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We explore the edge defects induced by spin-spin interaction in a finite paradigmatic Heisenberg spin
chain. By introducing a gradient magnetic field and a periodically modulated spin-exchange strength, the
resonance between modulation frequency and magnetic-field gradient can also induce asymmetric defects at
the edges, dubbed as Floquet-Wannier-Zeeman edge defects. The interplay between these two types of edge
defects allows us to manipulate the magnon edge states from an isolated band into a continuum one. In the
high-frequency regime, we analytically derive effective models to interpret the formation mechanisms for
edge states by employing the multiscale perturbation analysis. Our study offers insights to understand and control
the magnon edge states governed by the interplay between edge defects induced by the spin-spin interaction and
the Floquet-Wannier-Zeeman manipulation.
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I. INTRODUCTION

Quantum spin chains serve as archetypes for understand-
ing a variety of problems, such as quantum magnetism [1],
quantum phase transition [2], statistical mechanics [3], and so
on. Experimental platforms involving ultracold atoms [4–8],
ultracold ions [9–12], superconducting circuits [13–17],
and nuclear magnetic resonance systems [18–20] provide
unprecedented opportunities for simulating quantum spin
chains. Dating back to Bethe’s seminal work [21], magnons
were predicted as collective excitations around ferromagnetic
ground states in a quantum spin chain. Due to strong spin-
spin interactions, multiple magnons form bound states which
were observed in solid-state materials [22–24]. However, until
the past decade nonequilibrium dynamics of magnon and its
bound states were observed in optical lattices of ultracold
atoms [7,8].

The bulk properties of spin chains are usually investigated
via systems under periodic boundary conditions. Besides to
the bulk states, edge states of spin chain are also very im-
portant in potential applications. Edge states may arise as
a result of symmetry-protected topological order in a gen-
eralized Heisenberg chain now known as the AKLT model
[25]. However, such a model is far from accessible in ex-
periments. Edge states may appear due to elaborate design
of spin exchange. State transfer between two end points of
a spin chain has been proposed by designing space-dependent
spin-spin exchange [26,27] as well as introducing off-diagonal
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impurities [28]. Moreover, the artificially added defects offer
a flexible mean to generate localized states and manipulate
the entanglement in a quantum spin chain [29,30]. In a fully
polarized open spin chain, a spin flipped in one end point
will stay localized in the time evolution, that is the so-called
edge-locking effects. The edge-locking phenomena have been
revealed via the Bethe ansatz [31] and the spectral struc-
ture analysis [32,33]. However, correlation properties of the
interaction-induced edge states are still unclear. Furthermore,
one may ask how to tailor the spectral structure, correlation
properties, and quantum dynamics of the interaction-induced
magnon edge states.

Floquet engineering and gradient magnetic field serve as
important tools to manipulate the energy spectrum and quan-
tum dynamics [34–36]. In a tilted lattice, a particle will change
from Bloch oscillations [37] to coherent delocalization by
introducing periodic resonant drivings that smooth the bias
potential, which have been applied for precision gravity mea-
surements [38,39]. Different from the coherent delocalization
in the bulk, edge localization exists due to the appearance
of effective edge defects in a driven tilted defect-free lat-
tice [40]. Importantly, the energy of the Floquet-surface edge
states can be tuned into and out of the continuum spectrum
by changing the modulation parameters. Stimulated by the
Floquet-surface edge states in a driven tilted lattice, we en-
gineer another type of effective defects which are called as
Floquet-Wannier-Zeeman edge defects due to the joint effect
of both the gradient magnetic field and the periodically modu-
lated spin-exchange strength in the Floquet-Wannier-Zeeman
spin chain. In the absence of the periodically modulated
spin-exchange strength, the Floquet-Wannier-Zeeman edge
defects can change to Wannier-Zeeman edge defects of spin
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chains subject to a gradient magnetic field. Naturally, a
meaningful question to ask is how the interplay between
the interaction-induced edge defects and Floquet-Wannier-
Zeeman edge defects affects the magnon edge states.

In this paper, we investigate the emergent magnon edge
states in a finite simple Heisenberg spin chain which can
be further tuned by introducing the gradient magnetic field
and periodically modulated spin-exchange strength. In the
absence of the gradient magnetic field and periodically modu-
lated spin-exchange strength, defects with energy determined
by interaction strength localize a single magnon in the end
points and repulse the magnon in the bulk. Based on the
correlation properties of states, we distinguish and name dif-
ferent isolated bands of energy spectrum in the presence of
interaction-induced edge defects. Interestingly, we find two
degenerate bound-magnon edge states via the correlation anal-
ysis, that is, one magnon is trapped in a end point and the
other bounds together. This is because spin-spin interactions
create edge defects and make the two magnons bound together
at the defects. According to the relation between interaction
strength and edge defects, we are able to predict the po-
sitions of different kinds of states in the energy spectrum.
Floquet-Wannier-Zeeman edge defects appear in the so-called
Floquet-Wannier-Zeeman spin chain which could be realized
by introducing a gradient magnetic field and a periodically
modulated spin-exchange strength. Two-magnon edge states
in the continuum (EIC) are observed under the influence of
the Floquet-Wannier-Zeeman edge defects. Under the inter-
play between the two types of defects, the interaction-induced
bound-magnon edge states can be tuned into the continuum
band which can be identified by the inverse participation ra-
tios (IPRs). Although both end points have defects induced
by interaction or Floquet-Wannier-Zeeman manipulation, the
edge defect at one end point can be tuned to vanish by the in-
terplay between the two types of defects. These results can be
explained via static effective models obtained by employing
the multiscale perturbation analysis.

