
PHYSICAL REVIEW A 104, 023308 (2021)

Scattering of two particles in a one-dimensional lattice
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This study concerns the two-body scattering of particles in a one-dimensional periodic potential. A convenient
ansatz allows for the separation of center-of-mass and relative motion, leading to a discrete Schrödinger equation
in the relative motion that resembles a tight-binding model. A lattice Green’s function is used to develop the
Lippmann-Schwinger equation, and ultimately derive a multiband scattering K matrix which is described in
detail in the two-band approximation. Two distinct scattering lengths are defined according to the limits of zero
relative quasimomentum at the top and bottom edges of the two-body collision band. Scattering resonances occur
in the collision band when the energy is coincident with a bound state attached to another higher or lower band.
Notably, repulsive on-site interactions in an energetically closed lower band lead to collision resonances in an
excited band.
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I. INTRODUCTION

Ultracold gases embedded in optical lattices present nu-
merous theoretical and experimental opportunities for the
investigation of few- and many-body physics [1,2]. Such sys-
tems provide a versatile platform for a number of reasons.
Control of the laser intensity, wavelength, and beam geometry
enable detailed tunability of the depth, spacing, and geom-
etry of the lattice. Moreover, the variety of atomic species
that have been successfully trapped includes Bose, Fermi,
and even mixed-symmetry systems [2–4], all of which can
be studied by tuning their mutual interactions via Feshbach
resonances [5]. For example, bosonic ensembles in a lattice
permitted the realization of a many-body phase transition
from superfluid to Mott insulator [6,7], and site-resolved
imaging of Bose [8,9] and Fermi [10,11] systems has enabled
yet more flexibility.

In addition, two-dimensional (2D) Fermi gases in lattices
are proposed as candidates to study topological many-body
phases such as p-wave superfluidity [12]. Recently, ultra-
cold atoms in driven optical lattices proved to be a panacea
for the experimental realization of time crystals [13–15]; an
exotic many-body phase that features a broken translation
symmetry both in space and time, where Wilczek’s [16] initial
proposal laid the ground for a more systematic theoretical
understanding [17–20]. Furthermore, nonequilibrium dynam-
ics in one-dimensional (1D) lattices induced via interaction
quenches on few-bosonic ensembles result in the formation
of global density waves [21,22], directional transport by spa-
tially modulated interactions [23], and many-body expansion
in weakly interacting Bose-Fermi mixtures [24].

*Corresponding author: rittenho@usna.edu

Apart from these advances in the realm of many-body
physics, studies on the few-body aspects of ultracold atoms
in lattice geometries explore their multifaceted collisional
properties, such as the formation of bound pairs [25–30],
lattice-induced resonances [31–33], Feshbach resonances in
lattices [34], and the physics of reactive and Umklapp pro-
cesses [35]. More refined theoretical studies on the two-body
collisional physics permitted the inclusion of finite range ef-
fects [36] and explored the impact of the energetically higher
bands [35,37]. Two-body collisions on a lattice occur within
a set of energy bands which loosely behave as collision chan-
nels, with two-body interactions yielding intra and interband
effects on collisional processes [37] similar to the behavior
seen in confinement-induced resonances [38]. Beyond the
two-body physics, theoretical studies have shown the exis-
tence of three-body bound states in both three-dimensional
(3D) and 1D lattices [39,40]. Additionally, in such systems
an on-site attractive three-body interaction can emerge that
induces an instability yielding thus the collapse of the many-
body ground state [41]. Evidently, the detailed understanding
of scattering processes in lattice geometries, and the necessary
conditions under which resonant phenomena can occur, is
of paramount importance to the design and manipulation of
exotic many-body phases.

In this work a systematic pathway to address collisional
physics of two particles, with either bosonic or fermionic
character, in the presence of a periodic potential is developed
based on the K-matrix formalism. Within this formalism,
the energy-normalized Bloch states are employed as scatter-
ing waves incorporating contributions from both energetically
accessible (open) and inaccessible (closed) bands. In agree-
ment with previous works, we observe that for attractive
interactions comparable in strength to the band gap, a
resonance arises for scattering between particles in the low-
est band due to virtual transitions into the closed bands
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[27,32,33,36,37,42]. Furthermore, we observe that for repul-
sive on-site interactions with energy similar to the band gap
additional resonant features occur for scattering of two parti-
cles in an excited band.

The paper is organized as follows. In Sec. II, we describe
the two-body, multiband Hamiltonian in a basis of Wannier
states and separate it into discrete center-of-mass and relative
motion coordinates. In Sec. III we develop the Green’s op-
erator for the relative noninteracting Hamiltonian via a lattice
Green’s function for both energetically open and closed bands.
In Sec. IV we derive the lattice K matrix for two-body, on-site
interactions, and examine the special case where each particle
can occupy only two energy bands. In Sec. V we derive the
lattice scattering length, which can be used to describe the
interaction between two particles at energies near the top or
bottom of the two-body bands. Finally, in Sec. VI we summa-
rize our results and discuss future work.

