behavior of the instability beyond the
KH theory. In fact, according to the conditions under which
the KH theory holds, the hydrodynamic treatment breaks
down when λ0 is similar or less than ld ; namely, We > 1.
We demonstrate that the microscopic behavior described by
quantum fluid dynamics becomes prominent typically for
We > 1.

B. Phase diagram

Here, we summarize the prospect of the nonlinear dynam-
ics in terms of Weber number by comparing the simulation
results in past works [7,8,29]. We show the phase diagram of
the dynamics in the �-V 2

R plane in Fig. 2. Here, VR is scaled
by the characteristic velocity V ≡ ξμ/h̄ = √

μ/(2m). Some
contours of the typical values of We are also shown. Since
Eq. (16) means V 2

R ∝ α/ld for a given We, the contour lines
of We have a behavior V 2

R ∝ � in the weakly segregating limit
with αweak ∝ �1/2 and ld ∝ �−1/2.

The (red) solid curve k0ld = 1 [We = 4 from Eq. (16)]
gives roughly the boundary of two characteristic nonlinear
dynamics. For k0ld � 1 or We � 1 (the lower-right region
of the diagram) the interface is thin and the linear sta-
bility is well described by the KH theory. On the other
region with k0ld � 1 or We � 1, the thickness of the in-
terface is larger than the wavelength of the excitation so
that the resulting instability cannot be described by the
KH theory in which the internal structure of the interface
is neglected. We also depict two other (blue dashed and
green dotted) curves that classify the different dynamical
regimes associated with the characteristic pattern formation,
which are derived in the following sections. Note that these
curves provide rough boundaries, not rigid ones, between the
displayed patten formation, since the dynamical behavior ex-
hibits a crossover-like transition with respect to the parameter
change.

There are some studies showing the simulation results
of the nonlinear dynamics of the KHI. Takeuchi et al. [7]
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FIG. 2. The expected phase diagram of the dynamical pattern
formation by the shear flow instability in the �-V 2

R plane. The re-
sulting pattern is schematically depicted in each region, where the
gray region represents the interface between the binary superfluids.
We also show the contours of the typical Weber number We by the
dashed curves. The red solid curve represents the relation k0ld = 1,
which divide roughly the two characteristic regions of the instability.
For k0ld � 1 (We � 1) corresponding to the right side of the red
curve, the instability of the thin interface is well described by the
classical KHI. In the left side with k0ld � 1 (We � 1), the interface
becomes thick so that the KH theory is not directly applicable. The
green dashed-dotted curve shows the relation νκ ≡ λ0VR/2κ = 1;
see the discussion in Sec. IV C. The orange dashed double-dotted
line represents Ma = 1 with the Mach number Ma of the bulk flow,
which is supersonic above this line. The blue dashed curve shows the
relation kCSIloverlap = 1; see the discussion in Sec. VI. The parameter
points given in the previous papers are shown by the symbols: �
Fig. 1 in Ref. [7], � Fig. 8 in Ref. [29], � Fig. 2(a) in Ref. [8], and ×
Fig. 2(b) in Ref. [8]. The black dot and the dashed arrows represent
the parameter range along which we show the numerical results in
the following sections.

considered the KHI in a strongly segregated condensates with
� = 9 and VR = 0.98×√

2V , where the authors also intro-
duced an external potential to sustain the stable interface.
The simulation results demonstrated that the initially growing
sinusoidal wave deformed into a sawtooth wave. The vorticity
increased on the edges of the sawtooth waves, developing as
a quantized vortex and being released into each bulk. The
subsequent paper by Suzuki et al. [8] showed that the dy-
namics for VR = √

2×10−1V and two different values of �,
namely � = 10−2 and � = 10−5, which aimed to discuss the
dependence of the interface thickness of the nonlinear dynam-
ics. There, the dynamics exhibits a crossover-like behavior
between the KHI and the CSI; in the latter, the instability
of the density wave arises in the overlapping region of the
two components. Finally, Kovyakov et al. [29] showed the

dynamics for � = 10−2 and VR = V/3.1 They observed that,
after the periodic interface wave is excited, the vorticity ac-
cumulated on the mode with the largest wavelength in the
system to make a vortex bundle in the latter stage, which
is similar to the role-up pattern seen in the classical KHI.
We have also observed similar role-up patterns in the latter
stage of the instability for different parameter regimes in our
simulations. This behavior is conventionally explained by the
fact that a bundle of quantized vortices can be regarded as a
coarse-graining vortex in classical fluids. This scenario would
be universal in the latter stage of quantum KHI when the sys-
tem can form a large vortex bundle without external potentials
and we thus focus on the nonlinear dynamics in the early stage
before forming the roll-up patterns.

IV. UNIVERSAL MACROSCOPIC REGIME (We � 1)

In this section and the next one, we demonstrate the non-
linear dynamics by numerically solving the time-dependent
GP equation (1) to corroborate the phase diagram of Fig. 2.
We study the dynamics in the 2D system by assuming the
uniformity along the z axis and do not consider a contribution
of an external trap. Here, we show the dynamics of the inter-
face for We � 1, namely, the lower-right region of Fig. 2 (the
large � and the small VR). In this regime, referred to as the
universal macroscopic regime hereafter, the interface thick-
ness ld is smaller than the wavelength λ0 of the KH theory;
the nonlinear dynamics has a similarity with the KHI-induced
dynamics in classical hydrodynamics,

The numerical calculations are done under the following
procedures. We first solve Eq. (2) through the imaginary time
propagation to obtain the stationary solution φ j (y). Setting the
initial wave function as � j (x, y, t = 0) = φ j (y)eimVj x/h̄ with
Vj = (−1) j−1VR/2, we then solve Eq. (1) to see the time
developments of � j (x, y, t ) for given values of VR and �,
where the simulations are done in a 2D x-y system with the
size [−Lx,y,+Lx,y]. The periodic boundary condition is given
for the x direction along which the condensates initially have
uniform counterflow, while the Neumann boundary condition
is given at y = ±Ly. The system size (Lx, Ly) is prepared
properly for each parameter set enough to omit the influence
of numerical boundaries. To initiate the dynamical instability,
we give a small random noise (of the order 10−5) to the initial
wave functions. The movies of the dynamics can be seen in
the Supplemental Material [47].

