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van der Waals interaction as the starting point for an effective field theory
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We consider the system of three 4He atoms to assess whether a pure van der Waals potential can be used
as a starting point for an effective field theory to describe three-body processes in ultracold atomic systems.
Using a long-range van der Waals interaction in combination with short-distance two-body counterterms, we
analyze the dependence of two- and three-body observables on the short-distance regulator that is required
due to the singular nature of the van der Waals interaction. We benchmark our approach with results obtained
with the realistic 4He − 4He LM2M2 potential and find good agreement. We furthermore show that in this
effective field theory approach no three-body force is required at leading order and that universal van der Waals
physics leads to a universal correlation between three-body observables in the absence of an Efimov three-body
parameter.
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I. INTRODUCTION

Effective field theories (EFT) have led to significant ad-
vances in the fields of nuclear and particle physics [1,2].
In atomic physics, EFTs have been successfully applied to
systems of ultracold atoms with large scattering length that
also display the so-called Efimov effect [3,4]. At leading or-
der (LO) in this large-scattering-length and short-range EFT
(SREFT), the resulting scattering equations are the same
as the ones arising from zero-range interactions [5]. There-
fore, a three-body parameter, and thereby one experimental
three-body datum, is required to make predictions within this
framework [3,6]. Generally, EFTs are low-energy expansions
that exploit a separation of scales (e.g., between a large scat-
tering length and a range of the interaction) as an expansion
parameter. This implies that every EFT calculation has an in-
trinsic uncertainty arising from the truncation of the expansion
which is highly useful for the comparison with experimental
data.

Recently, it was observed that the Efimov three-body pa-
rameter in atomic systems can be derived from the coefficient
of the van der Waals tail of the atom-atom interaction. A num-
ber of theoretical works used various models with long-range
van der Waals tails to study these observations and found
that the two-body van der Waals interaction alone can indeed
predict the three-body observables of ultracold gases with a
large scattering length accurately (see Ref. [7] for a recent re-
view, a discussion of the origin of the so-called van der Waals
universality, and a more complete list of references). However,
a recent study [8] has also demonstrated that there are some
caveats to universality that are related to the details of the
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atom-atom interaction. These findings immediately raise the
questions of whether the van der Waals potential can be the
starting point for atoms whose interaction contains the van
der Waals tail and also what would the expected uncertainty
of a leading-order calculation be within such a framework. van
der Waals universality implies in particular the existence of a
short-distance length scale smaller than β6, the length scale
associated with the van der Waals interaction. The size of this
short-distance length scale is not immediately clear; however,
it could be determined once certain aspects of the low-energy
expansion have been established.

We note that some effort has already been made to under-
stand (i) the properties of a two-body system interacting solely
through a van der Waals interaction [9] and (ii) the contribu-
tions that need to be included beyond leading order [10,11].
However, in this paper we focus on the 4He three-body sys-
tem that also displays a large two-body scattering length and
try to answer whether a simple van der Waals potential can
be the starting point for an effective theory description of
atomic three-body systems. To answer this question, one must
confront three related questions. Does the proposed leading
order of this EFT lead to meaningful results that one can
hope to systematically improve upon? What is the low-energy
EFT expansion parameter and thereby the uncertainty of a
leading-order calculation? Finally, what are the required phys-
ical parameters that will enter the higher-order calculations?

As a starting point, we will consider the system of three
4He atoms. The 4He interaction leads to a large scattering
length and various potential models have been constructed to
reproduce these features. In the three-body system there are
two three-body bound states: a shallow one, often considered
to be an Efimov state associated with the large scatter-
ing length, and a deep state that is considerably impacted
by effective-range corrections. These three-body observ-
ables were calculated many times with the aforementioned

2469-9926/2021/104(2)/023306(8) 023306-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8748-6976
https://orcid.org/0000-0002-0732-7749
https://orcid.org/0000-0001-6632-8250
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.023306&domain=pdf&date_stamp=2021-08-04
https://doi.org/10.1103/PhysRevA.104.023306


ODELL, DELTUVA, AND PLATTER PHYSICAL REVIEW A 104, 023306 (2021)

potentials and in particular the so-called LM2M2 model was
used in several theoretical studies [12–15]. We will therefore
use it as a template for our microscopic underlying theory
which serves as the basis of our EFT approach. This means
that selected LM2M2 results for observables will be taken
to constrain our van der Waals EFT model while others are
expected to be reproduced by the van der Waals EFT with
an uncertainty related to its inherent expansion parameter.
Finally, we should note that this system has also received
renewed attention because a detection of the excited (so-called
Efimov) three-body state was achieved [16].