II. ONE-DIMENSIONAL LATTICE

In this section, we describe a system consisting of two
particles confined to a periodic 1D potential Vlat(x) with pe-
riodicity λ. In the absence of a two-body interaction the
behavior of each particle is described by the simple Hamil-
tonian Ĥ0 = − h̄2

2m
d2

dx2 + Vlat(x) which is diagonalized by a
Bloch function φμ(q; x) where μ is a band index and q is
the quasimomentum. Bloch waves are delocalized functions
that extend throughout the entire lattice. However, they can be
combined into an orthonormal basis localized to each lattice
site for each band. These are the Wannier functions which take
the form

wμn(x) =
(

λ

2π

)1/2 ∫ π/λ

−π/λ

eiqnλφμ(q; x)dq. (1)

Here, beyond the band index μ, there is an additional index
in the Wannier functions; the site index n ∈ Z specifying the
lattice site location x = nλ at which the function is localized.

The behavior of a single particle in the lattice is character-
ized by the Hamiltonian

ĥ =
∑
μ,n

εμ|μn〉〈μn|

−
∑

μ,n, j>0

Sμ
j (|μn〉〈μ(n + j)| + |μ(n + j)〉〈μn|), (2)

where |μn〉 is the Wannier state associated with a particle
in the μth band localized to the nth lattice site. Here, εμ =
〈μn|Ĥ0|μn〉 is the on-site energy and Sμ

j = −〈μn|Ĥ0|μ(n +
j)〉 is the energy associated with the particle hopping j sites
from site n to site n ± j. Note that we assumed that the band
energies are symmetric in the quasimomentum q. Diagonal-
izing this Hamiltonian gives, not at all surprisingly, the band
dispersion relation written as its cosine Fourier transform, i.e.,

Eμ(q) = εμ −
∞∑
j=1

2Sμ
j cos ( jq). (3)

In this work we will focus on the deep lattice regime in which
Wannier states are localized to a single lattice site and tunnel-
ing to more distant sites is suppressed. This results in a strong

suppression in the hopping energy Sμ
j for j > 1. Thus, for the

purposes of this work, we will assume only nearest-neighbor
hopping terms survive, i.e., Sμ

j = Sμδ1, j .
With the single-particle discrete Hamiltonian in hand, we

may now proceed to write the two-body Hamiltonian in terms
of the localized discrete Wannier basis. In first quantized form,
the full Hamiltonian is given by

Ĥ = ĥ1 + ĥ2 + V̂, (4)

where ĥ j is the single-particle Hamiltonian Eq. (2) for particle
j, and V̂ is the interaction between the two particles. In the
Wannier basis, the interaction is expressed as

V̂ =
∑

μ, ν, μ′, ν ′
m, n

U μ,ν

μ′,ν ′ (|n − m|)|μm; νn〉〈μ′m; ν ′n|. (5)

Here, |μm; νn〉 represents the two-body Wannier state of par-
ticle 1 in band μ localized to site m and particle 2 in band ν

localized to site n. This interaction matrix element is given by

U μ,ν

μ′,ν ′ (|n − m|) = 〈μm; νn|Vint (x1 − x2)|μ′m; ν ′n〉,
where Vint (x) is the 1D interaction potential. In this work we
will be concerned with short-range interactions with Wannier
states localized to a single lattice site leading to on-site inter-
actions U μ,ν

μ′,ν ′ (|n − m|) = U μ,ν

μ′,ν ′δm,n. We leave the interaction
in a more general form here for completeness, and it will
be specified in Sec. IV A. We note here that for there to be
nearest-neighbor hopping, there must be a nonzero probability
amplitude of the Wannier state in the neighboring lattice site.
This might lead one to think that there also must be a nearest-
neighbor interaction, i.e., U μ,ν

μ′,ν ′ (|n − m| = 1) �= 0. However,
for interaction potentials with a range much smaller than the
lattice spacing, the nearest-neighbor interaction matrix ele-
ment is determined by the total probability of tunneling to
a neighboring site. Therefore, in the limit of small hopping
energy, nearest-neighbor interactions are exponentially sup-
pressed and are ignored in this work.

The eigenfunctions of Ĥ can be expanded in the Wannier
basis as |�〉 = ∑

μνmn �m,n
μ,ν |μm; νn〉, leading to the discrete

Schrödinger equation

(E − εμ − εν )�m,n
μ,ν = − Sμ

[
� (m+1),n

μ,ν + � (m−1),n
μ,ν

]
− Sν

[
�m,(n+1)

μ,ν + �m,(n−1)
μ,ν

]
+

∑
μ′,ν ′

U μ,ν

μ′,ν ′ (|n − m|)�m,n
μ′,ν ′ . (6)

Center-of-mass separation

The most important aspect of the discrete Schrödinger
equation in Eq. (6) is that it can be separated into the dis-
crete center-of-mass Z = (m + n)/2 and relative separation
z = m − n coordinates with the separation ansatz

� (Z+z/2),(Z−z/2)
μ,ν ∝ ψμν (z)eiKλZ+iφμν

K z, (7)

where K is the center-of-mass quasimomentum. Here the
angle

φ
μν
K = arg(SμeiKλ/2 + Sνe−iKλ/2), (8)
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is included to subtract a constant offset in the relative motion
quasimomentum. Inserting this ansatz into Eq. (6) yields the
discrete Schrödinger equation in the separation coordinate

Eψμν (z) = εμνψμν (z) − [
Jμν

K ψμν (z + 1) + Jμν
K ψμν (z − 1)

]
+

∑
μ′ν ′

ei(φμ′ν′
K −φ

μν
K )zU μ,ν

μ′,ν ′ (|z|)ψμ′ν ′ (z), (9)

where the relative-coordinate hopping and two-body on-site
energy are defined as

Jμν
K =

√
S2

μ + S2
ν + 2SμSμ cos (Kλ),

εμν = εμ + εν.