A. Flutter-finger pattern

The dynamics can be visualized directly through the
profile of the condensate density. We show the density
difference �n = (n1 − n2)/n0 below, in which the bulk region
of the first (second) component corresponds to �n � 1 (−1),

1In Ref. [29] the initial wave functions for the component j = 1, 2
have phase factors e−i(−1) j q0x with the wave number q0. Thus,
the relative velocity is given by VR = 2h̄q0/m. The value of q0

is taken as q0 = 2.5a−1
z with the harmonic-oscillator length az =√

h̄/(mωz ). Then, VR/V = 2
√

2q0az
√

h̄ωz/μ = 4q0az/R0 with the
Thomas-Fermi radius R0. When q0az = 2.5 and R0 = 30 in Ref. [29],
we have VR/V = 1/3.

023312-5



KOKUBO, KASAMATSU, AND TAKEUCHI PHYSICAL REVIEW A 104, 023312 (2021)

FIG. 3. Snapshots of the unstable dynamics for VR/V = √
0.45 and � = 1.0, where the corresponding Weber number is We = 0.291. In

panel (a), the density difference �n = (n1 − n2)/n0 is depicted, in which the red (blue) region corresponds to the area where the density n1

(n2) is located. In panel (b), the profile of the phase θ1 of the first component is shown only in the region �n > 0; there is only noisy phase
fluctuations in the region �n < 0 since the amplitude n1 is almost zero there. A vortex is located at the endpoint of a branch cut (jump from
θ1 = −π to π ). The distributions of the vorticity ω in the x-y plane is shown in panel (c). The spatial region of the plot is −150ξ � x, y � 150ξ .
The time is represented by the dimensionless value gn0t/h̄ ≡ t̃ .

while the interface is distributed around �n = 0. Figure 3(a)
shows a typical dynamics of the condensate density for � =
1.0 and VR/V = √

0.45 ≈ 0.67. In this parameter, the insta-
bility begins to grow after t̃ ≡ (gn0/h̄)t � 800, where the
amplitude of the sinusoidal interface wave is monotonically
increased due to the exponential growth with Im(ω) �= 0 de-
scribed by Eq. (6). The wavelength given by the analytical
prediction of Eq. (10) is λ0 ≈ 64.9ξ , reasonable agreement
with the numerical result ≈60ξ in the panel at t̃ = 875
Fig. 3(a). Then, the sinusoidal wave develops finger patterns.
Although the formation of such a finger pattern has been seen
in the simulations of the classical fluid dynamics [45,46], the
subsequent nonlinear evolution exhibits a quite different be-
havior from that of the classical one. The fingers are elongated
gradually in the oblique direction and eventually disintegrate
into bubble-like domains of the condensates.

For We � 1, the eigenmode of the unstable excitation is
localized on the interface; the associated density modulation
occurs periodically along the interface [8]. This means that
the form of the excitation is sinusoidal in the early stage
of the instability. After the amplitude of the interface wave
becomes large to form a finger pattern, the finger regions are
pushed by the other counterflowing components, like a grass
fluttered in the wind. Thus, the fingers of the component 1
(2) grow along the upper left (lower right) direction in the
nonlinear stage of the evolution. We call this stripe pattern as
the “flutter-finger” pattern.

Figure 3(b) shows the corresponding phase profile θ1 =
arg(�1) of the first component. Each bubble-like domain con-
tains a quantized vortex, as seen in the panel at t̃ = 1500 of
Fig. 3(b), forming a coreless vortex [48,49] with the vortex
core filled by the density of the other component. Also, one
can see that the branch cuts are located near the tips of the
fingers of the �2 domain as precursors of the vortices. The
emission of the quantized vortices from the finger pattern is a
distinguishable feature from the classical problem.

B. Surface vorticity

The appearance of the finger patterns involves the char-
acteristic vorticity distribution, which eventually develops to
the quantized vortices. To show this, we introduce the mass
current velocity defined as

v = ρ1v1 + ρ2v2

ρ1 + ρ2
(17)

and the associated vorticity

ω = ∇ × v, (18)

which provide a useful description of vortices in the two-
component system [7,50]. In the 2D calculation, we are
concerned only with the z component as ω = ω(x, y)ez.

Figure 3(c) shows the distribution of the vorticity ω(x, y).
Initially, the vorticity is distributed uniformly along the
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interface, which forms a linear vortex sheet. The circulation
per a unit length along the sheet, denoted as ρ� , can be easily
calculated according to the Stokes theorem as

ρ� =
∫

dS · ω =
∫

d� · v = v1 − v2 = VR. (19)

Here, the area of the integral is taken as a rectangular enclos-
ing the vortex sheet and having a unit horizontal width and a
vertical width sufficiently larger than the interface thickness.
As shown in Appendix A, these vorticity distribution can be
understood according to the analogy to the electrostatic prob-
lem. Far from the interface, v is coincident with v j appearing
in Eq. (3), and if the time and spatial scale is slow, v satisfies
the Laplace equation. Then, the vorticity distribution ρ� on
the sheet has a one-to-one correspondence with that of an
electronic charge on a flat-plate conductor, being obtained
by solving the Laplace equations with the suitable boundary
condition.

This electrostatics analogy is approximately applicable to
our dynamic situation, in which the vorticity is accumulated at
the tip of each finger to form quantized vortices (see the panel
at t̃ = 1250) during the slow growth of the finger pattern. The
electrostatics predicts that a surface charge density becomes
larger on a sharp end of a charged object than that on the other
region [51]; see also the discussion in Appendix A. The accu-
mulation of the vorticity is thus enhanced as the fingers grow
and, when the local accumulated vorticity becomes compara-
ble to the single quantum circulation κ = h/m, the vortices
are eventually emitted from the tip and the fingers undergo
self-collapse. After the vortices are emitted, the vorticity on
the sheet is reduced even to negative values locally according
to the conservation of the vorticity.