This paper is arranged as follows. In Sec. II we present
the relevant potential, the analytical predictions by Gao in
the two-body sector, the specifics of our implementation, and
some relevant details of the LM2M2 potential. In Sec. III
we discuss the details of our renormalization scheme and the
low-energy results obtained in the two-body sector. Section IV
contains our results in the three-body sector and insights
into correlations between the scattering and bound-state re-
gions. The results are obtained by solving the corresponding
equations in the momentum-space partial-wave representa-
tion; the details can be found in Ref. [17] and therefore are
not discussed here. Finally, we summarize our work, draw
conclusions, and discuss further advancements in Sec. V.

II. THE VAN DER WAALS INTERACTION

A. Previous work

In this work we consider an interaction that at long dis-
tances has an attractive van der Waals tail of the form

V (r) = −C6

r6
. (1)

The van der Waals strength C6 can be converted into a char-
acteristic length scale β6 ≡ (mC6)1/4, where m is the mass of
the interacting particles. Gao derived solutions to the attractive
1/r6 potential in Ref. [9]. The bound-state wave function of
the state with energy E in partial wave l is written as a linear
combination of two solutions fEl (r) and gEl (r) of the van der
Waals interaction

uEl (r) = AEl [ fEl (r) − KlgEl (r)], (2)

where AEl is a normalization coefficient and Kl denotes the
so-called short-range K matrix that fixes here an additional
boundary condition on the wave function that is required due
to the potentials singularity at the origin. The precise forms
of the functions fEl (r) and gEl (r) are given in Ref. [9]. For
bound states, their asymptotic form is given by

fEl (r) → (2πκ )−1/2(Wf −eκr + Wf +e−κr ),

gEl (r) → (2πκ )−1/2(Wg−eκr + Wg+e−κr ),
(3)

where κ represents the bound-state momentum and the co-
efficients Wf ±,g± depend on the energy E and the angular
momentum l of the bound state [9]. Requiring Eq. (2) to give
a normalizable solution implies that the terms proportional to
eκr in Eq. (3) cancel and leads to

Kl (E ) = χl (�) = Wf −/Wg−, (4)

where � = 2μEβ2
6/16h̄2.

FIG. 1. Plot of χl=0 as a function of the dimensionless parameter
�. The blue solid line is χl=0. The orange dashed line is the value of
χl=0 at the 4He2 binding energy.

The solid line in Fig. 1 shows the function χl=0(�) for
the β6 value associated with the 4He − 4He interaction. The
intersections between the dashed line and the solid line give
the two-body binding energies in terms of the rescaled energy
variable � once the boundary condition is chosen either by
adjusting the energy (�) position of one the intersections or
by adjusting a scattering observable.

Expressions for the asymptotic solutions at positive ener-
gies can be used to derive expressions for the two-body t
matrix and thereby for the effective range parameters. Gao
obtained for the S-wave scattering length and effective range
[18]

as = 2π[
�

(
1
4

)]2

K0(0) − 1

K0(0)
β6,

rs ≈
[
�

(
1
4

)]2

3π

K0(0)2 + 1

[K0(0) − 1]2 β6,

(5)

where K0(0) is evaluated at zero energy (threshold). The rela-
tion for rs is truncated under the assumption that the derivative
of the short-range K matrix is small. In effect, we can calculate
the boundary condition K0(0) from as and then calculate rs.
The scattering length is then dependent on the van der Waals
length scale β6 and the short-range K matrix Kl evaluated in
the S-wave channel at zero energy.