Note that the separated Schrödinger equation is now in the
form of a simple tight-binding model with nearest-neighbor
hopping with “on-site energies” that are modified by the inter-
action matrix elements U μ,ν

μ′,ν ′ (|z|). Also note that in the relative
coordinate z, the hopping energies Jμν

K are now dependent on
the center-of-mass quasimomentum K.

In the absence of interactions, Eq. (9) is solved simply by
plane waves in the relative coordinates, i.e.,

ψμν (z) ∝ eikλz,

where k is the relative coordinate quasimomentum. The re-
sulting dispersion relations define two-body energy bands that
depend on the center-of-mass motion with dispersion

εμν (K, k) = εμν − 2Jμν
K cos λk. (10)

III. LATTICE GREEN’S FUNCTION

To examine scattering of two particles in the lattice de-
scribed above, we must first construct the Green’s operator
associated with the relative coordinate Hamiltonian at fixed
center-of-mass quasimomentum K given by

Ĥrel = ĥrel + Û,

ĥrel =
∑
μ,ν,z

εμν |K ; μνz〉〈K ; μνz|

−
∑
μ,ν,z

Jμν
K (|K ; μν(z + 1)〉〈K ; μνz|

+ |K ; μν(z − 1)〉〈K ; μνz|),
Û =

∑
μ, ν

μ′, ν ′
z

ei(φμ′ν′
K −φ

μν
K )zU μν

μ′,ν ′ (|z|)|K ; μνz〉〈K ; μ′ν ′z|, (11)

where ĥrel is the noninteracting relative Hamiltonian and Û is
the interaction. Here, we define the basis state |K ; μνz〉 as the
state where the two particles have a center-of-mass motion
defined by quasimomentum K and a particle separation of z
with particle 1 in band μ and particle 2 in band ν, i.e.,

|K ; μνz〉 = N
N∑

Z=0

eiKλZ |μ(Z + z/2); ν(Z − z/2)〉,

where N is a normalization constant.

We will define the lattice Green’s operator Ĝ such that

〈K ; μ′ν ′z′|(ĥrel − E )Ĝ|K ; μνz〉 = δμμ′δνν ′δzz′ .

We will proceed to find Ĝ by expanding it in the Wannier
states, i.e.,

Ĝ =
∑
μν

z′, z

gμν (K ; z, z′)|K ; μνz〉〈K ; μνz′|, (12)

where gμν (K ; z, z′) is the lattice Green’s function (LGF)
which is a solution to

δz,z′ = (εμν − E )gμν (K ; z, z′)

− Jμν
K [gμν (K ; z + 1, z′) + gμν (K ; z − 1, z′)]. (13)

For the purposes of this work, we are concerned with even par-
ity states associated with two bosons or two spin-1/2 fermions
in a singlet state. Therefore, below we will only consider even
parity solutions to Eq. (13)

The even parity LGF can be broken into two cases: (1)
When the scattering energy E is within the available two-
body energies εμν (K, k) corresponding to an open two-body
scattering band; or (2) when E lies outside of the available
energies defined by εμν (K, k) corresponding to a closed two-
body scattering band.

A. Open-band Green’s function

For energies within the {μ, ν} two-body band (i.e., |E −
εμν | < 2|Jμν

K |), we can define the relative quasimomentum k
through the dispersion relation in Eq. (10). For z �= z′ Eq. (13)
are solved by the ansatz

gμν (K ; z, z′) = A sin (kλz>) cos (kλz<),

where z>(<) is the larger (smaller) of z and z′. Here we
chose to use the principle value Green’s function which obeys
standing-wave boundary conditions. This is similar to the
approach taken in other works [37,38,43] in which the sin-
gular portion of the Green’s function corresponding to direct
classical trajectories is separated and removed. The remaining
constant A can be found by simply inserting the ansatz into
Eq. (13) for z = z′ giving

gμν (K ; z, z′) = − sin (kλz>) cos (kλz<)

Jμν
K sin (kλ)

. (14)

This can be further simplified by writing it in terms of
the regular f +

μν and irregular f −
μν band-energy normalized

scattering solutions of the noninteracting Hamiltonian given,
respectively, by

f +
μν (z) =

√
λ

π
∣∣vμν

g

∣∣ cos (kλz),

f −
μν (z) =

√
λ

π
∣∣vμν

g

∣∣ sin (kλz), (15)

vμν
g = 2λJμν

K sin (λk) = ∂εμν (K, k)