This rest of paper is organized as follows. In Sec. II, we
clarify interaction-induced edge defects in a finite spin chain.
In Sec. III, we study Floquet-Wannier-Zeeman edge defects
and analyze the interplay between these two types of defects
based on the multiscale perturbation analysis. In Sec. IV, we
give a brief summary.

II. INTERACTION-INDUCED EDGE DEFECTS

In the absence of the gradient magnetic field and pe-
riodically modulated spin-exchange strength, we consider
a typical spin-1/2 Heisenberg XXZ chain described by
the Hamiltonian,

Ĥs =
L−1∑
l=1

(
J0

2
Ŝ+

l Ŝ−
l+1 + H.c. + �Ŝz

l Ŝz
l+1

)
. (1)

Here, Ŝi
l (i = x, y, z) are spin-1/2 operators and Ŝ±

l = Ŝx
l ± iŜy

l
are spin raising and lowing operators at the lth site. It has been
demonstrated that ultracold atoms in optical lattices offer a
powerful platform to simulate quantum spin chains. In the
deep Mott-insulator regime, the quantum Heisenberg XXZ
chain (1) can be derived by using the second-order degenerate

perturbation theory for ultracold two-component atoms in op-
tical lattices [41–43]. Such a quantum Heisenberg XXZ chain
(1) has been experimentally realized using ultracold atoms
[7,8] in which magnon excitations, magnon bound states, and
their dynamics have been observed. � is the spin-spin inter-
action which can be tuned via Feshbach resonance [44,45]. J0

as the spin-exchange strength is set as unity (i.e., J0 = h̄ = 1).
The eigenvalues and eigenstates of this typical spin-1/2

Heisenberg XXZ chain can be solved analytically by using
the Bethe ansatz [21]. For � > 1, the ground state of XXZ
chain has a Néel order along the z direction. For � < −1,
the phase is characterized by a ferromagnetic order along
the z direction. In the region −1 < � � 1, the system is in
the spin-liquid phase. Since the ground-state properties are
well known, we focus on a single- and two-magnon exci-
tations over a ferromagnetic ground-state |0〉 = |↓↓↓ · · · ↓〉.
Not limited to the properties in the bulk, we turn our attention
to the phenomena occurring on the edges of such spin chain.
The edge-localization phenomena in the open-boundary
Heisenberg XXZ chain have been investigated by employing
the Bethe ansatz approach [31] or the spectral structure anal-
ysis [32,33]. Nevertheless, we provide a direct explanation of
edge localization from the perspective of edge defects named
as interaction-induced defects, which can also be applied to
Floquet spin chains.

A. Single-magnon excitation

For an initially flipped spin over the fully ferromagnetic
state with all spins downward, we track out the time evolution
of spin magnetization,

Sz
l (t ) = 〈ψ (t )

∣∣Ŝz
l

∣∣ψ (t )〉 (2)

by the time-evolving block decimation algorithm with L = 21
and � = 20. For the open-boundary condition, an interest-
ing phenomenon is that dynamical localization appears when
the initial spin is flipped at the left or right end point [see
Figs. 1(a) and 1(c)]; another relative phenomenon is the so-
called repulsion effect, that is, the spin transport is repelled
from reaching the boundary sites and the distribution at sites
1 and L remains spin down all the time when the spin is flipped
at the center of the spin chain [see Fig. 1(b)]. However, these
abnormal phenomena disappear for � = 0 and are enhanced
by increasing �.

To better understand these phenomena, we transfer to the
language of magnon excitation which is obtained by flip-
ping spins over the ferromagnetic ground-state |↓↓↓ · · · ↓〉.
Magnon as the collective excitation around the ferromagnetic
ground state follows the commutation relations of hard-
core bosons. By employing the mapping |↓〉 ↔ |0〉, |↑〉 ↔
|1〉, Ŝ+

l ↔ â†
l , Ŝ−

l ↔ âl , and Ŝz
l ↔ n̂l − 1

2 , it gives insights
into the properties of the quantum magnetic systems from the
perspective of magnon excitations, i.e.,

Ĥm =
L−1∑
l=1

(
J0

2
â†

l âl+1 + H.c. + �n̂l n̂l+1

)
− �

2
n̂1 − �

2
n̂L.