The vorticity charged per a single interface wave is also
an important quantities to understand the pattern formation.
To make a vortex from a single finger, the vorticity per a half
of the unstable wavelength should contain the vorticity above
the quantum circulation κ = h/m. Since an interface per a
unit wavelength possesses a vorticity ρ�λ0 and two fingers
can grow from a single wave, the quantity λ0ρ�/(2κ ) ≡ νκ

determines whether an elongated finger possesses vorticity
enough to make a quantized vortex. Using the relation of
Eq. (19), we also plot the curve νκ = 1 in the diagram of
Fig. 2, whose behavior is almost coincident with the curve
We � 1. This is because the relation νκ = 1 can be written as
(VR/V )2 = 9α̃2/4, which has a similar dependence of We with
respect to � in the weakly segregating limit αweak ∝ �1/2. For
We < 1, in the right side of this curve, the vortex sheet in
one finger contains the vorticity enough to generate a single
quantized vortex. Then, the event of the vortex generation
takes place in the first growing process of the fingers. In the
other regime with We > 1, the initially growing hump of an
interface wave does not contain the vorticity enough to make
a vortex and the vortices cannot be emitted from the first
growth of the wave. These are clear distinctive features of the
late-stage dynamics in the QKHI compared with the classical
KHI. As seen in the next section, the multistep destabilization
is necessary to emit vortices from the interface region for
We > 1.

FIG. 4. Maximum length �max of the growing fingers before
the vortex emission. Panel (a) shows a single shot data of the time
development of the finger length � as well as that of the time
derivative of the intercomponent interaction energy Ė12 = dE12/dt
for VR/V = √

0.45 and � = 0.6. The length �max is extracted at the
moment when Ė12 starts to make a rapid chaotic oscillation, denoted
by the downward arrow. Panel (b) shows �max, an average with
five different initial conditions for a single plot, as a function of �

for VR/V = √
0.18 (red circles) and

√
0.45 (blue triangles), where

the error bars represent the standard deviation. The bottom panel
(c) shows �max as a function of the Weber number We, where �max

is scaled by ld . The green dashed line serves as a guide to the eye for
the We−1 dependence.

C. Universal scaling

To capture a character of the wave pattern formation, we
focus on the length of the fingers seen in the simulations.
Here, the finger length � is defined as the difference between
the amplitude at the highest top and that at the lowest bottom
of the interface wave, where the interface position is identi-
fied by zeros of the density difference �n. We extract the
maximum length �max at the moment when the first self-
collapse of the fingers takes place. The timing of the first
self-collapse is related to the time evolution of the total length
of the interface because the evolution changes qualitatively
after the vortex nucleation. The interface length is roughly
proportional to the intercomponent interaction energy E12 =
(1 + �)

∫
dr|�1|2|�2|2, since the two components overlap

only in the interface layer. The time derivative Ė12 = dE12/dt ,
shown in Fig. 4(a) as a typical example, indicates the first
exponential growth of the interface wave at t̃ ≈ 700 and the
subsequent nonlinear elongation of the fingers for 700 � t̃ �
1400. The growth of the fingers is suppressed by the creation
of the quantized vortices; a signal of the vortex creation can
be seen as an occurrence of a rapid chaotic oscillation of Ė12

and we take the value �max at this moment.
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Figure 4(b) shows the average �max taken from the five
simulations with a random initial noise. We find that the length
of the growing fingers can be elongated further with increas-
ing � for a fixed VR. For smaller VR, the maximum length
of the finger patterns increases rapidly with the increase in
�, where the measured finger length exhibits large error bars.
The growth time of the instability becomes extremely long in
the limit of � 	 1 and VR � 1, the numerical demonstration
being difficult there. As shown in Fig. 4(c), the results are
explained more clearly by plotting �max/ld with respect to
the Weber number, where the data are well described by the
We−1 behavior. Thus, Fig. 4(c) explains not only the fact
that the finger length decreases with We, but also the fact
that the Weber number can give a common index to character-
ize the nonlinear dynamics of the KHI for different parameter
values. For example, the qualitative behavior of the dynamics
is common between our Fig. 3 and Fig. 2(a) in Ref. [8], which
are done with the different system parameters but nearly equal
We. The behavior �max/ld ∝ We−1 implies �max ∝ λ0 from
Eq. (16), which means that the maximum amplitude of the
interface wave is as large as its wavelength.

V. MICROSCOPIC REGIME: We � 1

Next, we consider the dynamics of the interface by
increasing We much larger than unity. This regime, referred
to as the microscopic regime, corresponds to the condition
that the interface thickness ld is larger than the wavelength λ0

of the KH theory. We find that, even though We is common,
the nonlinear dynamics in this regime are qualitatively
different for strongly and weakly segregated cases in the
microscopic regime; we discuss separately these situations in
the following.

The KH theory is not applicable directly to this regime,
since it is based on the assumption of the thin interface thick-
ness compared with the other length scales. Thus, we analyze
the BdG equation numerically to see the interface instability
against a shear flow more microscopically. We linearize the
time-dependent GP equation (1) around the stationary solu-
tions φ0

j as

� j = [
φ0

j (y) + u j (y)eikx−iωt − v∗
j (y)e−ikx+iω∗t

]
eimVj x/h̄ (20)

to obtain the BdG equation

Ĥu = h̄ωu, (21)