∂k
,
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so that
∑

z f ±∗
μν (E ; z) f ±

μν (E ′; z) = δ(E − E ′). In terms of f +
μν

and f −
μν the open-band LGF is now given by

gμν (K ; z, z′) = −2π f +
μν (z<) f −

μν (z>). (16)

B. Closed-band Green’s function

For energies outside of the {μ, ν} two-body energy band
(when |E − εμν | > 2|Jμν

K |) we have a slightly different situa-
tion, where the probability of the two particles has to vanish
at large separation distances, i.e., |z − z′| → ∞. This implies
that in this limit the LGF must obey exponentially decaying
boundary conditions. Namely, for this case the z �= 0 is solved
by the ansatz [36]

gμν (K ; z, z′) = Aα|z−z′ |,

where α is defined as the solution to

E − εμν = −Jμν
K

1 + α2

α
, (17)

where we restrict |α| � 1. Again the coefficient A can be
found by inserting the ansatz into Eq. (13) at z = z′, giving

gμν (K ; z, z′) = α|z−z′ |+1

Jμν
K (1 − α2)

. (18)

Note that when E < εμν − 2Jμν
K (i.e., below the band)

Eq. (17) gives 0 < α < 1 such that the LGF decays exponen-
tially. When E > εμν + 2Jμν

K (i.e., above the band) Eq. (17)
gives −1 < α < 0 so that the amplitude of the LGF still
decays exponentially but with alternating sign.

IV. SCATTERING FOR ON-SITE INTERACTIONS

Here we will use the Green’s operator found above to
extract scattering properties of two particles in a 1D lattice
interacting via on-site interactions only. The full Schrödinger
equation for the relative motion can be solved via the
Lippmann-Schwinger equation (LSE) given by

|ψ〉 = |ψ0〉 − ĜÛ |ψ〉, (19)

where the homogeneous solution |ψ0〉 = ∑
z f +

μν (z)|K ; μνz〉
is the initial state of the system. Note here that we are using
the band-energy normalized scattering states from Eq. (15).
In the z → ∞ limit, inserting the LGF from Eq. (16) gives the
scattering solution

ψμν (z) = f +
μν (z) + 2π f −

μν (z)〈 f +
μν |Û |ψ〉,

〈 f +
μν |Û |ψ〉 =

∑
μ′ν ′z′

f +
μν (z′)ei(φμ′ν′

K −φ
μν
K )z′

× U μν

μ′,ν ′ (|z′|)ψμ′ν ′ (z′). (20)

Here we assume the interaction between the two particles
is short range in comparison with the lattice’s periodicity,
i.e., int � λ where int is the lengthscale of the interparticle
interaction. Additionally, we assume that the Wannier states
are localized to single lattice sites. These two assumptions,
sufficiently, imply that the particles interact via on-site in-
teractions only, U μν

μ′ν ′ (|z|) = Uijδz,0, where the double band
index {μ, ν} is collectively denoted by a single index vector,

i.e., i = {μ, ν}, j = {μ′, ν ′}, and the on-site interaction matrix
elements are given by Uij = U μν

μ′ν ′ .
In addition, Eq. (20) can be generalized to include tran-

sitions between two open bands with overlapping energies.
From this the lattice K-matrix element KL

ji is identified, which
in turn determines the admixture of the irregular solution
f (−)
j (z) in the final band j:

〈K ; jz|ψ〉 = δji f +
i (z) − KL

ji f −
j (z),

KL
ji = −2π〈 f +

j |Û |ψ〉, (21)

where | f +
j 〉 = ∑

z f +
j (z)|K ; jz〉. Solving this equation self-

consistently for the K matrix yields

KL
ji = −2π〈 f +

j |(1 + Û Ĝ)−1Û | f +
i 〉, (22)

where Ĝ and Û indicate the LGF and interaction operators,
respectively.

In the case of on-site interactions Û =∑
ij Uij|K ; i0〉〈K ; j0|, we show in the Appendix that by

partitioning Ĝ and Û into N open and M closed-band
contributions the lattice K matrix for scattering from one
open band to another is given by

KL = −2λv̄−1/2
g [Uoo − Uocḡc(1 + Uccḡc)−1Uco]v̄−1/2

g . (23)

Here Uoo is the N × N matrix of interaction matrix elements
Uij for initially and finally open bands. Uco = [Uoc]† is the
M × N matrix of interaction matrix element between the
finally closed and initially open bands. Ucc is the M × M
matrix of interaction matrix elements for initially and finally
closed bands. The M × M diagonal matrix ḡc has a diago-
nal of closed channel LGFs evaluated at z = z′ = 0. Finally,
[v̄g]−1/2 is an N × N diagonal matrix with diagonal values
given by the inverse of the square root of the open-band group
velocities(vi

g(ki))−1/2.

The form of Eq. (23) is familiar in scattering theory, being
quite reminiscent of the standard channel closing formulas
of multichannel quantum defect theory [44]. The first term
describes the background scattering in the open bands. The
second term incorporates the contributions from virtual scat-
tering into energetically closed two-body bands. Notice that
including these closed-band terms allows for resonances when
det(1 + Uccḡc) = 0 in the open-band K matrix KL. In essence,
this means that all these virtual transitions in closed bands can
collectively give rise to lattice induced resonances in the open
bands. Also note that the K matrix can related to the standard
S matrix via the expression SL=(1 + iKL )(1 − iKL )−1.