B. Numerical implementation

As a LO approximation of the 4He system, we take the C6

coefficient from the LM2M2 potential [19] and account for the
short-distance behavior with a single two-body momentum-
space counterterm described below. We regulate (cut off) the
local part of the potential at distances well below R with a
regulator function ρ(r; R),

ρ(r; R) = [1 − e−(10r/R)2
]8, (6)

such that the full coordinate-space potential is

V (r) ≡ ρ(r; R)V6(r). (7)

The local regulator is effective at a distance R/10 that is
considerably shorter compared to the nonlocal regulators de-
scribed below. This ensures that cutoff effects are isolated
to a single scale and that there are no interferences between

023306-2



VAN DER WAALS INTERACTION AS THE STARTING … PHYSICAL REVIEW A 104, 023306 (2021)

the local and nonlocal regulators in the momentum-space
potential. It is also worthwhile noting that other regulators
can be used but that their specific form can influence the rate
of convergence with respect to the number of grid points in
numerical calculations.

We will solve for two- and three-body observables in mo-
mentum space. We therefore calculate the momentum space
interaction as a regulated Fourier transform of the regulated
coordinate space version of the van der Waals interaction

Ṽl,l ′ (p, p′) = ρ̃(p; R)ρ̃(p′; R)
2

π

∫ ∞

0
dr r2 jl (pr)V (r) jl ′ (p′r),

(8)

where

ρ̃(p; R) = e−(pR/2)8
(9)

is the nonlocal regulator and jl (pr) are the spherical Bessel
functions.

Once regulated at a short distance R, physical observables
acquire a dependence on the arbitrary choice of R which is
removed by the introduction of the counterterm

χ̃l,l ′ (p, p′; R) = gl (R)pl (p′)l ′ ρ̃(p; R)ρ̃(p′; R)δl,l ′ . (10)

For every value of R the counterterm gl (R) is readjusted such
that the chosen two-body observable is reproduced. We will
refer to the functional dependence of gl (R) as renormalization
group (RG) flow. A more detailed discussion of the renormal-
ization scheme can be found in Sec. III A. Similarly, a more
detailed discussion of the calculation of two- and three-body
observables can be found in [17].

C. Details of the LM2M2 potential

The LM2M2 potential is one of several potentials devel-
oped for the interaction of 4He atoms [19]. We will use it
here because of a large number of few-body calculations that
have been carried out with this interaction. This potential is
a sum of r−6, r−8, and r−10 terms, each having a separate
strength coefficient. We can quantity how pure the van der
Waals tail is in the LM2M2 interaction by converting these
coefficients C6, C8, and C10 into corresponding length scales.
In Table I we show the length scales associated with each
inverse-power-law contribution to the LM2M2 potential. We
can see that the van der Waals tail has the largest length scale.
We expect therefore the features of the trimer states to be
dominated by the van der Waals interaction.

A conservative estimate of the LO theory’s uncertainties
can be formulated from the energy scales given in Table I. The
ground-state trimer with a 126.4-mK binding energy is the

TABLE I. Length scales β6, β8, and β10 and corresponding en-
ergy scales arising from the different contributions to the LM2M2
potential.

n βn (mβ2
n )−1 (mK)

6 5.38 419.18
8 3.62 923.42
10 3.09 1272.3

observable farthest from threshold that we calculate. The ratio
of the binding energy to the energy scale associated with β8,
the lowest breakdown scale of the 4He − 4He interaction, is
approximately 1

9 . Therefore, the ratio of momentum scales is
approximately 1

3 . We use this ratio to conservatively estimate
our LO theory uncertainty at 30%.

In addition, there are three other terms in the LM2M2
potential. The first is a multiplicative regulator function of the
form

F (x) =
{

e−(D/x−1)2
, x � D

1, x � D,
(11)

where x = r/rm and rm = 2.9695 Å . For the LM2M2, D =
4.2 Å . However, due to the functional form of F (x), the value
of F (x) does not drop below 0.5 until r < 2.5 Å . Therefore,
we conclude that the range of the regulator function is com-
parable to β10, which is significantly smaller that the scale of
interest β6.