(3)
â†

l (âl ) creates (annihilates) a magnon at the lth site and
n̂l = â†

l âl is the magnon number operator. Remarkably, the
nearest-neighbor interaction, corresponding to the spin-spin
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FIG. 1. Dynamical evolution for single-magnon excitation under
the open-boundary condition. The time evolution of spin magneti-
zation calculated with the time-evolving block decimation algorithm
for � = 20 with initially flipped spin at the left end-point (a), center
(b), and right end-point (c). The time evolution of magnon distri-
bution calculated with exact diagonalization for � = 20 with the
initially prepared magnon at left end-point (d), center (e), and right
end-point (f). The length of chain is L = 21. The coordinate unit is
set as the lattice constant, and the time unit is set as 2π/J0.

interaction in the spin chain (1), introduces two defects with
the same value and sign on the two end points. It is reasonable
to name it as interaction-induced defects which can explain
the dynamical localization and repulsion effects, that is, a
large energy gap between each end point and bulk strongly
suppress the coupling between each end point and bulk. The
interaction-induced edge defects vanish when the interaction
is turn off and increase with the interaction strength. Due
to [Ĥs, Ŝz] = 0 with Ŝz = ∑

l Ŝz
l , the total spin magnetiza-

tion along the z direction is conserved. The corresponding
magnon number N̂ = ∑

l n̂l is also conserved. It means that
subspaces with different numbers of magnons are decoupled.
In the N-magnon basis {â†

l1
â†

l2
· · · â†

lN
|0〉} with 1 � l1 < l2 <

· · · < lN � L, the arbitrary states of system can be expanded
as |ψ〉 = ∑

l1<l2<···<lN
ψl1l2···lN |l1l2 · · · lN 〉 with the probability

amplitude ψl1l2···lN = 〈0|âlN · · · âl2 âl1 |ψ〉.
For a comparison, at t = 0 we, respectively, prepare a

single magnon at the left end point, the center, and the right
end point, and the dynamics of magnon density distribution
nl (t ) = 〈ψ (t )|n̂l |ψ (t )〉 is obtained by exact diagonalization
of the Hamiltonian (3) with 21 lattice sites as shown in
Figs. 1(d)–1(f). It is clear that the magnon dynamics is in
full agreement with the spin transport in Figs. 1(a)–1(c) un-
der the same parameters. Hence, in the following context we
frequently use the language of magnon excitations to simplify
our analysis.

B. Two-magnon excitations

Then we turn to explore the two-magnon problem. We
calculate the energy spectrum as a function of the nearest-
neighbor interaction regarding the Hamiltonian (3), see
Fig. 2(a). The chain length is L = 21. In comparison to the
noninteracting case, the energy spectrum becomes dramat-

FIG. 2. (a) Energy spectrum as a function of nearest-neighbor
interaction for L = 21. The subsets of spectrum from top to bottom
correspond to (i) the bound-magnon pair, (ii) the bound-magnon edge
state, (iii) independent magnons, (iv) the one-magnon edge state, and
(v) the two-magnon edge state. (b)–(f) The normalized two-magnon
correlations Cxy = Cxy/Cmax

xy of the states for � = 20 labeled with
(i)–(v) in (a). The energy unit is set as J0 = h̄ = 1 and the coordinate
unit is set as the lattice constant.

ically rich as the appearance of more isolated bands. For
� = 20, we, respectively, pick one state from five bands la-
beled with (i)–(v) and analyze their correlation properties in
Figs. 2(b)–2(f). The two-magnon correlation is defined as

Cxy(t ) = 〈ψ (t )|â†
x â†

y âyâx|ψ (t )〉. (4)

x and y denote the lattice sites and span from 1 to L. The
two-magnon correlations at two specific lines x = y ± d on
the (x, y) plane characterize the two-magnon bound states,
where d relies on the specific two-magnon interactions. There
exists a connection between the spin correlation Sxy(t ) =
〈ψ (t )|Ŝz

xŜz
y|ψ (t )〉 with the two-magnon correlation Cxy(t ) =

〈ψ (t )|Ŝ+
x Ŝ+

y Ŝ−
y Ŝ−

x |ψ (t )〉 [37] yielding

Sxy =

⎧⎪⎨
⎪⎩

Cxy − 1

2
Sz

x − 1

2
Sz

y − 1

4
, if x �= y,

1

4
, if x = y.

(5)

Different types of states are exhibited via the two-magnon
correlations: bound-magnon pair with E ≈ � [Fig. 2(b)],
bound-magnon edge state with E ≈ �/2 [Fig. 2(c)], indepen-
dent magnons with −2J0 � E � 2J0 [Fig. 2(d)], one-magnon
edge state with E ≈ −�/2 [Fig. 2(e)], and two-magnon edge
state with E ≈ −� [Fig. 2(f)]. We also observe the bound-
magnon edge state localized at the right edge with the same
energy with that in Fig. 2(c) and the one-magnon edge state
for the magnon distributes at the left edge with the same
energy with that in Fig. 2(e). As the nearest-neighbor inter-
action increases, the energy spectrum is gradually separated
from one band into five bands whose slopes regarding the
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interaction nearly yield 1 [(i)], 0.5 [(ii)], 0 [(iii)], −0.5 [(iv)],
and −1 [(v)]. The existence of bound-magnon edge states
indicates that the two-site interaction not only facilitates the
formation of the magnon bound pair, but also attracts this
pair locating on one end point of the lattice. Apart from
localization and repulsion phenomena of a single magnon,
the bound-magnon edge state, and one- and two-magnon
edge states can be also understood as a consequence of the
interaction-induced defects at the outermost sites.