In the absence of other bands, Eq. (23) gives that the K
matrix for single band scattering with on-site interactions is
simply proportional to the interaction strength as expected.
By analogy to this, in a single open band, the contributions
from excited bands results in a quasimomentum-dependent
effective interaction given by

Ueff = Uoo − Uocḡc(1 + Uccḡc)−1Uco. (24)

Properly including these effects in many-body models like
the Bose-Hubbard model is likely quite important, espe-
cially in the presence of the above-mentioned lattice-induced
resonances.
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We note that in Ref. [32], the resonance structure seen
in Eqs. (23) and (24) was described through an effective
two-body, two-state Hamiltonian where the corresponding pa-
rameters are fitted directly from numerical calculations. In
the present work we derive these results directly, illustrating
how the virtual transitions to closed bands lead to resonant
processes.

A. Two-band approximation

Here we simplify our system by assuming a simple two-
band approximation. We will assume that each particle is in
the Wannier states wμ(x) corresponding to either the low-
est band (μ = 0) or the first excited band (μ = 1) meaning
that the available two-body states are restricted to {μ, ν} =
{0, 0}, {0, 1}, {1, 0}, and {1, 1}. If we assume that the interac-
tion potential is symmetric under inversion and the Wannier
states are parity eigenstates, then the two-body state with
one particle in the excited band is decoupled by parity, i.e.,
U 10

00 = U 10
11 = 0. We will further assume that the interaction

potential V (x) is short-range enough to be approximated by a
contact interaction. For notational simplicity we will label the
interaction matrix elements U μ′ν ′

μν as U 00
00 = U00,U01 = U10 =

U 11
00 = U 00

11 ; and U11 = U 11
11 .

If both particles start in the lowest {0, 0} band such that the
{1, 1} band is energetically inaccessible, Eq. (23) becomes

KL
00→00 = −1

J00
K sin λk

×
⎡⎣U00 − U 2

01

U11 +
√

(E − ε11)2 − (
2J11

K

)2

⎤⎦. (25)

In the case where the on-site interactions in the excited band
are attractive, i.e., U11 < 0, a resonance occurs at precisely the
energy of a dimer bound state attached to the excited band,
Edim = ε11 −

√
U 2

11 + (2J11
K )2 . Thus, we see that a lattice-

induced resonance occurs due to virtual scattering into a
bound state attached to an excited band that energetically lies
in the continuum of the lower band. Intuitively, this means
that the lattice-induced resonances fulfill a Fano-Feshbach-
like scenario where the continuum is structured into bands due
to the presence of the lattice. Furthermore, by setting the the
interband coupling elements to zero, i.e., U01 = 0 in Eq. (25),
the single-band lattice scattering behavior is recovered.

Unlike scattering in free space, the energy bands induced
by the lattice allow the existence of scattering channels at
energies below the scattering energy that are energetically
inaccessible. In the case of the two-band approximation this
means that two particles scattering in the excited band can go
through virtual scattering processes in a lower, energetically
inaccessible band. The K matrix for the {1, 1} → {1, 1} scat-
tering process is given from Eq. (23) as

KL
11→11 = −1

J11
K sin λk

×
⎡⎣U11 − U 2

01

U00 −
√

(E − ε00)2 − (
2J00

K

)2

⎤⎦. (26)

In this case we can see that a scattering resonance occurs for
U00 > 0 when a state is bound above the lowest band at energy

Edim = ε00 +
√

U 2
00 + (2J00

K )2 is embedded in the excited two-
body band. Counterintuitively, this brings about the possibility
for repulsive on-site interactions in an energetically closed
lower band inducing resonant interactions in an excited band.
This might be relevant for the case of spin-1/2 fermions in
which the Fermi level is at the bottom of an excited band. In
this case, it might be possible for repulsive on-site interactions
between opposite spin particles in the lowest band to induce
strong effectively attractive interactions in particles at the
Fermi level in the conduction band.

Figure 1 shows the K matrix for scattering in the lowest
and first excited two-body bands assuming that the lattice
potential is deep enough that the lowest several Wannier
states can be approximated by oscillator states, i.e., wμ(x) ∝
e−x2/22

HO Hn( x
HO

), where HO is the local oscillator length near
the bottom of a lattice site and Hn(y) is a Hermite polynomial.
Here, the interaction potential is taken to be a simple contact
interaction whose strength is governed by the 1D free-space
scattering length

Vint(x1 − x2) = − 2h̄2

ma1D
δ(x1 − x2).