The second remaining term in the LM2M2 potential is
the short-distance repulsion, which is effectively a Gaussian
centered at approximately −8.3 Å with a 1-σ width of 1.5 Å.
Of course, in the relevant region r > 0, this Gaussian function
overcomes the divergences of the inverse-power-law terms.
A conservative estimate for the range of the short-distance
repulsion is the minimum of the total potential, which occurs
below 3 Å, well below β6.

The final term to be addressed is a sine function defined in
Eq. (A3) in Ref. [19]. Its peak value is small enough relative to
the other terms in the potential and therefore its contribution
is insignificant. To relieve any residual concerns, we point
out that the peak of this term occurs at 3.65 Å, which is
comparable to β8, but again we emphasize that the magnitude
at this peak is relatively small.

III. THE 4He TWO-BODY SYSTEM

A. Renormalization scheme

We tune the counterterm in Eq. (10) in each two-body
partial wave to reproduce arbitrarily chosen low-energy

�
(a) (b) (c)

FIG. 2. Strengths of the counterterms (a) g0(R), (b) g2(R), and (c) g4(R) as functions of the dimensionless parameter β6/R. The units of
gl (R) are K Å2l+3.
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(a) (b)

FIG. 3. (a) The 4He two-body scattering length and (b) the effective range as functions of β6/R. The blue solid lines display the results
obtained with the renormalized van der Waals potential and the shaded blue band gives the numerical uncertainty for as. The orange dashed
lines represent the respective results obtained with the LM2M2 potential, while the green dash-dotted lines show Gao’s prediction based on
Eq. (6).

observable(s). In the S-wave channel, g0(R) is tuned to yield
a shallow two-body bound state with the binding energy B2 =
1.31 mK. In the D-wave channel g2(R) is tuned to reproduce
the two-body phase shift at E = 67 mK (� = 0.01) found
using the LM2M2 potential. Finally, the G-wave countert-
erm g4(R) is tuned to fit the LM2M2 phase shifts below
15 K. The upper energy limit of the G-wave phase shifts is
chosen to avoid low-lying resonances. The l = 4 centrifugal
barrier of the local van der Waals interaction constructed here
peaks between 14 and 15 K. Forcing our system to reproduce
the LM2M2 G-wave phase shifts over this large region suc-
cessfully prevents resonances, otherwise rapidly moving with
R, from interfering with low-energy three-body observables.
This procedure generates a RG flow, a function that gives
the counterterm coupling strength’s dependence on the short-
distance regulator scale R that is shown for S, D, and G waves
in Fig. 2.

B. Two-body results

To demonstrate the effectiveness of our LO potential
to capture the relevant physical behavior of the 4He − 4He
interaction, we show in Fig. 3 the cutoff dependence of the
S-wave scattering length as [Fig. 3(a)] and effective range rs

[Fig. 3(b)]. The error bands are generated by the covariance
estimates from a nonlinear least-squares fit. The LM2M2 re-
sults for these parameters are as = 100.0 Å and rs = 7.33 Å
and are included in both plots to establish the degree to which
the 4He − 4He interaction at low energies is characterized by
the van der Waals tail.

In an EFT we expect the convergence of observables to
follow O(1/R) = O0[1 + ∑∞

n=1 cn(qR)n]. As shown in [17],
this simple expansion is not always observed in practice.
Oscillatory functions and noninteger powers of qR can ob-
scure the analytical description of cutoff dependence, even
at small values of R. In [17] the analysis was conducted for
the attractive 1/r3 potential. Here, while similar features can
be seen in the figures below, a stronger singularity makes
the calculations much more difficult numerically, rendering
the analysis of the logarithmic derivative inconclusive. There-
fore, asymptotic estimates provided in the following results
are based on qualitative analyses of the short-distance cutoff
dependences.

Figure 3 shows the convergence of as and rs with respect
to the dimensionless variable β6/R. The quantities are fit
according to the modified effective range expansion derived
by Gao [18],

k cot δ0 = − 1

as
+ rs

2
k2 + c3k3 + c4k4 + O(k4 ln k). (12)

Estimated values for as and rs in the β6/R → ∞ limit are
given in Table II. In comparison to the LM2M2 results, as

differs by approximately 0.1% and rs within 2%. The relative
difference between as and the Gao prediction is on the order
of 10−5. The effective range differs by less than 1%. The
scattering length is given for free in that universality, of the
generic kind, guarantees this result. The agreement of rs with
the LM2M2 results and Gao’s prediction [18] is the result of
van der Waals universality.