Ĥ =

⎛
⎜⎜⎜⎜⎝

ĥ+
1 −g(φ0

1 )2
g12φ

0
1φ

0∗
2 −g12φ

0
1φ

0
2

g(φ0∗
1 )2 −ĥ−

1 g12φ
0∗
1 φ0∗

2 −g12φ
0∗
1 φ0

2

g12φ
0∗
1 φ0

2 −g12φ
0
1φ

0
2 ĥ+

2 −g(φ0
2 )2

g12φ
0∗
1 φ0∗

2 −g12φ
0
1φ

0∗
2 g(φ0∗

2 )2 −ĥ−
2

⎞
⎟⎟⎟⎟⎠,

(22)

where u = (u1, v1, u2, v2)T and

ĥ±
j = − h̄2

2m

[
∂2

∂y2
−

(
k ± mVj

h̄

)2]
− gn0 − mV 2

j

2

+ 2g
∣∣φ0

j

∣∣2 + g12

∣∣φ0
j̄

∣∣2
(23)

[ j̄ = 1(2) for j = 2(1)]. We numerically diagonalize the dis-
cretized BdG Hamiltonian Ĥ to calculate the eigenfrequency

ω for a given value of k, the wave number of the plane-wave
excitation along the translationally invariant x axis. The in-
terface mode is described by the eigenmodes [uj (y), v j (y)]
localized around the interface in the y direction. When the fre-
quency has a nonzero imaginary part Im[ω] �= 0, the system
is dynamically unstable.

In the previous study [8], the BdG spectrum was compered
between the miscible condensates with external gradient po-
tential and immiscible ones without potential in connection
with CSI. For comparison we use the dispersion relation of the
couterflowing miscible condensates in a homogenous system,
referred to as homogeneous CSI; the dispersion is given by
[32–34]

(h̄ω)2 = ε0(ε0 + 2gn) + ε2
R

± 2
√

ε0ε
2
R(ε0 + 2gn) + (g12n)2ε0, (24)

with ε0 = h̄2K2/(2m), εR = h̄k‖VR/2, and n = n1 = n2 is the
miscible condensate density. The wave number K = (k‖, k⊥)
consists of the components parallel and perpendicular to the
relative velocity V R. Here, we have denoted for clarity the
wave number parallel to V R as k‖ which corresponds to k
appearing before. Beyond a certain value of VR, h̄ω becomes
purely imaginary and the system is dynamically unstable. The
more information of the CSI is described in Ref. [34] and is
briefly summarized in Appendix B. We apply this formula
to our partially overlapping condensates in the immiscible
regime in the spirit of the local density approximation.

A. Zipper pattern formation

1. Development of the density and the phase

First, we show the simulation results of the GP equations in
the strongly segregating regime. The typical numerical results
are shown in Fig. 5, where we increase VR with fixed � = 1
from the parameters of Fig. 3. For VR/V = 2 in Fig. 5(a),
the initially growing interface wave forms a sawtooth shape.
Then, the sawtooth pattern transforms to a transient zipper
pattern, where each cusp is torn off from the hump and just
slides to merge with the next hump, instead of emitting the
vortices at the tip of the interface wave. After that, the dynam-
ics exhibits a recurrence of the sawtooth and zipper patterns
alternatively. However, the periodic pattern is disturbed in the
long-time nonlinear evolution, eventually evolving a large-
scale turbulent structure. A further increase in VR results in the
growth of the sawtooth pattern with a shorter wavelength, as
shown in Fig. 5(b) depicting the dynamics for VR/V = √

20.
The transient zipper pattern again results from the sliding
motion of the humps, and also there appears a density filament
in the bulk region [the panel at t̃ = 62.5 in Fig. 5(b)]. After the
zipper pattern and the filaments appear, the interface deforms
furthermore with larger length scales [the panel for t̃ = 75 in
Fig. 5(b)] and evolves the turbulent structure.

The absence of the vortex emission during the first growth
of the instability is due to the fact that νκ in these parameters is
less than unity; a half of the wavelength of the interface does
not contain enough vorticity to generate a single quantized
vortex. Figure 5(c) shows the evolution of θ1 = arg(ψ1) cor-
responding to Fig. 5(b). It is clear that the number of density
humps is incommensurate with that of the branch cuts that
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FIG. 5. Typical dynamics of the density difference �n in the case of strongly phase-separated condensate with � = 1.0 and the relative
velocity (a) VR/V = 2 (We = 2.58) and (b) VR/V = √

20 (We = 12.92). The red (blue) region corresponds to the area where the density n1

(n2) is located. The profile of the phase θ1 in the region with �n > 0, corresponding to panel (b), is shown in panel (c). The spatial region of
the plot is −25ξ � x, y � 25ξ .

will evolve to quantized vortices; see Fig. 3(b) for comparison.
This is consistent with νκ < 1 and thus each density hump
does not emit a vortex but forms the zipper pattern. In this
sense, the occurrence of the zipper pattern is a characteristic
phenomenon of strongly segregated condensates in the micro-
scopic regime.

Note that, in the case of Fig. 5(b), the Mach number in
the bulk region Ma = Vj/

√
μ/m = VR/(2

√
2V ) is more than

unity. Thus, the bulk flow is supersonic so that the density
filament can be identified as an appearance of a shock wave.
Usually, a Mach cone structure is generated by an obstacle
forced to move through a superfluid with supersonic velocity
[52–55]. Since there is no forced obstacle in our case, it does
not lead to the clear formation of a Mach cone.

2. The results of the Bogoliubov-de Gennes analysis

The spectrum of the BdG equation is useful to understand
the numerical observation. We show in Fig. 6 the imaginary
part Im[ω] of the eigenfrequency as a function of k for � = 1
and several values of VR. Since there is not an external po-
tential, the imaginary part always appears for VR �= 0 in the
range 0 < k < kmax. For small values of VR � 1, an example
being shown in Fig. 6(a) for VR/V = 1, there is a single branch
associated with the dynamical instability, which is consistent
with Eq. (6) of the KH theory.