Experimentally, in the presence of a strong transverse con-
finement, a1D could be tuned using a confinement-induced
resonance [38]. With these assumptions we can calculate all
of the relevant parameters from Eqs. (2) and (4). The resulting
K-matrix element for scattering in the lowest band KL

00→00
is shown as a color density plot in Fig. 1(a). The K-matrix
element is plotted as a function of K (in units of 1/λ) on the
horizontal axis, and E (shifted to the center of the {0,0} band
and in units of |S0|) on the vertical axis. The local oscillator
length is set so that HO = λ/8. The lattice-free 1D scattering
length a1D has been set by requiring the binding energy of a
bound state attached to the excited band to intersect the upper
part of the {0,0} two-body band at center-of-mass quasimo-
mentum λK = 3π/4. Also shown is the energy of the bound
state attached to the excited two-body band, indicated by the
red dashed line. Here we can clearly see the resonance that
occurs when the bound state is at energies accessible in the
band. Figure 1(b) shows the K matrix for scattering in the
excited band KL

11→11 for the same lattice parameters with a 1D
lattice-free scattering length set to be negative with a bound
state attached to the lower band intersecting the lower portion
of the {1,1} two-body band at λK = 3π/4. Note that in both
Figs. 1(a) and 1(b), we multiplied the K matrix by Jμν

K sin(λk)
to remove the singularities at the edge of the two-body band
(when λk = 0,±π ). The energy of the bound state attached
to the lower two-body band is shown as a dashed red line
in Fig. 1(b). As the state cuts through the band, the related
a scattering resonance can be seen in KL

11→11.

B. Beyond two-band approximation

In the case of scattering in the lowest two-body band in
the presence of more than one excited band, if the excited
bands are uncoupled, the above results can be easily extended
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FIG. 1. A color density plot of the elastic scattering K-matrix
element Jμν

K sin(kλ)KL
μν→μν under the two-band approximation with

harmonic oscillator Wannier states is shown for (a) scattering in the
lowest two-body band {0, 0} → {0, 0} with λ = 8HO and a1D set so
that the excited-band bound state intersects the lower two-body band
at λK = 3π/4. The same is shown in (b) for scattering in the first
excited band {1, 1} → {1, 1} with λ = 8HO and a1D set so that the
bound state attached to the lower band intersects the lower portion
of the two-body band at λK = 3π/4. The lower yellow region and
upper blue regions represent positive and negative values of the K-
matrix element, respectively, with the darker color indicating a larger
magnitude. In both (a) and (b) the solid black curves mark the edge of
the respective two-body bands while the dashed red curves represent
the position of a bound state attached to the (a) excited and (b) ground
two-body bands.

to give

KL
00→00 = − 1

J00
K sin λk

[
U 00

00

−
∑

{μν}�={00}

∣∣U 00
μν

∣∣2

U μν
μν +

√
(E − εμν )2 − (

2Jμν
K

)2

]
.

The sum here accounts for virtual scattering into each excited
band. Notice that a properly tuned attractive interaction di-
agonal matrix element in an excited band U μν

μν can create a
bound state attached to that two-body band that cuts through
the lowest band creating a scattering resonance, similarly to
Fig. 1(a). Coupling between excited bands can shift the posi-
tion of these bound states. However, even with these shifts, if
the states become degenerate with the {μν} = {00} band, we
expect a band-induced scattering resonances to occur.

In the case of scattering in excited bands, it is possible
for multiple excited two-body bands to overlap in energy. In
this case, whenever the scattering energy and center-of-mass
quasimomentum place the system in the overlap region of
multiple two-body bands Eq. (23) still holds, but the K matrix
is an N × N matrix where N is the number of overlapping
bands. The diagonal elements of KL represent elastic scatter-
ing processes where the incident and outgoing states are in
the same bands. However, the off-diagonal elements indicate
inelastic scattering processes where the energy and center-of-
mass quasimomentum K of the system is conserved, but the
relative quasimomentum k is not.

For example, in the case where the lattice sites are deep
enough to be treated locally as harmonic oscillators, the
{μν} = {11} band overlaps with the {20} and {02} bands
meaning that the lattice K matrix, KL, is a 3 × 3 matrix (or
2 × 2 in the case of symmetrized states for bosonic scat-
tering). The K-matrix elements are shown in Figs. 2(a) to
2(d) for the case of the {1, 1} and the symmetrized {0, 2}
two-body bands overlapping. Here, the lattice and interaction
parameters are set to be the same as in Fig. 1(b). The solid and
dotted black lines show the edges of the {1, 1} and the sym-
metrized {0, 2} two-body bands, respectively. The position of
a resonant state attached to the lower {0, 0} band is shown as
the red dashed curve. The {0, 2} band completely encloses the
{1, 1} band. Figures 2(b) and 2(c), showing the KL

11→02 and
KL

02→11 inelastic K-matrix element, respectively, are identical.
According to Eq. (23) the KL

11→11 matrix element is the same
as in the two-band case given in Eq. (26) and thus Fig. 2(a) is
the same as Fig. 1(b) but plotted on a different energy scale.
Notice that a resonance appears at the same energy for all
K-matrix elements.

Notice in Eq. (23) that the resonance condition det(1 +
Uccḡc) = 0 deals only with information from the closed bands.
Thus if a resonance appears in the diagonal K-matrix elements
(the elastic scattering processes), it will appear at the same
energy in the of-diagonal elements (in the inelastic scattering
processes).