III. FLOQUET-WANNIER-ZEEMAN MANIPULATION

In this section, after introducing the gradient magnetic field
and periodically modulated spin-exchange strength, we first
show edge localizations in the absence of interaction of the
Floquet-Wannier-Zeeman spin chain. Then, it is natural and
interesting to explore the interplay between the interaction-
induced edge defects and Floquet-Wannier-Zeeman edge
defects. We find asymmetric transports and bound-magnon
edge states in the continuum (BEIC) as joint effects of inter-
action and Floquet-Wannier-Zeeman manipulation. To obtain
a deeper understanding of these phenomena, we analytically
derive static effective models based on multiscale perturbation
analysis from single- to two-magnon systems. These static
effective models not only tell how to tune symmetric magnon
transports into asymmetric ones, but also perfectly explain the
appearance of two-magnon EIC and BEIC.

A. Floquet-Wannier-Zeeman spin chain

By introducing a gradient magnetic-field B and a pe-
riodically modulated spin-exchange strength J (t ) into the
Hamiltonian (1), we obtain a Floquet-Wannier-Zeeman
spin chain,

Ĥs =
L−1∑
l=1

[
J (t )Ŝ+

l Ŝ−
l+1 + H.c. + �Ŝz

l Ŝz
l+1 + lBŜz

l

]
. (6)

The experimental probability of the Floquet-Wannier-Zeeman
spin chain (6) has been discussed by using ultracold atoms
in optical lattices [36]. Different from the bulk properties in
Ref. [36], we focus on the edge states. The edges could, in
principle, be realized by applying a sharp box potential into
the optical lattices [46]. The corresponding model of magnons
in a driven and tilted lattice is given by

Ĥm =
L−1∑
l=1

[J (t )â†
l âl+1 + H.c. + �n̂l n̂l+1]

−�

2
n̂1 − �

2
n̂L +

L∑
l=1

Bln̂l , (7)

with J (t ) = [J0 + J1 cos(ωt )]/2. J1 and ω serve as
modulation amplitude and modulation frequency,
respectively.

Referring to the works [47,48], we apply a unitary op-
erator Û = exp(i

∑
l lBt n̂l ) to transform the Hamiltonian

(7) into a rotating frame according to Ĥrot
m = ÛĤmÛ † −

iÛ ∂
∂t Û

†. We obtain the Floquet magnon Hamiltonian in the

rotating frame,

Ĥrot
m =

L−1∑
l=1

[J (t )â†
l âl+1 + H.c. + �n̂l n̂l+1]

−�

2
n̂1 − �

2
n̂L, (8)

with J (t ) = M0ei(ω−B)t + M1e−iBt + M2e−i(ω+B)t . Con-
strained by the realization of the Floquet magnon Hamiltonian
(8), we have M0 = J1/4, M1 = J0/2, and M2 = J1/4. At a
resonant condition ω = B, the driving frequency matches
and smooths the potential bias between neighboring sites
[38,39,49]. In this paper, we focus on the resonant driving
with ω = B to obtain J (t ) = M0 + M1e−iωt + M2e−i2ωt .
Clearly, the resonant driving yields a two-color modulation
and satisfies a discrete time-translation invariance
Ĥrot

m (t + T ) = Ĥrot
m (t ) with a period T = 2π/ω, which

can be analyzed by the Floquet theory.
At each cycle, the dynamics is governed by a time-ordering

operator,

ÛT = T̂ exp

[
−i

∫ T

0
Ĥrot

m (t )dt

]
≡ e−iĤF T , (9)

with an effective time-independent Hamiltonian,

ĤF = i

T
ln ÛT . (10)

One can obtain quasienergies and Floquet states by solving
the eigenequation ĤF |un〉 = En|un〉, where En ∈ [−ω/2, ω/2]
is the nth quasienergy, and |un〉 is the corresponding
Floquet state. The time-evolution operator ÛT over a Floquet
period can characterize the stroboscopic dynamics, ψ (nT ) =
Û n

T ψ (0) at the stroboscopic times nT (n = 1, 2, . . .).
Under this transformation Û = exp(i

∑
l lBt n̂l ), one can

demonstrate the forms of the magnon density operator
and the two-magnon correlation operator are invariant.
Since the magnon density operator commutes with this
unitary transformation, it naturally exists Û n̂lÛ † = n̂l .
Similarly, the two-magnon correlation operator turns to
be Û â†

x â†
y âyâxÛ † after the unitary transformation. Due

to Û †Û = 1, it allows us to obtain Û â†
x â†

y âyâxÛ † =
Û â†

xÛ †Û â†
yÛ †Û âyÛ †Û âxÛ †. According to the formula

eÂB̂e−Â = ∑∞
n=0

1
n! [Â

(n), B̂], it is easy to conclude that

Û â†
xÛ † = exp

(
i
∑

l

lBt n̂l

)
â†

x exp

(
−i

∑
l

lBt n̂l

)

= eixBt â†
x, (11)

and

Û âxÛ
† = exp

(
i
∑

l

lBt n̂l

)
âx exp

(
−i

∑
l

lBt n̂l

)

= e−ixBt âx. (12)
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Finally, we have

Û â†
x â†

y âyâxÛ
† = exp

(
i
∑

l

lBt n̂l

)
â†

x â†
y âyâx

× exp

(
−i

∑
l

lBt n̂l

)

= eixBt â†
xeiyBt â†

ye−iyBt âye−ixBt âx

= â†
x â†

y âyâx. (13)

