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Many-body dynamics with time-dependent interaction
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In this work we study the many-body dynamics of Bose-Einstein condensates subject to an arbitrary time-
varying scattering length. By employing a variational ansatz which assumes the majority of the particles are
condensed, we derive an effective Bogoliubov-like Hamiltonian that governs the dynamics of thermal particles.
Crucially, we show that there exists a hidden symmetry in this Hamiltonian that can map the many-body
dynamics to the precession of an SU(1,1) “spin” and also allows an exact dynamical solution for this precession
in an arbitrary “magnetic field.” As a demonstration, we calculate the situation where the scattering length is
sinusoidally modulated. We show that the noncompactness of the SU(1,1) group naturally leads to solutions
with exponentially growth of Bogoliubov modes and causes instabilities.
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I. INTRODUCTION

The ability to accurately control various parameters in cold
atomic gases allows the investigation of quantum matter under
extreme conditions that are beyond reach in other physical
systems.

Among these parameters, the tunable interaction strength
via magnetic Feshbach resonances [1–3] is a key ingredient
for many fascinating quantum phenomena such as the physics
of BEC-BCS crossover [4–7], superfluid to Mott insulator
transition [8–11], and the few-body Efimov effect [12–16].
The tunable interaction not only allows the study of the
equilibrium physics of quantum gases but also allows the
investigation of many exotic out-of-equilibrium physics with
time-varying interaction strength [17–22]. For example, the
Bose fireworks experiment recently carried out by the Chicago
group shows that a Bose condensate emits matter-wave jets
and forms striking fireworks patterns while subject to periodic
modulated interactions [19–21]. Moreover, the progress in ex-
perimental methods such as optical Feshbach resonance [23]
allows rapid and spatial modulations of the scattering length
between atoms. Such rapid control of interaction strength
has provided the experimental investigation of various exotic
dynamic behavior in quantum gases including the recently
discovered relation between quantum chaos and out-of-time
correlators [24–26].

In this work, we focus on the dynamic problem of a ho-
mogeneous Bose-Einstein condensate subject to an arbitrary
time-varying scattering length. We assume that the system is
initially prepared in the ground state of a weakly interacting
Hamiltonian such that the condensate fraction N0/N � 1, and
we focus on the short-time dynamics in which the condensate
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fraction remains close to unity. In this limit, one might naively
anticipate that the dynamics of the system could be described
by a mean-field level Gross-Pitaevskii (GP) equation with
time-varying coupling constant g(t ). However, it is straight-
forward to show that the solution to the time-dependent GP
equation is homogeneous as long as the system is initially
in the ground state [27]. This is related to the fact that
the ground-state solution (i.e., the saddle point) of a time-
independent GP equation does not rely on the interaction
strength g. Thus, it is necessary to go beyond the mean-field
theory and consider the role of quantum fluctuations.

It is worth noting that even though the mean-field dynamics
of the ground state (saddle point) is trivial, one may still
analyze the stability properties of it via the time-dependent GP
equation. For example, in the study of Faraday instabilities of
periodic driven BEC [28–30], one can perform a stability anal-
ysis by adding a small classical perturbation w(t ) cos(k · r) to
the ground-state solution.

In the corresponding static problem, the next order correc-
tion is known as the Lee-Huang-Yang correction, which can
be obtained with the Bogoliubov theory. Inspired by this cor-
respondence, we propose a variational ansatz which accounts
for the next order quantum correction to the dynamic problem.
We show that the dynamics of the variational wave func-
tion is governed by a Bogoliubov-like Hamiltonian. Crucially,
we find that the Hamiltonian possesses a hidden SU(1,1)
symmetry which not only allows an exact solution to the
time-dependent Schrödinger equation but also maps the dy-
namic problem to an SU(1,1) “spin” moving in a time-varying
magnetic field. The SU(1,1) “spin” model closely resembles
a normal SU(2) spin in an external field as its dynamics can
be viewed as a point moving on a hyperboloid (see Fig. 1)
in parameter space which resembles an SU(2) Bloch sphere.
To further demonstrate our method, we also calculate the
dynamics of a system with periodically modulated scattering
length.
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FIG. 1. A schematic diagram showing the dynamics of the
SU(1,1) spin on the “Bloch” hyperboloid. � represents the trajectory
of u(t ). The Berry curvature on the hyperboloid is identical to the
field of a line of magnetic monopole represented by the gray line.