The agreement between our results and Gao’s predictions
is noticeably better for as than for rs. We point out a few
caveats associated with this observation. First, rs can be sen-
sitive to the energy range included in the fit to Eq. (12),
an arbitrary choice. Similarly, that fit is also sensitive to the
number of terms treated in Eq. (12). Finally, the analytical
prediction in [9] for rs includes a term proportional to the
energy derivative of the K matrix at zero energy. This term
is assumed to be small and therefore not included in the
evaluation here.

As a further demonstration of the agreement between our
results and the Gao predictions, we show the two-body spec-
trum in Fig. 4. As β6/R increases, the degree to which the van

TABLE II. Estimates for various observables O and conservative
estimates of their associated uncertainties δO based on the conver-
gence behavior shown in the previous figures.

O O((β6/R)max ) δO

as (Å) 99.9 0.1
rs (Å) 7.2 0.1
B(0)

3 (mK) 135 10
B(1)

3 (mK) 2.3 0.1
aAD (Å) 105 10
rAD (Å) 85 10
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FIG. 4. Evolutions of the two-body s-wave spectrum with a de-
creasing short-distance cutoff R. The shallowest state (blue circles)
is fixed and shown together with the next two states in the spectrum.
The first one (orange squares) is compared to the Gao prediction
for the next deeper state (orange dashed lines). The second one
(green diamonds) is similarly compared to the Gao prediction (green
dash-dotted line). Predictions are discussed in Sec. II A.

der Waals tail dominates the long-range behavior increases,
moving our results towards those predicted by Gao. Indeed,
the binding energies of deeper two-body states are approach-
ing Gao’s predictions, precisely the behavior we expect.

Furthermore, Gao predicted that for higher partial waves,

tan δl�2 = 3π

32
(
l + 1

2

)[(
l + 1

2

)2 − 4
][(

l + 1
2

)2 − 1
] (kβ6)4.

(13)

In Fig. 5(a) we compare the D-wave phase shifts of our pure
van der Waals interaction with the result obtained using the
LM2M2 potential and the Gao prediction [18]. The different
lines shown correspond to 25 different values of the short-
distance regulator R ranging from 0.63 to 2.5 Å. The results
agree very well at low momenta, while they start to deviate at
larger momenta. However, we note that the scale on which the
phase shift is shown is relatively small. A relative comparison
is shown in Fig. 5(b) where the differences between small
values of tan δ are highlighted. The van der Waals system, as
expected, consistently stays closer to the predicted behavior
whereas the LM2M2 results quickly deviate presumably due

to significant contributions from terms in the potential domi-
nating at the short distances being probed at higher energies.

IV. THE 4He THREE-BODY SYSTEM

We will now calculate three-body observables using the
van der Waals interaction tuned to reproduce 4He two-body
parameters. We emphasize that the theory developed at this
order is uninformed by 4He3 observables, which is a very
different starting point in comparison to the SREFT.

A. Binding energies

We first calculate the ground-state binding energy of the
4He trimer. The LM2M2 potential prediction for this state
is 126.5 mK [15]. In Fig. 6 we show the binding energy of
the trimer ground state as a function of the dimensionless
parameter β6/R. The blue circles give the results when only
the S-wave two-body interaction is included in the calculation,
orange squares include also the D wave, and green diamonds
include the G wave as well. Since β6 is the characteristic
length scale of the van der Waals interaction, we expect that
only values of β6/R > 1 capture the important features of
the van der Waals interaction. As indicated by the figure, in
the β6/R → ∞ and lmax → ∞ limits, a converged value near
(within 10%) the LM2M2 result is obtained.