V. LATTICE SCATTERING LENGTH

Just as in normal lattice-free scattering in one dimension,
we can define the 1D lattice scattering length. In contrast, the
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FIG. 2. The matrix elements of v̄1/2
g KL v̄1/2

g for scattering with harmonic oscillator Wannier states are shown as color density plots. Here
we included the {0, 0}, {1, 1}, and the symmetrized {0, 2} two-body bands, and are showing the K matrix for scattering in the overlapping
excited states. (a) and (d) show the matrix elements for elastic scattering in the {1, 1} and {0, 2} states, respectively. (b) and (c) show the
matrix elements for inelastic scattering {1, 1} → {0, 2} and {0, 2} → {1, 1}, respectively. The lattice and interaction parameters are the same
as in Fig. 1(b). The yellow and blue regions represent positive and negative values of the K-matrix element, respectively, with the darker color
representing a larger magnitude.

scattering length in the presence of a lattice can be defined as
the relative quasimomentum reaches the edge of a two-body
band either at the top or the bottom of the band, here when
λk → 0, π :

lim
k→0

kKL
μν→μν = 1

a(−)
μν

,

lim
k→π/λ

(π

λ
− k

)
KL

μν→μν = 1

a(+)
μν

. (27)

Here a(−)
μν and a(+)

μν is the scattering length at the bottom and
top of the two-body band, respectively, corresponding to elas-
tic scattering in the {μν} band. In the two-band approximation
from above this yields

λJ00
K

a(±)
00

= −
⎡⎣U00 − U 2

01

U11 +
√(

E (±)
00 − ε11

)2 − (
2J11

K

)2

⎤⎦,

(28)
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� 0.6 � 0.4 � 0.2 0.0 0.2 0.4 0.6
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� 2
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2

4

a1 D � HO

a�
�
� �
J

FIG. 3. The lattice scattering length a(±) is shown in the {0, 0}
(blue solid curve) and {1, 1} (red dashed curve) two-body bands is
shown as a function of the 1D scattering length a1D for a lattice with
lattice spacing λ = 8HO. For a lattice this deep, the hopping energy
is much smaller than the local oscillator energy and thus a(+) ≈ a(−).

λJ11
K

a(±)
11

= −
⎡⎣U11 − U 2

01

U00 −
√

(E (±)
11 − ε00)2 − (

2J00
K

)2

⎤⎦. (29)

Here E (±)
μν = εμν ± 2Jμν

K is the energy at the top (+) and
bottom (−) of the band.

Contrary to the 3D case, strong effective interactions occur
in one dimension near zeros in the scattering length. Con-
versely, poles in the scattering length occur at zeros in the
lattice K matrix near the top or bottom of the two-body bands.
Figure 3 shows the lattice scattering length a(±)

μν for the lowest
and first excited two-body band within the two-band approx-
imation plotted as a function of the free-space 1D scattering
length a1D. We again assumed that the lattice sites are deep
enough to each be treated as local harmonic oscillators with
lattice spacing λ = 8HO. We observe that at finite values of
the 1D free-space scattering length, there are poles in the
lattice scattering length corresponding to areas of weak ef-
fective interaction. The zeros in the lattice scattering length
correspond to strong, resonant effective interactions. While
we show the K = 0 scattering lengths here, similar structures
with small shifts appear for all values of the center-of-mass
quasimomentum. In the case of a deep lattice such as that used
here, the hopping energy becomes much smaller than the local
oscillator energy, and thus much smaller than the band-gap
energy. When the on-site interaction energy is much larger
than the hopping energy for all center-of-mass quasimomenta
(|U μ′ν ′

μν | � |Jμν |) the quasimomentum dependence of the

lattice scattering length drops out from the right-hand side of
Eqs. (28) and (29). In addition, when the hopping energy is
small compared to the interaction energy, there is effectively
no difference between a(+)

μν and a(−)
μν .

Large positive lattice scattering lengths correspond to a
weakly bound state. Within the lattice approximations made
here, the energy of the bound state is given approximately by

Ebnd ≈ εμν ± Jμν
K

√
4 +

(
λ

a(±)
μν

)2

, (30)

with the approximation becoming exact at unitarity, i.e.,
|a(±)

μν | → ∞. Note that poles in the lattice scattering length
occur when that bound state becomes degenerate with the
two-body band continuum.

VI. SUMMARY

In this study we explored two-body scattering in the
presence of a 1D lattice. By transforming into a basis of
Wannier states and removing the discrete center-of-mass po-
sition we derived the multiband Green’s operator including
contributions from both energetically open and closed bands.
This Green’s operator was then used with in the Lippmann-
Schwinger equation to extract the lattice K matrix.

In the case of on-site interactions, the K matrix consists
of two terms, the first, which is proportional to the open-
channel interaction matrix, correspond to scattering between
the energetically open two-body bands, while the second term
accounts for virtual scattering events into energetically closed
bands allowing for resonant scattering. In the absence of cou-
pling between closed band, resonances occur when bound
states attached to closed bands are embedded in the open
bands.