II. MODEL

We consider a Hamiltonian which describes a system of
bosons interacting via short-range interaction:

H (t ) =
∑

k

εka†
kak + 1

2
g(t )

∑
k,q,q′

a†
q+ka†

q′aqaq′+k. (1)

Here a†
k(ak ) are the bosonic creation (annihilation) operator

with momentum k and mass m; g(t ) is an arbitrary time-
varying coupling constant which is related to the s-wave
scattering length as by g(t ) = 4πas(t )/m (we set h̄ and the
volume of the system to 1). The dynamic theory we develop in
this work does not rely on the specific form of the dispersion
εk as long as the system has an inversion symmetry i.e.,
εk = ε−k, and without loss of generality, we set ε0 = 0.

To proceed, we assume that during the dynamic process the
majority of the bosons still condense in the zero-momentum
state, i.e., N0(t ) = 〈a†

0a0〉 � N � 1. Therefore, one may ap-
proximate the time-dependent wave function by

|�(t )〉 = |ψ (t )〉k �=0 ⊗ e
√

N0(a†
0+a0 )|0〉, (2)

where the wave function |�(t )〉 is decomposed into a product
state of |ψ (t )〉k �=0 which represents the state of noncondensed
thermal bosons and a coherent state of N0 condensed particles.

To determine the “best” variational wave function |�(t )〉,
we use the Frenknel least action principle [31,32] for dy-
namic systems and minimize the action S = ∫

dt〈�(t )|i∂t −
H (t )|�(t )〉 [33]. This leads to a time-dependent Schrödinger
equation

i∂t |ψ (t )〉 = HB|ψ (t )〉, (3)

with

HB(t ) =
∑
k �=0

[εk + g(t )n]a†
kak + g(t )n

2
(a†

ka†
−k + H.c.)

+ g(t )nN

2
+ O(N−1/2). (4)

We see that the dynamics of thermal particles are governed by
a Bogoliubov-like Hamiltonian HB(t ).

It is worth noting that simply diagonalizing HB(t ) via Bo-
goliubov transformation does not solve the dynamic problem
as its instantaneous eigenstate is not the solution to Eq. (3).
The solution to the dynamic problem actually relies on the
hidden dynamic symmetry of Hamiltonian HB.

Note that the k part in HB couples only to −k, and it can
be rewritten as

HB =
∑
k �=0

{
g(t )nAk

1 + [εk + g(t )n]Ak
3

} + E0. (5)

Here E0 = −∑
k(εk + gn) + g(t )nN/2, Ak

1 and Ak
3 are de-

fined as Ak
1 = 1

2 (a†
ka†

−k + H.c.) and Ak
3 = 1

2 (a†
kak + a−ka†

−k ).
It was pointed out by Chen et al. [34] that Ak

1 and Ak
3

can fit into an SU(1,1) algebra by including an extra opera-
tor Ak

2 = 1
2i (a

†
ka†

−k − H.c.). Together with this operator, their
commutators form a close algebra:

[Ak
1 , Ak

2] = −iAk
3 , [Ak

2 , Ak
3 ] = iAk

1 , [Ak
3 , Ak

1] = iAk
2 . (6)

Note that Eq. (6) differ from the common SU(2) algebra of
a spin system by a minus sign. As we will see in the fol-
lowing, there is a close resemblance between the dynamics
of Bogoliubov systems and the dynamics of an SU(2) spin in
a time-dependent magnetic field.

III. SU(1,1) SPIN MODEL

Note that in the Bogoliubov Hamiltonian HB(t ) all the
(k,−k) subspaces with different k are decoupled. The orig-
inal model is separated into many SU(1,1) spins labeled by
(k,−k). This allows us to deal with one SU(1,1) spin at one
time. For generality, in the following we will consider a model
that consists of all the Ai components:

Hk
h = h · Ak = h1Ak

1 + h2Ak
2 + h3Ak

3 . (7)

Here h = (h1, h2, h3)T is an arbitrary time-dependent vector,
and Hk

h can be reduced to HB by letting h1 = 2g(t )n, h2 = 0
and h3 = 2[εk + g(t )n].