However, the spectrum is deviated from Eq. (6) with in-
creasing VR � 1. In Fig. 6(b), we see that Im[ω] of the
BdG result for VR/V = 2 lies deeply inside the dispersion

curve of Eq. (6). We confirm that the peak of Im[ω] of the
BdG result determines the wavelength kBdG

0 of the growing
wave; for example, we have kBdG

0 ξ = 0.592 (λBdG
0 /ξ = 10.6)

for VR/V = 2, reasonably in agreement with the results of
Fig. 5(a). It is thus suggested that the behavior of Fig. 5(a)
deviates from the KH theory. Above a certain value of VR, a
main branch is shifted to the higher-k region and there appear
many sub-branches to form a complicated spectral form, as
shown in Fig. 6(c) for VR/V = √

20. The main peak appears
at kBdG

0 ξ = 1.939 for VR/V = √
20; the corresponding wave-

length λBdG
0 /ξ = 3.239 is again reasonably in agreement with

the spatial period ≈2.9 of the pattern at t̃ = 42.5 seen in
Fig. 5(b). Although the initial growth rate of the unstable dy-
namics is determined by the main peak in the BdG spectrum,
the subsequent evolution is affected by the excitations of the
unstable sub-branch distributed in a wider range of the wave
number, which leads to the multistep growth of the instability
and complicated nonlinear dynamics.

Note that the main unstable branch of Im[ω] resembles
the imaginary part of the CSI dispersion Eq. (24). To this
end, we use g12 = 2g and n = n0(0.5 − δ) at the center of
the interface (y = 0), where δ takes a finite value 0 < δ < 0.5
(δ ≈ 0 for � � 1 and δ = 0.5 for � → ∞) extracted from
the numerical solution [see the right panel of Fig. 1(a)]. This
implies that the instability in the microscopic regime We > 1
can be described by the CSI even for the strongly segregat-
ing regime. In the theory of the CSI, for 2

√
2(1 − g12/g) <

VR/V < 2
√

2(1 + g12/g) the unstable region is broadly
distributed in the wave-number space (k‖, k⊥), while for
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FIG. 6. The imaginary part of the excitation spectrum, Im[ω],
of the BdG equations for � = 1.0 and (a) VR/V = 1, (b) 2, and
(c)

√
20, shown by the red dots. The blue dashed curve represents

Eq. (6) obtained by the KH theory in Sec. II B. The green dotted
curve represents Eq. (24) in the theory of the CSI in Ref. [34], where
n = 0.318n0 [taken from Fig. 1(a)], g12 = 2g, and k⊥ = 0.

VR/V > 2
√

2(1 + g12/g) the unstable region appears in the
narrow region in the wave-number space (k‖, k⊥) as a crescent
shape [34]; see Fig. 10 in Appendix B. Since the CSI can oc-
cur with the overlapping region between the two components,
the appearance of eigenmodes with finite k⊥ is suppressed
for � = 1, where the excitations are well localized in a small
overlapping region. Thus, the branch of the main peak in the
higher-k range can be described mainly by Eq. (24) with k⊥ =
0; the minor contributions distributed in the lower-k range in
Fig. 6(b) is considered as originating from the excitations with
k⊥ � 2π/ld .

B. Sealskin pattern formation

With decreasing � → 0, the interface thickness ld is in-
creased. The previous paper has investigated the KHI -CSI
crossover [8], where the authors found the continuous change
of the VR dependence of the unstable range of the wave num-
ber 0 < k < k+ from the KHI with k+ ∝ V 2

R [see Eq. (7)] to
the CSI with k+ ∝ VR, which has been confirmed by the BdG
analysis. However, we show here that the theory of CSI is not

simply applicable due to a difference in the mechanism of the
frictional relaxation of the relative motion between our system
and the CSI in uniform systems.

1. Development of the density and the phase

Figure 7 shows the interface dynamics for several values
of � toward the miscible limit � → 0, where the correspond-
ing Weber number changes from O(1) to O(102); the initial
states of the simulations are shown in Fig. 1(a). For � = 0.1,
Fig. 7(a) shows that the nonlinear growth of interface wave
leads to the finger patterns and the fingers collapse to emit the
quantized vortices at the stage of the shorter finger length than
that shown in Fig. 3(a). This can be seen from the result of
Fig. 4, where the elongation of the finger pattern is suppressed
with decreasing �. Thus, we can say that the instability in
this case is fairly in the macroscopic regime similar to that in
Sec. IV.

A further decrease in � qualitatively changes the nonlin-
ear dynamics. In Fig. 7(b) for � = 10−2 with We � 20, the
crossover between the obliquely striped density pattern [8]
and the flutter-finger pattern, where the density modulation
develops an array of multiple dipole-like structures consist-
ing of pairs of density dips of each component along the
overlapping region, as seen in the panels t̃ = 750 and 815
of Fig. 7(b). Here, the density dip of the one component is
filled with the density of the other component. These dipoles
correspond to the pair of quantized vortices with the same
circulation in each component. The array of the dipoles is sub-
sequently collapsed by emitting the density wave into the bulk
region, with irregular density patterns eventually appearing.
Figure 7(c) for � = 10−3, satisfying We � 200, clearly shows
that the central overlapping region undergoes a characteristic
modulation that leads to the obliquely striped density patterns
[8]. These density stripes are subsequently collapsed from the
central region (t̃ = 750) and causes the turbulent structures
(t̃ = 875).

Note that the finger pattern of the �1 (�2) component in the
universal macroscopic regime [Fig. 7(a)] grows in an upper-
left (lower-right) direction, while the orientation of the stripe
modulation in this case [Fig. 7(c)] is in the upper-right (lower-
left) direction. The structure in Fig. 7(c) looks effectively to
apply “friction” to the bulk flow, whereas the flutter-finger
pattern seems to be parrying the flow as grass flutters in the
wind. In fact, the CSI causes the frictional relaxation against
the relative motion [33,34], which occurs more effectively
when the two components overlap each other more and more.
This is just like the function of ski skins attached to the bottom
of nordic skis, designed to let the ski slide forward on snow
but not backward by resembling sealskin. Here, the directions
of the stripe and the bulk flow correspond to those of hairs
on the sealskin and the motion of the ski, respectively. As
seen in the profile of θ1 = argψ1 of Fig. 7(d), the interface
layer in one component has a flow so as to penetrate into the
other component and against its counterflow (see the panel
t̃ = 650). To distinguish the pattern formation in the early
stage from the flutter-finger pattern we call this stripe pattern
as the “sealskin pattern” in the diagram of Fig. 2.
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FIG. 7. Dynamics of the density difference �n for VR/V = √
0.45 and (a) � = 10−1 (We = 2.12), (b) � = 10−2 (We = 20.6), and (c) � =

10−3 (We = 205.6). The red (blue) region corresponds to the area where the density n1 (n2) is located. In panel (d), the profile of the phase θ1

corresponding to panel (c) is shown. The spatial region of the plot is −150ξ � x, y � 150ξ .