The expression for the scattering K matrix derived here
incorporates the scattering contributions from any number of
overlapping open bands with any number of closed bands.
In deriving Eq. (23) we assumed nearest-neighbor hopping
and on-site interactions only. However, as the band index
increases, the contributions from distant hopping will become
larger, and will not necessarily be negligible. Additionally,
higher index Wannier states will become less and less lo-
calized to the point where individual states span multiple
sites inducing beyond nearest-neighbor hopping and creating
nearest-neighbor (or even longer-range) interactions. Higher-
band contributions in 3D lattices were directly incorporated
for scattering in the lowest band in the zero center-of-mass
quasimomentum regime in Refs. [31,37]. Properly incorporat-
ing higher-energy bands in the K matrix as well as extending
these results to higher dimensions is the focus of ongoing
work.

APPENDIX

Starting from the K-matrix element given in Eq. (22) we wish to show the result of Eq. (23) in the case of on-site interactions.
Expanding the scattering states | fi(j)〉 and inserting a complete set of Wannier states yields

KL
ji = −2π

⎡⎣ ∑
l∈open

∑
z,z′

f +
j (z′)〈jz′|D̂−1|lz〉〈lz|Û |iz〉 f +

i (z) +
∑

l∈closed

∑
z,z′

f +
j (z′)〈jz′|D̂−1|lz〉〈lz|Û |iz〉 f +

i (z)

⎤⎦, (A1)
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where D̂ = (1 + Û Ĝ) and we dropped the center-of-mass quasimomentum K dependence everywhere for notational simplicity.
Note that we split the sum over the band indices into the contributions from the N open and M closed bands. We used the fact
that 〈lz′′|Û |iz〉 = 〈lz|Û |iz〉δzz′′ . We now wish to invert D̂ in the basis of Wannier states which can be broken into four blocks:

D̄ =
(

D̄oo D̄oc

D̄co D̄cc

)
,

where D̄ is the operator D̂ expressed as a matrix in the Wannier basis whose the matrix elements are given by

D̄jl(z
′, z) = 〈jz′|D̂|lz〉

= δjlδz′z + ei(φl
K −φ

j
K )z′

Ujl(|z′|)gl(z, z′).

Here D̄oo(z, z′) is an N × N matrix where both j and l correspond to open bands, D̄co(z, z′) is an M × N matrix where j is a
closed band and l is open, D̄oc(z, z′) is an N × M matrix where j is an open band and l is closed, and D̄cc(z, z′) is an M × M
matrix where both j and l correspond to closed bands. Notice that the only difference between the closed and open bands is the
LGF gl(z, z′) used. Thus the form of the matrix elements for D̄oo(z, z′) and D̄co(z, z′) are the same given by

D̄jl(z
′, z) = δjlδz′z + 2πei(φl

K −φ
j
K )z′

Ujl(|z′|) f +
l (z>) f −

l (z<). (A2)

Similarly, the form of the matrix elements for D̄cc(z, z′) and D̄oc(z, z′) are of the same given by

D̄jl(z
′, z) = δjlδz′z + ei(φl

K −φ
j
K )z′

Ujl(|z′|) α
|z−z′ |+1
l

Jμν
K

(
1 − α2

l

) , (A3)

where αl is given by Eq. (18).
Inverting D̄ directly gives

D̄−1 =
( (

D̄oo − D̄ocD̄−1
cc D̄co

)−1 −D̄−1
cc D̄co

(
D̄oo − D̄ocD̄−1

cc D̄co
)−1

−D̄−1
oo D̄oc

(
D̄cc − D̄coD̄−1

oo D̄oc
)−1 (

D̄cc − D̄coD̄−1
oo D̄oc

)−1

)
.

In Eq. (A1), we are only concerned with the open-open segment. Inserting D̄ and carrying out the matrix multiplication gives

KL
ij = −2π

{∑
z,z′

f +
j (z′)

[(
D̄oo − D̄ocD̄−1

cc D̄co
)−1

Ūoo
]

ij f +
i (z) −

∑
z,z′

f +
j (z′)

[
D̄−1

oo D̄oc
(
D̄cc − D̄coD̄−1

oo D̄oc
)−1

Ūco
]

ij f +
i (z)

}
, (A4)

where Ūji = ei(φi
K −φ

j
K )zUji(|z|) are matrix elements of the interaction in the two-body Wannier basis.

Equation (A4) is general for interactions of any range. Here, we are concerned with on-site interactions where Ūji =
ei(φi

K −φ
j
K )zUjiδz,0. Inserting this collapses the double sum and we may evaluate this at z = z′ = 0. We may also note that f −

l (0) = 0
while f +

i (0) =
√

λ/πvi
g. This simplifies the expression for the Dji matrix elements considerably for open channels leaving

D̄oo = 1 and Dco = 0. Inserting this gives

KL
ij = −2π

{∑
z,z′

f +
j (z′)[Ūoo]ij f +

i (z) −
∑
z,z′

f +
j (z′)

[
D̄ocD̄−1

cc Ūco
]

ij f +
i (z)

}
,

= −2λ
(
vi

gv
j
g

)−1/2
[Uoo − Uocḡc(1 + Uccḡc)−1Uco]ij,

which is the expression that appears in Eq. (23).
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