The SU(1,1) symmetry leads to three time-dependent in-
variants for Hk

h . To see this, we consider operator S in the
form of S = ∑

i ui(t )Ak
i . In order to make S a time-dependent

invariant under Hk
h , we have

d

dt
S = i[Hk

h , S] + ∂S

∂t
= 0. (8)

Due to the closed commutation relations, the above equation
leads to a set of linear equations for ui,

u̇ =
⎛
⎝ 0 −h3 h2

h3 0 −h1

h2 −h1 0

⎞
⎠u, (9)

with u = (u1, u2, u3)T .
Any u(t ) satisfying Eq. (9) represents an invariant u · Ak

for Hk
h . There are three linear-independent solutions of this

differential equation, which correspond to three independent
invariants.

IV. REMARK ABOUT Hk
h

From Eq. (9), one can prove that ‖u‖2 ≡ −u2
1 − u2

2 + u2
3 is

a constant by showing that d
dt ‖u‖ = 0. This means that the

023307-2



MANY-BODY DYNAMICS WITH TIME-DEPENDENT … PHYSICAL REVIEW A 104, 023307 (2021)

three-dimensional vector u(t ) is restricted on the surface of a
hyperboloid defined by −u2

1 − u2
2 + u2

3 = const. This may be
viewed as the SU(1,1) analog of the Bloch sphere in the SU(2)
spin case.

Without loss of generality, we consider the solution of u(t )
on the upper unit sheet of the hyperboloid as shown in Fig. 1.
The corresponding invariant can be parametrized as S(t ) = u ·
Ak = sinh θ cos φAk

1 + sinh θ sin φAk
2 + cosh θAk

3 . Using the
commutation relations in Eq. (6), we can diagonalize it via
the SU(1,1) rotation:

eiAk
3φeiAk

2θS(t )e−iAk
2θe−iAk

3φ = Ak
3 . (10)

Since Ak
3 = 1

2 (nk + n−k + 1), the eigenstates of S(t ) are thus
parametrized by two integers n = (n+, n−) with n± the num-
ber of bosons in k and −k states. They are given by |n〉 =
|n+, n−〉 = 1√

n+!n−!
eiAk

3φeiAk
2θa†n+

k a†n−
−k |0〉.

The instantaneous eigenstates of invariant S(t ) are use-
ful because they are proportional to the solution to the
Schrödinger equation |
〉. According to Lewis’s theory for
time-dependent invariants [35,36], we have

|
(t )〉 = e−iϕ(t )|n〉. (11)

Here |
〉 satisfies [i∂t − Hk
h (t )]|
(t )〉 = 0. The phase ϕ(t )

contains a dynamical phase and a geometric phase with
ϕ(t ) = ϕdyn(t ) − ϕg(t ):

ϕdyn =
∫ t

t0

dτ 〈n|Hk
h (τ )|n〉, ϕg = i

∫ t

t0

dτ 〈n|∂τ |n〉. (12)

Suppose the initial state of the system is the ground state of
h0 · Ak, the initial condition for Eq. (9) is then set as u(0) =
h0. We can then obtain the solution of the time-dependent
Schrödinger equation by solving u(t ) and substitute it into
Eq. (11) with n+ = n− = 0.

V. REMARKS ABOUT ϕg

By changing variable t to u, we can show that the geomet-
ric phase ϕg depends only on the trajectory of u,

ϕg = i
∫

�

du · 〈n|∇u|n〉 =
∫

�

Aθdθ + Aφ dφ, (13)

where � is the trajectory of u on the hyperboloid as shown in
Fig. 1. The Berry connection Ai is

Aθ = i〈n|∂θ |n〉 = 0, (14)

Aφ = i〈n|∂φ|n〉 = −Cn cosh θ, (15)

with charge Cn = (n+ + n− + 1)/2.
As is well known, the Berry curvature of an SU(2) spin is

identical to the field of a Dirac monopole positioned at the
center of the Bloch sphere. In the SU(1,1) dynamic theory,
the Berry curvature in u-space is given by ∇ × A = Cn

êρ

ρ

with ρ =
√

u2
1 + u2

2 the radial coordinate and êρ = (u1ê1 +
u2ê2)/ρ the unit vector along radial direction. This Berry
curvature is equal to the field of a line of Dirac monopoles po-
sitioned on the u3-axis with uniform linear density d = Cn/2
as shown in Fig. 1. The fact that the monopole line is infinitely
long is a consequence of the noncompactness of the SU(1,1)
group [37].