2. The results of the Bogoliubov-de Gennes analysis

For the CSI in a homogeneous system, the dynamical in-
stability induces formation of a vortex–antivortex pair (in 2D)
or a vortex ring (in 3D), which cause frictional relaxation of
the countersuperflow due to the phase slip through a dissoci-
ation (expansion) of the vortex pair (vortex ring) [33,34]. In
contrast, the friction in our case is caused by the penetration
of the bulk flow along the oblique density stripe, like the
sealskin. This qualitative difference can be clarified through
the microscopic analysis based on the BdG equation.

Figure 8(a) shows the imaginary part of the BdG excitation
spectrum as a function of k for the parameters corresponding
to Fig. 7(c). The spectrum exhibits not only a main single
branch but also an anomalously large number of unstable
branches inside the main branch. From Fig. 8(a), the maxi-

mum of Im[ω] occurs at kξ = 0.218, which determines the
wavelength of the initially growing mode. However, the cor-
responding eigenfunction along the y direction also has a
certain finite wave number, denoted ky, as shown in Fig. 8(b).
From the distribution of the real and imaginary parts of the
eigenfunctions, the sign of ky is negative. Also, note that the
eigenfunctions satisfy the antisymmetric relation Re[u1(y)] =
Im[v2(−y)] and Im[u1(y)] = Re[v2(−y)] in Fig. 8(b) (upper
panel) and the similar relation in the Fig. 8(b) (lower panel).
Thus, the norm of the excitations for each component N j ≡∫

dy(|uj |2 − |v j |2) takes opposite sign. Since the Bogoliubov
theory predicts that the current induced by the excitation is
given by h̄kyN j in the vertical direction, the eigenmode repre-
sents the counterpropagating excitations perpendicular to the
interface. We find that N1 < 0 and N2 > 0 from Fig. 8(b) and
the unstable mode results in the positive (negative) current for
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FIG. 8. (a) A semilog plot of Im[ω] of the dispersion relations
for VR/V = √

0.45 and � = 0.001. The numerical results obtained
by the BdG equation are plotted by red points. The blue dashed curve
represents the dispersion relation (6) of the KHI. Also, we plot Im[ω]
obtained from the dispersion relation (24) of the CSI with k⊥ = 0
by the green dashed-dotted curve and k⊥ = kfit

y extracted from the
eigenfunction in panel (b) by the gray dashed-dotted curve, where
the fitting function ufit = |uj |eikfit

y (y−yfit ) with the parameters kfit
y and

yfit is employed; we here get k⊥ξ = 0.155. In panels (b), we plot the
eigenfunctions (u1, v1, u2, v2) corresponding to the largest value of
Im[ω] in panel (a).

ψ1 (ψ2) component. These properties realize the excitation
mode that induces the encroaching flow into the interface
layer.

In Fig. 8(a), we compare the BdG results with the disper-
sion relations of the KH theory and the CSI in a homogeneous
system. The dispersion relation Eq. (6) of the KHI is only co-
incident with the BdG result asymptotically at k → 0, which
implies the breakdown of KH theory. The appearance of the
instability band may be explained as a signature of the CSI
[33,34], where the CSI appears in some range of k‖ as well
as the wave-number component k⊥ perpendicular to the di-
rection of the counterflow. When we plot Im[ω] of Eq. (24)
with k⊥ = 0, the unstable range of k agrees with the BdG
results, although their magnitudes are quite different. The
coincidence of the unstable range has been seen in Ref. [8].

Since the most unstable mode has a finite wave number in
the y direction, as seen in Fig. 8(b), we also plot Eq. (24)
with k⊥ = 0.155 extracted from the numerical fitting of the
eigenfunction in Fig. 8(b). Then, the unstable range becomes
narrow, which cannot reproduce the numerical result of the
BdG result, and also the magnitude still overestimates the
BdG result. Although the local approximation of the homo-
geneous CSI makes us expect the excitation modes having a
momentum antiparallel to the initial condensate velocity lead-
ing the frictional relaxation, we also find that the excitation
has nontrivially the momentum perpendicular to the inter-
face to realize the obliquely encroaching flow. By using the
BdG result, in fact, the oblique direction of the encroaching
flow is explained by the BdG result as θ = tan−1(k‖/k⊥) =
tan−1 1.406 = 0.3π , reasonably in agreement with the GP
result [see panel t̃ = 650 of Fig. 7(c)]. These facts imply that
the shear flow instability in the weakly segregating regime is
qualitatively different from the homogeneous CSI; the differ-
ence could come from the fact that the density profile has a
spatial gradient by the external potential in the former and
Ref. [8] but not in the latter. To distinguish the homogeneous
CSI with the CSI that causes sealskin pattern with a shear flow,
we call the latter a sheared CSI.