The LM2M2 potential leads to a binding energy of
2.278 mK for the excited trimer state [15]. From an energy-
scale point of view, the excited state appears to be a better
observable to study for the purposes of EFTs. For the SREFT,
it is a state whose binding energy is close to the energy scale
of the two-body bound state and that is thereby clearly within
the range of convergence of this EFT. For our van der Waals
EFT it is well separated from the energy scales associated
with β8 and β10 shown in Table I. The regulator dependence
of the excited state is shown in Fig. 6(b). The convergence
toward the LM2M2 result is similar to that of the ground-state
trimer and further demonstrates the accuracy of describing the
4He − 4He interaction with a van der Waals EFT.

Estimates for the three-body binding energies in the
β6/R → ∞ limit are given in Table II. Contributions from
partial waves where l > 4 are neglected. Based on the rapid
decrease in the contribution to B(n)

3 going from lmax = 2 to
lmax = 4, we expect higher partial waves to have even less of

(a) (b)

FIG. 5. (a) The van der Waals (green dotted line) and LM2M2 (orange dashed line) d-wave phase shifts, given in terms of tan δ, are
compared to Gao’s predictions (blue solid line). The different overlapping van der Waals lines correspond to different values of R. (b) Ratio of
tan δl=2 to the prediction by Gao as a function of kβ6. Where applicable, the colors and line styles are as in (a).
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(a) (b)

FIG. 6. Three-body binding energies for the (a) ground and (b) excited states as functions of β6/R. The blue circles are the calculated
energies using the S wave only. Orange squares include the D wave in addition and green diamonds include also the G wave.

an impact. This effect has already been observed in [20] for
the LM2M2 potential.

B. Atom-dimer scattering

The atom-dimer scattering properties of the 4He have been
considered previously with various realistic atom-atom inter-
actions. In Ref. [15] a value of 115.39 Å was obtained for the
LM2M2 potential. In Fig. 7 we show the convergence of the
atom-dimer scattering length with respect to β6/R. Symbols
and colors are as they appear in Fig. 6. We observe again that
at least S and D waves have to be included to obtain good
agreement with the results of the LM2M2 potential. Assum-
ing again that the regulator dependence scales as β6/R, we
determine the atom-dimer scattering length to be 105 ± 10 Å
in the limit of β6/R → ∞. Though not shown in the figure,
we obtained stable numerical results for S- and D-wave cal-
culations of aAD for values of β6/R � 17 and verified that the
convergence is stable.

We have also calculated the atom-dimer effective range
and found rAD = 85 ± 10 Å but note that the extraction of
this observable is more difficult. Being the energy derivative
of k cot δ at zero energy, practically rAD results from the
difference of two values at very low energies. The energies
are necessarily small because the effective range is large and
one must be careful to avoid effects from higher-order terms
in the effective range expansion. Even if individual k cot δ

FIG. 7. Atom-dimer scattering length aAD as a function of β6/R.
The horizontal solid line gives the result of Ref. [15]. Symbols and
colors are as in Fig. 6.

values are reasonably accurate, their small difference has
lower relative accuracy, leading to a larger uncertainty in rAD.
Our estimated uncertainties make our prediction consistent
with the LM2M2 result of 79.0 Å given in Ref. [21]. Finally,
we note that the convergence of B(0)

3 , B(1)
3 , and aAD with

respect to the β6/R → ∞ limit indicates that a three-body
force is not required at LO to obtain renormalized results.

C. Universal correlations and a comparison to the
short-range EFT

A correlation between the neutron-deuteron scattering
length and the triton binding energy was observed in calcula-
tions with phase-shift-equivalent interactions and is known as
the Phillips line [22]. In the EFT with contact interactions, this
correlation can easily be reproduced by varying the three-body
parameter [23]. Reference [24] used the SREFT to analyze
universal aspects of this system and displayed the Phillips line
for the 4He system produced at LO. In Refs. [25,26], SREFT
calculations were carried out at next-to-leading order and
next-to-next-to-leading order for the 4He system by including
the effects of a finite effective range and it was found that the
convergence behavior of the EFT expansion is poor for the
ground state.