B. Edge localizations in noninteracting systems

Before proceeding to study the interplay between the two
types of edge defects, we first address properties of two non-
interacting magnons as a natural extension of single-particle
defect states [40]. Since there is no interaction, the interaction-
induced edge defects also vanish and the two-excitation
states can be approximately viewed as the combinations of
two independent single-excited states, and their energies are
approximately equal to the sum of energies of individual exci-
tations. Thus, prerequisite knowledge of single-particle states
helps us understand the two-excitation states. There are three
kinds of single-particle states [40], the extended state with
energy εk , the defect state at the left edge with energy ε−,
and the defect states at the right edge with energy ε+ = −ε−.
We assume that the relative magnitudes of these energies
satisfy ε− < εk < ε+. Considering that double occupation is
forbidden, there are four different combinations accordingly,
(I) one is the left-edge state, and the other is extended state
with total energy around εk + ε− ∈ [−J1/2 + ε−, J1/2 + ε−],
(II) one is the right-edge state, and the other is extended state
with total energy around εk + ε+ ∈ [−J1/2 + ε+, J1/2 + ε+],
(III) both are edge states with total energy ε− + ε+ = 0,
and (IV) both are extended states with total energy around
εk + εk′ ∈ [−J1, J1]. Hence, the type-(III) state penetrates into
the continuum of type-(IV) states, but the relative energy
magnitudes of the other two-excitation states depend on the
parameters. In Fig. 3(a), we show the quasienergy spectrum
as a function of J1 obtained from the Hamiltonian (10). The
other parameters are chosen as � = 0, ω = B = 8, and L =
21. It is obvious that εk + ε− < εk + εk′ ≈ ε− + ε+ < εk +
ε+ when J1 approaches zero. However, these bands overlap
with each other when |J1| is large enough. Regarding the
Floquet-Wannier-Zeeman spin chain (6), the edge localization
with J1 = 0 in Fig. 3(a) essentially comes from the Wannier-
Zeeman localization [50–52]. Although for J1 �= 0, the edge
localization in Fig. 3(a) is the joint effect of the gradient mag-
netic field and periodically modulated spin-exchange strength.
It means that the Floquet-Wannier-Zeeman edge states change
to Wannier-Zeeman edge states once J1 = 0.

To separate these four types of states, we compute the IPRs
for all of the Floquet states from the perspective of the lo-
calization properties. For an arbitrary two-excitation Floquet
state |un〉 = ∑

l1<l2
un

l1l2
|l1l2〉, the IPR [53] is defined as

IPR(n) =
∑

l1<l2
|un

l1l2
|4(∑

l1<l2
|un

l1l2
|2)2 , (14)

FIG. 3. (a) Quasienergy spectrum as a function of J1 in the ab-
sence of interaction for parameters ω = B = 8 and L = 21. (b) The
inverse participation ratio spectrum of the Floquet states corresponds
to J1 = 0.01 marked with red dashed line in (a). The mode num-
ber on the horizontal axis is ordered for increasing values of the
quasienergy. (c)–(f) The normalized two-magnon correlations Cxy =
Cxy/Cmax

xy of the corresponding Floquet states, respectively, belonging
to (I)–(IV) in (b). The energy unit is set as J0 = h̄ = 1, and the
coordinate unit is set as the lattice constant.

which quantifies the localization degree. IPR ∼ 1 for the
mostly localized states whereas IPR ∼ 0 for the most ex-
tended states. For J1 = 0.01, the IPRs of all Floquet states are
shown in Fig. 3(b). The IPR of type-(III) state is the largest,
IPRs of type-(I) and type-(II) states are the median, and IPRs
of type-(IV) states are the smallest. Although the quasienergy
of the type-(III) state is mixed with those of type-(IV) states,
their difference in IPRs is gigantic.

We analyze the correlation properties of the four types of
states under the guidance of the IPRs. In Fig. 3(c), we cal-
culate the two-magnon correlation of the first state belonging
to type (I). It reveals that a magnon tends to stay at the left
end point of the spin chain whereas the other magnon freely
distributes in the bulk lattice. Similarly, the two-magnon cor-
relation of the 210th state belonging to type (II) indicates that
a magnon is localized at the right end point whereas another
magnon freely distributes in the bulk lattice; see Fig. 3(d).
After extended calculations, we find that the correlation prop-
erties of the other type-(I) and type-(II) states are similar to
those in Figs. 3(c) and 3(d), respectively. These states are
classified as one-magnon edge states. Type-(III) state with
a maximum IPR in the continuum is presented in Fig. 3(e).
As expected, the correlation shows that such a state is mostly
distributing on two outermost sites, the so-called two-magnon
EIC. The correlation of a type-(IV) state is shown in Fig. 3(f)

023305-5



LIU, ZHU, ZHANG, KE, AND LEE PHYSICAL REVIEW A 104, 023305 (2021)

where both of the two magnons freely distribute in the
bulk lattice.

C. Effective model for single-magnon dynamics

For � �= 0, we analytically derive a static effective model
with the multiscale perturbation analysis [34,40,54–57] for
single-magnon systems. Multiscale perturbation analysis has
successfully explained the effective edge defects in the curved
waveguide [54] which have been verified in experiments [55].
In the high-frequency limit, the modulation period T is small
so that one can introduce a small parameter ε with T = O(ε).
Under the condition of the small parameter ε, the time t can
be expanded as a multiple timescale with t = ε−1t−1 + ε0t0 +
εt1 + ε2t2 + · · · . The series expansion of the time is regarded
as multiscale. After substituting the multiple timescales into
the time-evolution equation, the effective model can be ob-
tained by collecting different orders of ε. Our static effective
model is derived up to the first-order timescale based on the
multiscale perturbation analysis.