VI. CONCLUSION AND DISCUSSION

In this work, we have studied detailed nonlinear dynamics
of an interface in segregating two-component BECs with a
shear flow by varying the intercomponent coupling strength
and the relative velocity of the two components. The nonlinear
dynamics induced by the KHI is characterized by the Weber
number We, adopted to the segregated binary superfluids with
the interface thickness ld . The main result is summarized in
the phase diagram of Fig. 2. For We � 1, the dynamics is
characterized by a universal macroscopic behavior, which is
relevant to the KHI in classical fluid dynamics. The dynamics
induced by the KHI exhibit the formation of the flutter-finger
pattern and its subsequent collapse by emitting the coreless
quantized vortices at the tips of the fingers. These dynamical
properties are characterized by the single parameter We; we
find that the growing finger length divided by ld can be scaled
as We−1. For We � 1, however, the nonlinear dynamics is
caused by the microscopic mechanism beyond the conven-
tional KHI and cannot be classified only by We. For � > 1,
a strongly segregated regime, the small-amplitude interface
wave forms a transient zipper pattern. Since the vorticity per
single wavelength is not enough to evolve into the vortex,
the transition to the vortex turbulence configuration needs
multiple steps of instability growth. In the weakly segregating
regime � � 1 with a large overlapping region, the instability
gives rise to the frictional relaxation by forming a so-called
sealskin pattern. We suggest the underlying mechanism of
the sealskin pattern formation as the sheared CSI, which is
qualitatively different from the homogeneous CSI.

Finally, let us discuss the crossover of the dynamical
regime between the zipper and sealskin formation. As dis-
cussed above, the mechanism behind the sealskin pattern
formation is partly the CSI around the overlapping region.
Then, it is natural to compare the length scale of the
overlapping region with the perturbation length. Since the
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overlapping region vanishes when the interface thickness be-
comes thin, like ≈ξ , the overlapping length can be defined as
loverlap = ld − ξ . The perturbation length can be estimated by
the wave number that gives the maximum of Im[ω], which is
approximately given by the dispersion relation of the homo-
geneous CSI. Since the characteristic wave number of the CSI
is given by kCSI = mVR/h̄ for a large VR (see Appendix B), the
curve kCSIloverlap ≈ 1 could gives a rough boundary between
the zipper and sealskin region in the phase diagram of Fig. 2.
The curve has a similar � dependence with We for the weakly
segregating limit but exhibits a divergent behavior around
� ≈ 1, where ld ≈ ξ . We confirm through GP simulations
that the period and the amplitude of the sealskin pattern are
decreased when the parameters are changed toward this curve
from the � = 0.001 and VR/V = √

0.45 [the parameters of
Fig. 7(c)] and the zipper patterns begin to appear around the
parameters on the boundary curve.

Since it is difficult to treat the extreme parameter values
with We � 1 or We 	 1 in numerical simulations, it should
be noted that Fig. 2 represents the dynamical phase diagram
of the crossover transition between the universal macroscopic
regime and the microscopic regime. In outlook, more details
in the latter regime remain to be studied. For example, we
have to consider the finite-size effect of the CSI to account for
the full behavior of the sheared CSI, seen in Figs. 6 and 8.
Also, when the bulk velocity enters a supersonic regime, it is
interesting to clarify the relation of the shock wave formation
to the interface instability. Furthermore, it is necessary to
consider the simulations under the realistic experimental setup
in 3D, where the nonlinear stage of the time evolution causes
the nucleation of vortex lines. These involve excitations of
vortex waves, vortex reconnections, and subsequent formation
of vortex rings and vortex tangles. These issues merit further
studies and will be reported elsewhere.
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APPENDIX A: ANALOGY WITH ELECTROSTATICS
IN STRONGLY SEGREGATED CONDENSATES

WITH A SHEAR FLOW

In this Appendix, we describe an effective description
of the strongly segregated condensates with a shear flow in
Sec. IV A by introducing the analogy with electrostatics. This
analogy is useful to understand qualitatively the vorticity dis-
tribution when the vortex sheet at the interface is deformed to
the finger pattern.

In our setup, the first (second) component exists in the y <

0 (y > 0) region and the flat interface exists at y = 0, as shown
in Fig. 9(a). The velocity of the each component is written as
v1 = (VR/2, 0, 0) for y < 0 and v2 = (−VR/2, 0, 0) for y >

0. The mass current velocity v = (ρ1v1 + ρ2v2)/(ρ1 + ρ2) is

FIG. 9. The schematic illustration of our initial setup for the
strongly segregating BECs with a shear flow. (a) The condensates
are phase separated into y < 0 (ψ1 component) and y > 0 (ψ2 com-
ponent) regions with the relative velocity VR. The interface is located
along the x axis, the vorticity being distributed in alignment with the
x axis. (b) The electrostatic analogy of the configuration of panel (a).
The vorticity corresponds to the positive charge, while the electric
field is parallel to the contour lines of the phase θ j .

given as

v =
{

(+VR/2, 0, 0) for y < 0
(−VR/2, 0, 0) for y > 0.

(A1)

If the density is stationary, we can apply approximately the in-
compressible condition ∇ · v = 0, thereby defining the stream
function ψ satisfying

vx = ∂ψ

∂y
, vy = −∂ψ

∂x
. (A2)

Then, the vorticity ω = ∇×v = (0, 0, ω) can be expressed by
the stream function as

ω = −∇2ψ. (A3)

Since ω = 0 in the region far from the interface, the stream
function there obeys the Poisson equation

∇2ψ = 0. (A4)

Since v is given by Eq. (A1) far from the interface, the solution
of Eq. (A4) is written as

ψ =

⎧⎪⎪⎨
⎪⎪⎩

VR

2
y for y < 0

−VR

2
y for y > 0,

(A5)

where we set ψ = 0 at y = 0.
According to the electrostatic analogy, the stream function

ψ and the vorticity ω are related with the electrostatic poten-
tial and the charge density, respectively. The analog electric
field E is given by

E = −∇ψ =
{

(0,−VR/2, 0) for y < 0

(0,+VR/2, 0) for y > 0.
(A6)

Thus, the situation is related to the electric field created by the
uniformly distributed positive charge density ρe along the line
y = 0, as shown in Fig. 9(b). By using Gauss’s law, we get
E = ρe/2, where the dielectric constant is taken to be unity.
Since the circulation along the sheet per unit length has the
correspondence ρ� ↔ ρe we obtain the relation

ρ� = VR, (A7)

which is equivalent to Eq. (19).
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The electrical flux lines exhibit a similar behavior with the
branch cuts of the phase of the condensate wave function, as
seen in Fig. 3. When the interface is deformed to the finger
pattern, the vorticity, namely the positive charge, should be
accumulated around the tips of the fingers, as seen in Fig. 3(c).
This is because the electric field far from the interface is fixed
by Eq. (A6), which gives the boundary condition to determine
the charge distribution along the winding interface. As seen
in the finger formation of the KHI dynamics, the strong defor-
mation of the plane provides a cancellation of the electric field
inside the domain of the fingers. Then, the charge density is
more concentrated around the tips of the fingers. This charge
distribution is actually observed in Figs. 3(b) and 3(c).