In Fig. 8 we display the correlation between aAD and both
B(1)

3 and B(0)
3 values obtained by changing the regulator R. The

results show an approximately linear correlation. However,
more importantly, results that were obtained with different
numbers of included partial-wave channels fall on nearly the
same correlation line. In addition to our own results, we
include the results corresponding to the values reported in
[15] shown as gray horizontal and vertical lines. The inter-
section of the lines representing those results falls in excellent
agreement with our own calculations. In Fig. 8 we also show
the so-called Phillips line predicted by SREFT as a red solid
line. The agreement with this Phillips line traced out by our
calculations is quite good, but for both the excited and ground
states, the intersections of the results of [15] are significantly
closer to the correlation found with van der Waals EFT. This
indicates that our interaction contains all relevant information
stemming from two-body physics. We also note that this result
is particularly satisfying for the ground state for which SREFT
does not converge when range corrections are included [26].
It is also remarkable that the results for calculations that
include different numbers of partial waves in the two-body
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(a) (b)

FIG. 8. (a) Correlation between the excited-state binding energy B(1)
3 and the atom-dimer scattering length aAD. (b) Correlation between

the trimer ground-state energy and the atom-dimer scattering length aAD. In both panels the S-wave-only results are shown as a blue solid line.
Results including D and G waves are shown as orange dashed and green dash-dotted lines, respectively. The red solid line is the prediction
from SREFT.

subsystem lie on the same line. The reason for this is that
the low-energy scattering features of higher partial waves are
not relevant to obtain the correlations between observables in
the 4He three-body sector but that the line is generated by
the inclusion of varying amounts of singular van der Waals
behavior. Specifically, at short distances where the van der
Waals interaction dominates the centrifugal barrier, the short-
range attraction is the same in all partial waves. The degree to
which this attraction is exposed determines the location on the
4He Phillips line.

V. SUMMARY

In this work we considered the three-body system com-
posed of 4He atoms as a starting point for a description of
few-body observables with an EFT whose leading order is
the long-range van der Waals interaction. We analyzed the
dependence of three-body observables on the short-distance
regulator employed in calculations with the van der Waals
potentials. Our numerical results converge and become in-
dependent of the short-distance regulator, which leads to the
conclusion that no three-body force is required when the van
der Waals interaction with a two-body counterterm is con-
sidered to be the LO of an EFT. We provided values with
uncertainty estimates for the trimer binding energies and for
the atom-dimer scattering length in the limit of a zero short-
distance regulator.

We demonstrated also that this leading-order calculation
provides a good description of the 4He trimer system, i.e.,
the binding energies of the two trimer bound states and the
atom-dimer scattering length are very close to the results ob-
tained with the LM2M2 potential. In agreement with previous
calculations using 4He potentials, we observed that higher
two-body partial waves have an important impact (specifically
the l = 2 contribution) on the three-body observables but that
the size of their contribution decreases rapidly with increasing
l . Also, a comparison of the result for the deep trimer state
obtained in SREFT and van der Waals EFT indicates that the
latter apparently contains important finite-range contributions

as the result is significantly closer to the potential result. This
is encouraging as higher-order calculations with the SREFT
indicate that the deep trimer state is outside the radius of
convergence of the SREFT [26]. We furthermore found that
the inclusion of higher partial waves does not shift signifi-
cantly the so-called Phillips line, the correlation between the
atom-dimer scattering length and three-body binding energy
obtained by varying the short-distance regulator, but rather
move along the Phillips line.

Two important developments should be carried out in the
near future. First, the structure and impact of higher-order
corrections needs to be analyzed. As a first step, momentum-
dependent contact interactions can be introduced in the
S-wave channel. It would then be necessary to determine the
observables to fit this additional low-energy parameter to, e.g.,
low-energy phase shifts in a certain energy range. Develop-
ments related to the use of the so-called modified effective
range expansion in the context of EFTs [27] and recently de-
veloped prescriptions for the construction of ordering schemes
for singular interactions [28] make this avenue particularly
promising. Second, this approach should be used to analyze
the three-body spectrum for a variable scattering length, i.e.,
for systems close to a Feshbach resonance. This will provide
further insights into the uncertainties for three-body observ-
ables and universal relations established for the van der Waals
universality.
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