A general wave function for the case of the single magnon
is given by |ψ〉 = ∑

l ψl |l〉 with the probability amplitude
ψl = 〈0|âl |ψ〉. After substituting the single-magnon state into
the Schrödinger equation,

i
d

dt
|ψ (t )〉 = Ĥrot

m |ψ (t )〉, (15)

the time evolution of probability amplitudes in the single-
magnon basis yields

i
dψl (t )

dt
=

∑
m

W (t ; l, m)ψm(t ), (16)

where

W (t ; l, m) = (1 − δl,1)δm,l−1J (t ) + (1 − δl,L )δm,l+1J ∗(t )

−�

2
δl,1δl,m − �

2
δl,Lδl,m (17)

for the open-boundary condition. δl,m is the Kronecker δ

function. Due to the time periodicity, we have W (t ; l, m) =
W (t + T ; l, m). In the high-frequency case, ω � J0, J1, one
can introduce a small parameter ε, corresponding to a small
modulation period T = O(ε). The time t can be expanded as
the multiple timescales t = ε−1t−1 + ε0t0 + εt1 + ε2t2 + · · · ,
according to the small parameter ε. Then we utilize a series
expansion,

ψl (t ) = Ul (t0, t1, t2, . . .) + εvl (t−1, t0, t1, t2, . . .)

+ε2wl (t−1, t0, t1, t2, . . .)

+ε3ζl (t−1, t0, t1, t2, . . .) + O(ε4), (18)

as the solution of Eq. (16), where tn = εnt . Under the condi-
tion of the series expansion, the time differential turns to be

d

dt
= ε−1 ∂

∂t−1
+ ε0 ∂

∂t0
+ ε1 ∂

∂t1
+ ε2 ∂

∂t2
+ · · · . (19)

After introducing a notation,

〈•〉 = εT −1
∫ ε−1(t+T )

ε−1t
(•)(t−1)dt−1, (20)

Ul describes the averaged behavior over a modulation
period as

〈ψl〉 = Ul ,

〈
dψl

dt

〉
= dUl

dt
. (21)

Since Ul is independent of the fast variable t−1, the slowly
varying component Ul satisfies

〈Ul〉 = Ul ,

〈
dUl

dt

〉
= dUl

dt
. (22)

Combining Eqs. (21) and (22), one can obtain

〈vl〉 = 〈wl〉 = 〈ζl〉 ≡ 0,〈
∂vl

∂tn

〉
=

〈
∂wl

∂tn

〉
=

〈
∂ζl

∂tn

〉
≡ 0 (23)

for n = −1, 0, 1, 2, . . . .
We substitute Eq. (18) into Eq. (16) and collect terms up to

the first order of ε. In the zero-order term ε0, we have

W0(l, m) = 〈W (t ; l, m)〉
= (1 − δl,1)δm,l−1M0 + (1 − δl,L )δm,l+1M0

−�

2
δl,1δl,m − �

2
δl,Lδl,m. (24)

It clearly shows that the zero-order term amounts to
make a rotating-wave approximation to the Floquet magnon
Hamiltonian (8) in the high-frequency limit. The first-order ε1

reads ∑
j

W1(l, j, m) = i
∑

j

〈W (t ; l, j)M(t ; j, m)〉

= −δl,1�1δl,m + δl,L�1δl,m, (25)

with M(t ; j, m) = ∫ t
0 [W (t ′; j, m) − W0(l, m)]dt ′ and �1 =

(|M1|2 + |M2|2/2)/ω. The first-order term brings about the
effective on-site potentials at the two end points with the same
values and opposite signs. In the high-frequency conditions,
the higher-order terms play an unimportant role which could
be neglected. Using the notation (20), the time evolution of Ul

is given by

i
dUl

dt
=

∑
m

Ws(l, m)Um, (26)

where the effective couplings are

Ws(l, m) = W0(l, m) +
∑

j

W1(l, j, m). (27)

Finally, by implementing the multiscale perturbation analysis
in the high-frequency regime ω � J0, J1, we obtain a static
effective model up to the first-order timescale,

i
d

dt
Ul = M0(Ul−1 + Ul+1)

−
(

�

2
+ �1

)
δl,1Ul −

(
�

2
− �1

)
δl,LUl . (28)

We find that the effective tunneling strength M0 depends on
the modulation amplitude J1. In addition to the interaction-
induced edge defects −�/2, there is another kind of edge
defect |�1| with opposite values at the outermost sites. Since
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FIG. 4. Schematics of static effective models based on the multi-
scale perturbation analysis. (a) Sketch of the static effective model
(28). It amounts to load the single magnon into a lattice with a
renormalized tunneling rate and effective defects at two end points.
(b) The two-dimensional (2D) schematic of the static effective model
(29) based on the mapping of a one-dimensional (1D) two-magnon
system onto a 2D single-magnon system. The coordinate unit is set
as the lattice constant.