We confirm that the relation (A7) holds exactly by using
the numerical solution of Eq. (2). In particular, for � = 2
we can use the exact solution of Eq. (2) [43] to confirm this
relation. The density profile of the strongly segregating BEC
with � = 2 is given by

|φ1| =
√

n0

2

[
1 − tanh

(
y√
2

)]
,

|φ2| =
√

n0

2

[
1 + tanh

(
y√
2

)]
. (A8)

According to the definition of v, we have

vx(y) = −VR tanh
(
y/

√
2
)

1 + tanh2
(
y/

√
2
) , (A9)

and the vorticity is

ω(x, y) = VR√
2

sech2
(√

2y
)
. (A10)

Thus, the linear density of the vorticity is given by

ρ� =
∫

dyω(x, y) = VR, (A11)

which is consistent with the above discussion.

APPENDIX B: THE DISPERSION RELATION OF THE
MISCIBLE BINARY BECS WITH COUNTERSUPERFLOW

We here describe briefly the derivation of the dispersion
relation of the miscible two-component BECs with counter-
flow and show the dynamical instability known as the CSI
[8,32–34]. The dispersion relation can be derived from the
BdG analysis for a system of a uniform two-component BEC
with a relative velocity. Starting from the time-dependent GP
equations (1), we consider a small excitation δ� j above a
uniform state with a velocity v j as

� j = (
√

n j + δ� j )e
−iμ j t/h̄+im jv j ·r/h̄, (B1)

where μ j = g jn j + g j j̄n j̄ + mjv
2
j /2 and j, j = 1, 2 ( j �= j).

Although the miscibility condition g1g2 > g2
12 is generally

supposed when the uniform solution
√

n j is employed, the
dispersion relation is irrelevant to such a condition, which we
do not assume here; the uniform solution itself is of course
unstable for g1g2 < g2

12.
Substituting Eq. (B1) into Eq. (1) and taking the first order

of δ� j , we obtain ( j �= j)

ih̄
∂δ� j

∂t
=

[
− h̄2

2mj

(
∇ + i

mv j

h̄

)2

− μ j + 2g jn j

+ g j jn j

]
δ� j + g jn jδ�

∗
j

+ g j j
√

n jn j (δ� j + δ�∗
j
). (B2)

We expand the small excitation by the plane wave as

δ� j = UjKeiK·r−iωt − V ∗
jKe−iK·r+iω∗t , (B3)

with the wave vector K and the complex frequency ω, and
substitute it into Eq. (B2), which yields ( j �= j′)

[
h̄2

2mj

(
K2 + 2m

h̄
K · v j

)
+ g jn j

]
UjK − g jn jVjK + g j j

√
n jn j (UjK − VjK ) = h̄ωUjK, (B4a)

[
h̄2

2mj

(
K2 − 2m

h̄
K · v j

)
+ g jn j

]
VjK − g jn jUjK − g j j

√
n jn j (UjK − VjK ) = −h̄ωVjK . (B4b)

Diagonalizing the eigenvalue equation (B4), we obtain the Bogoliubov excitation spectrum. Although the forms of the
eigenvalues are generally complicated, the simplified form can be obtained by assuming m1 = m2 ≡ m, g1 = g2 ≡ g, and
n1 = n2 = n. Then, the eigenvalue of Eq. (B4) becomes

h̄ω = h̄

2
(v1 + v2) · K ±

√
ε2

0 + ε2
r + 2ε0gn ± 2

√
ε2

0ε
2
r + 2ε0ε2

r gn + ε2
0g2

12n2, (B5)

with ε0 = h̄2K2/(2m), εr = h̄k‖VR/2, and the relative velocity V R = v1 − v2. Here, the wave number K is decomposed to the
components of the parallel and perpendicular directions as K = (k‖, k⊥). The first term is neglected by assuming the situation of
the vanishing center-of-mass velocity, namely, v1 + v2 = 0.

Figure 10 shows the imaginary part of Eq. (B5) in the (k‖, k⊥)
plane for several values of VR, representing the wave-number
region associated with the dynamical instability. The unstable
region appears inside the semicircle in the positive (k‖, k⊥)
plane. The imaginary part of h̄ω is finite when the expression

in the larger square root in Eq. (B5) with the negative sign
becomes negative. The condition of the CSI is thus given
by

ε2
r − 2(g + g12)nε0 < ε2

0 < ε2
r − 2(g − g12)nε0. (B6)
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FIG. 10. The imaginary part of the eigenvalue of Eq. (B5) in the K space for g12 = g, n = n0/2, and several values of VR: (a) VR = √
0.4,

(b)
√

5, (c)
√

10, and (d)
√

20. The plot range is determined as 0 < k‖ξ < VR/(2V ) and 0 < k⊥ξ < VR/(4V ). The eigenvalue is scaled by
μ = gn0.

At the miscible-immiscible boundary g = g12, the right in-
equality of Eq. (B6) reduces to (k‖ − mVR/2h̄)2 + k2

⊥ <

(mVR/2h̄)2. As a result, the wave number of the unstable
modes are characterized by k‖ � mVR/h̄ and k⊥ � mVR/2h̄.

With increasing VR, the unstable modes are distributed in
the higher-K region with a crescent shape, where the inner
boundary of the crescent is determined by the left inequality
of Eq. (B6).
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