FIG. 2. Sold lines: Typical long-term behavior for u3(t ). The
time t is plotted in units of 1/ω. For both plots, we have g0 = 0,
δg = 0.1ω/n. In (a), we set εk = 1.2ω, which leads to a bounded
oscillating behavior. In (b), we set εk = 0.5ω and find that u3 grows
exponentially in the long term (the y-axis is in log scale). Dashed
line: eλt with λ ∼ 0.103ω, the Lyapunov exponent calculated by the
Floquet theory. One can see its long-term trend nicely agrees with
u3(t ). The insets show actual trajectories of u(t ) in both cases.

VI. BOSE GAS WITH PERIODICALLY DRIVEN g(t )

In the following, we consider a specific form of time-
varying interaction strength with g(t ) = g0 + δg sin ωt and
focus on the long-term behavior of the system. Such sinu-
soidal modulation is probably the most simple case and has
already been implemented in several cold atom experiments
[17,19,22,38].

In the case of the weakly interacting Bose gas h1 = 2g(t )n,
h2 = 0, and h3 = 2[εk + g(t )n], the coupled linear equations
(9) can be further simplified into a single differential equation
for u31 ≡ u3 − u1 [39],

˙̇u̇ 31 + 4εk[εk + 2g(t )n]u̇31 + 4εkġ(t )nu31 = 0. (16)

One may check that the above equation is equivalent to the
coupled equations (9).

For the periodic driven case, the Floquet theorem asserts
that the solution to Eq. (9) must take the form of u(t ) =
e−iEF t p(t ) with EF the quasi-energy and p(t ) a periodic func-
tion in t . The quasi-energy EF = α + iλ is in general complex,
and its imaginary part controls the stability of the system.
For a real quasi-energy, i.e., λ = 0, the vector u is always
bounded, meaning the condensate emits only a finite number
of thermal particles with momentum ±k. On the other hand,
if the quasi-energy EF is complex, the u grows exponentially
in the long term, meaning the condensate will keep emitting
thermal particles until the variational wave function (2) breaks
down. As one can see, the imaginary part λ plays an important
role in controlling the growth speed of the thermal modes,
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FIG. 3. Stability diagram for Bose gas with oscillating interaction strength g(t ) = g0 + δg sin ωt . From left to right: g0 = −0.5ω/n, g0 = 0,
g0 = 0.5ω/n. The white area marks the stable region with a vanishing Lyapunov exponent. The colored area marks the unstable regions.
Dashed lines represent the transition curves that separate two regions. The Lyapunov exponent is shown via the color map. “B”s and “R”s in
the instability lobes stand for Bogoliubov and resonance, which categorizes two different origins of the instabilities.

which can thus be interpreted as the Lyapunov exponent of
the system. Recent developments in quantum chaotic systems
have shown a close connection between the Lyapunov ex-
ponent of a quantum system and its out-of-time correlator
[24–26]. In the following we will show that the Lyapunov
exponent λ of our system can also be calculated by utilizing
the SU(1,1) symmetry and mapping the system to a classical
time-dependent harmonic oscillator.

We solve Eq. (9) numerically for different εk (this is equiv-
alent to focus on Bogoliubov modes with different momenta
k). The result is plotted in Fig. 2, which shows that u3 indeed
grows in the form of eλt . This is in contrast to the dynamics
of an SU(2) spin as all the components of the SU(2) spin are
bounded. As one can see from the insets, the exponentially
growing solutions are related to the noncompactness of the
SU(1,1) group, which is the main difference between the
SU(1,1) and SU(2) groups.

To calculate λ, we further show that the third-order equa-
tion (16) is related to a second-order one:

v̈ + εk[εk + 2g(t )n]v = 0. (17)

Namely, if v1, v2 are the two solutions of Eq. (17), u = v1v2 is
then the solution of Eq. (16). Thus the three linear independent
solutions for Eq. (16) are given by v2

1 , v1v2, and v2
2 , with v1,

v2 the linear independent solutions of Eq. (17) [40,41]. For
g(t ) = g0 + δg sin ωt , Eq. (17) reduces to a Mathieu equation.
The Mathieu equation can be used to describe the classical dy-
namics of a parametric oscillator, whose long-term Lyapunov
exponent [42] may be calculated by the standard Whittaker-
Hill formula [43].