such edge defects |�1| originate from the joint effect of
the gradient magnetic field and periodically modulated spin-
exchange strength in the Floquet-Wannier-Zeeman spin chain
(6), we call them Floquet-Wannier-Zeeman edge defects.
The interplay between interaction-induced edge defects and
Floquet-Wannier-Zeeman edge defects attributes to the joint
effects among interaction, the gradient magnetic field, and
periodically modulated spin-exchange strength. Modulation
frequency and modulation amplitude provide more possibil-
ities to tune the edge defects. It is worth emphasizing that
when M0 = M2 = 0 for J1 = 0, the Floquet-Wannier-Zeeman
edge defects change to Wannier-Zeeman edge defects �1 =
|M1|2/B = J2

0 /(4B) but the effective tunneling also vanishes.
The Wannier-Zeeman edge defects via the multiscale pertur-
bation analysis agree with the extra energy shifts at the end
points in a Wannier-Zeeman system (see the Appendix for
more details).

The static effective model (28) is schematically presented
in Fig. 4(a), which describes a magnon moves on a lattice with
a renormalized tunneling strength and two different types of
defects at the end points. The static effective model (28) indi-
cates that a competition between the interaction-induced edge
defects and Floquet-Wannier-Zeeman edge defects makes
it possible to manipulate the magnon transport and tune
the interaction-induced bound-magnon edge state into the
scattering-state band.

For � = 2�1, a single magnon initially prepared in the
left end point will stay localized in the time evolution, indi-
cating that the left end point has a strong defect potential;
see Fig. 5(a). However, delocalized transport appears when
loading a magnon in the right end point; see Fig. 5(c). This
is because the two types of edge defects cancel each other,

FIG. 5. The time evolution of magnon distribution obtained from
the Hamiltonian (10). The magnon is initially prepared at the left end
point (a), center (b), and right end point (c) for � = 2�, J1 = 0.01,
and ω = B = 8. The length of chain is L = 21. The coordinate unit
is set as the lattice constant, and the time unit is set as 2π/J0.

that is, in condition � = 2�1 the right end point has the
same on-site energy as the bulk lattice and, hence, cannot trap
the excitation anymore. When loading a magnon in a bulk
site, the magnon will undergo quantum walks; see Fig. 5(b).
This is because the modulated frequency is resonant with the
tilted potential, and resonant tunneling happens [36,38,39].
In addition, a significant asymmetric transport is observed in
Fig. 5(b) that a repulsion effect occurs at the left boundary
whereas a collision effect at the right boundary for a magnon
setting out from a bulk site.

D. Effective model for bound-magnon edge states
in the continuum

Analogously, we perform the multiscale perturbation anal-
ysis for two interacting magnons when ω � J0, J1. The
slowing varying components Ul1l2 of two-body wave functions
up to the first order satisfy

i
d

dt
Ul1l2 = M0

(
Ul1,l2−1 + Ul1−1,l2 + Ul1,l2+1 + Ul1+1,l2

)
+�δl1,l2±1Ul1l2 −

(
�

2
+ �1

)
δl1,1Ul1l2

−
(

�

2
− �1

)
δl2,LUl1l2 . (29)

This model can be mapped to a magnon hopping in a two-
dimensional square lattice, where the 2D positions correspond
to the positions of two magnons [58,59], as sketched in
Fig. 4(b). In order to present each terms of static effective
model (29) more clearly, only 8 × 8 sites are chosen. The dif-
ferent on-site energies are denoted by different colors, which
are more complex than those in Fig. 4(a). Two-site nearest-
neighbor interaction � in the 1D system is translated into a
local potential � on the minor-diagonal lines x = y ± 1.

In Sec. II B we find the bound-magnon edge state due to the
interaction. Here, we try to understand how the coexistence
of interaction, gradient magnetic field and periodically mod-
ulated spin-exchange strength affects these bound-magnon
edge states. Because the Floquet-Wannier-Zeeman edge de-
fects are weak, in general, we consider the weak interaction
and calculate the quasienergies in an ascending order of their
values; see Fig. 6(a). The parameters are chosen as � =
0.1, J1 = 0.1, ω = B = 8, and L = 21. The black dots and
red circles, respectively, are obtained by diagonalizing the
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FIG. 6. (a) Quasienergy spectrum in ascending order for the val-
ues of the quasienergies. The black dots denote the quasienergies
for the Hamiltonian (10), and the red circles are the eigenenergies
for the static effective model (29). The parameters are chosen as
� = 0.1, J1 = 0.1, ω = B = 8, and L = 21. (b) The corresponding
inverse participation ratio spectrum of the Floquet states for the
Hamiltonian (10) marked with black dots in (a). The mode number on
the horizontal axis is ordered for increasing values of the quasiener-
gies. The normalized two-magnon correlations Cxy = Cxy/Cmax

xy of
the corresponding BEICs identified in (b) are clearly visible on the
end points of minor-diagonal lines x = y ± 1 in (c) and (d). The
coordinate unit is set as the lattice constant.

Hamiltonian (10) and the static effective model (29), which
are well consistent with each other. It means that the static
effective model (29) can well capture the properties of two-
magnon Floquet states. Since the bound-magnon edge states
are highly localized with large IPRs, we calculate the IPRs
of all the Floquet states from the Hamiltonian (10) as shown
in Fig. 6(b). We find two bound-magnon edge states with
large IPRs do appear marked with c and d in Fig. 6(b),
characterized by a predominant correlated distribution around
the end point of the minor-diagonal lines (x = y ± 1); see
Figs. 6(c) and 6(d), respectively. We name these states as
BEICs because they have energies around �/2 ± �1 mixed
with the continuum band of scattering states which ranges
from −J1 to J1. Compared to the degenerate bound-magnon
edge states in Fig. 2(c), we can clearly find that the energies
of BEICs are nondegenerate and shifted. One may also tune
one bound-magnon edge state to be BEIC and the other out of
continuum as well as both the bound-magnon edge states out
of continuum by changing J1. Thus, Floquet-Wannier-Zeeman
manipulation provides a powerful tool to engineer these
defect states.

IV. SUMMARY

We investigate the edge states of magnon excitations in
Floquet-Wannier-Zeeman spin chains under open-boundary
conditions. Due to two-site nearest-neighbor interaction, there
appear edge defects which can trap magnons at the edges
and repulse magnons from the bulk. We propose to distin-
guish different isolated bands of the energy spectrum by
correlation functions. The Floquet-Wannier-Zeeman edge de-
fects are created by introducing a gradient magnetic field
and a periodically modulated spin-exchange strength in a
resonantly driven condition. We explore the interplay be-
tween interaction-induced edge defects and Floquet-Wannier-
Zeeman edge defects based on the multiscale perturbation
analysis. More specifically, relying on the choice of parame-
ters, the interaction-induced bound-magnon edge state can be
manipulated into bound-magnon edge state in the continuum,
and a symmetric magnon transport is tuned to be asymmetric.
Our paper adds an important piece to the jigsaw puzzle of
the quantum spin chain. It would also be interesting to ex-
tend our results to topological systems for exploring how the
interaction-induced defects affect the topological edge states.
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APPENDIX: WANNIER-ZEEMAN EDGE DEFECTS

Interestingly, even though M0 = M2 = 0 for J1 = 0, there
still exists defects with strength �1 = |M1|2/B = J2

0 /(4B)
which intrinsically belong to Wannier-Zeeman edge de-
fects. To better understand it, we turn to analyze the
Wannier-Zeeman system of a single magnon in the ti-
tled model without interaction and periodically modulated
spin-exchange strength,

Ĥa
m =

L−1∑
l=1

(
J0

2
â†

l âl+1 + H.c.

)
+

L∑
l=1

Bln̂l . (A1)

For B � J0, the tilted potential Ĥa
0 = ∑

l Bln̂l serves as a
dominant term whereas the tunneling Ĥa

1 = ∑
l (

J0
2 â†

l âl+1 +
H.c.) is a perturbation. The L eigenstates {|l〉} of Ĥa

0 are di-
vided into bulk eigenstates with l �= 1, L and edge eigenstates
with l = 1, L, and the eigenvalues of Ĥa

0 are El = lB. For
an edge eigenstate with l = 1, its corresponding projection
operator is

P̂ = |l〉〈l|. (A2)
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The projection operator of the remaining L − 1 eigenstates
can be written as

Ŝ =
∑
k �=l

1

lB − kB
|k〉〈k|. (A3)

According to the second-order perturbation theory [41,60],
the effective model is given by

Ĥa
m,eff = ĥ0 + ĥ1 + ĥ2 = El P̂ + P̂Ĥa

1P̂ + P̂Ĥa
1ŜĤa

1P̂. (A4)

For the lowest order and first order, we have

ĥ0 = El P̂ = lB|l〉〈l|, (A5)

and

ĥ1 = P̂Ĥa
1P̂ = 0. (A6)

The second-order term satisfies

ĥ2 = P̂Ĥa
1ŜĤa

1P̂ = − J2
0

4B
|l〉〈l|. (A7)

Therefore, the effective model for state |1〉 up to second order
is given by

Ĥa
m,eff =

(
B − J2

0

4B

)
|1〉〈1|. (A8)

Furthermore, the second-order effective model for
state |L〉 yields

Ĥa
m,eff =

(
LB + J2

0

4B

)
|L〉〈L|. (A9)

Similarly, we also perform the second-order perturbation anal-
ysis to state |l〉 with l �= 1, L, and the corresponding effective
model turns to be

Ĥa
m,eff = lB|l〉〈l|. (A10)

The extra energy −J2
0 /(4B) [J2

0 /(4B)] at state |1〉 (|L〉) comes
from a second-order coupling between state |1〉 (|L〉) and state
|2〉 (|L − 1〉). Whereas for state |l〉 with l �= 1, L, the extra en-
ergy of the second-order coupling to state |l + 1〉 cancels with
the one to state |l − 1〉. The above effective models clearly
reveal that there exist an edge defect −J2

0 /(4B) at the left end
point and an edge defect J2

0 /(4B) at the right end point, which
agree with the Wannier-Zeeman edge defect �1 = J2

0 /(4B) of
multiscale perturbation analysis for J1 = 0. In addition, our
results Eqs. (A8) and (A9) also agree with the extra energy
shifts at the boundaries in a finite tilted chain [61] when the
hopping strength is far less than the tilted field.
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