It is worth noting that the Mathieu equation has already
been used in the study of the dynamic Faraday instability of
BEC within the mean-field approach [28–30]. For the insta-
bility analysis, both methods agree with each other and give
the same result. We remark on two crucial differences between
the mean-field approach and our beyond-mean-field approach.
First, as previously mentioned, the mean-field approach al-
ways requires a small perturbation around the homogeneous
saddle point solution of the GP equation; i.e., if the system is
initially prepared exactly in its ground state, it never forms a
Faraday pattern. Whereas in the beyond-mean-field approach,
the ground state is essentially instable, as the quantum fluctu-
ation (zero-point motion near the saddle point) plays the role
of the perturbation. Second, from the path integral point of

view, doing a perturbation analysis in the mean-field approach
is equivalent to expanding the classical action S[ψ] and ap-
proximating it by a quadratic one near the saddle point (i.e.,
a classical time-dependent harmonic oscillator). Whereas the
Bogoliubov Hamiltonian HB in our approach can be regarded
as the corresponding quantum model. The fact that the dy-
namics of a time-dependent quantum harmonic oscillator can
be solved by mapping it to a classical one is already known
and well understood [35,36]. Nevertheless, there are certain
quantum characters that can be captured only by the beyond-
mean-field approach including the quantum zero-point energy
(LHY correction) and the dynamical and geometric phase in
the dynamic process.

We plot the Lyapunov exponent λ as a function of εk and δg
in Fig. 3. One can see that the system develops several insta-
bility lobes while turning on the modulation δg. These lobes
are caused by two types of instability—the resonance instabil-
ity and the Bogoliubov instability. The resonance instability
lobes emerge from

√
εk(εk + 2g0n) = nω/2 for small mod-

ulation strength δg and keep growing while increasing δg.
Note that

√
εk(εk + 2g0n) is the energy for Bogoliubov mode

in the unperturbed system. This indicates that this instability
appears because the driven frequency is in resonance with
two Bogoliubov excitations (one k and one −k) of the un-
perturbed system. The Bogoliubov instability lobes exist even
when there is no interaction strength modulation and shrink
with increasing δg. They appear when εk(εk + 2g0n) < 0,
corresponding to the system having imaginary energy for the
Bogoliubov mode. Such instability is an intrinsic instability
of the unperturbed system and hence is named Bogoliubov in-
stability. The fact that the Bogoliubov instability lobes shrink
with increasing δg suggests that we may actually use the
temporally modulated interaction to stabilize condensates that
are originally unstable with static interactions (e.g., bosons
with attractive interaction).

It can also be seen from Fig. 3 that in a regular uniform
BEC, where εk ∈ (0,+∞) there is always instability asso-
ciated with some momentum pair (k,−k). This instability
causes an exponentially growing Bogoliubov phonon mode
with momentum (k,−k) and eventually leads to the formation
of Faraday patterns with spatial period π/k as observed in
Ref. [17].

To conclude, we have developed a beyond-mean-field the-
ory to describe the dynamics of Bose-Einstein condensates
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with time-varying interaction strength. Utilizing the Frenknel
least action principle for a variational dynamical wave func-
tion, we proved that the noncondensate part of the system
can be well described by a Bogoliubov-like Hamiltonian.
Furthermore, by identifying a hidden SU(1,1) symmetry of
the system, we show that the dynamic problem of bosons
can be mapped to the problem of an SU(1,1) spin in a
time-varying magnetic field. We explicitly constructed the
time-dependent invariants of this SU(1,1) spin model in an
arbitrary time-varying magnetic field. These invariants are
crucial for the construction of the exact solution to the orig-
inal time-dependent Schrödinger equation. Interestingly, the
Berry curvature of the SU(1,1) spin is found to be identical
to the field of a line of Dirac monopoles. Experiments that
can generate such a gauge field in a BEC have been pro-
posed for years but not yet realized [44]. Thus the model
we describe in this work might provide an alternative and
feasible method to create and simulate such a novel config-
uration of gauge fields. As an example of our theory, we
calculated the dynamics of weakly interacting bosons with

sinusoidally modulated interaction strength. Such a model
has been extensively studied experimentally [17,22,28–30]
because of its relation to the Faraday instability. We show that
there exists a quantum-classical correspondence between our
beyond-mean-field theory and the previously studied mean-
field approach.

Note added. Recently, two preprints [45,46] which deal
with a similar dynamic problem also appeared. Reference
[45] studies the momentum distribution and structure factor
of a Bose gas with periodically modulated scattering length,
and Ref. [46] focuses on the geometrizing of the Bogoliuv
Hamiltonian.
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