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Symmetric dynamics in dissipative quantum many-body models
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We show symmetric dynamics in dissipative quantum many-body systems. Given some conditions on the
Hamiltonian and the jump operators, the time evolution of certain observables can be identical for ferromag-
netic and antiferromagnetic interactions in an Ising model with external fields or for repulsive and attractive
interactions in a Hubbard model. We present two theorems to determine the existence of such a dynamical
symmetry in dissipative quantum systems. The symmetry under the steady state is present independently on the
initial state. Further constraint on the initial state leads to a stronger dynamical symmetry in real-time evolutions.
We demonstrate the application of our theorems in dissipative Ising and Hubbard models. In addition, for the
Fermi-Hubbard model, our results also reveal a connection between spin and charge densities in dissipative
dynamics. We validate the discussions with numerical simulations performed using tensor network algorithms.
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I. INTRODUCTION

Recent experiments with ultracold atoms in optical lattices
have provided versatile quantum simulations of the bosonic
and fermionic Hubbard models [1–5]. This is largely due
to the high level of controllability of such systems and the
technique of in situ measurements with single-site resolution
in optical lattices. The interaction between atoms plays an
essential role for out-of-equilibrium phenomena. Dramati-
cally, a many-body system with attractive interaction expands
instead of shrinks after a quench of the confining potential
[1,2]. The expansion velocities turn out to be nearly identi-
cal to that with repulsive interactions [2]. At this point, the
dynamics can be independent of the sign of the interaction
in the Hubbard model. This indicates a dynamical symmetry
for closed systems under certain conditions. The existence of
such a property is constrained by the presence of certain sym-
metries in the single-particle Hamiltonian [6]. We show that
this discussion is also suitable for the Ising Hamiltonian where
the ferromagnetic and antiferromagnetic orders correspond to
different signs of the spin-spin interactions.

On the other hand, dissipation occurs in systems coupled to
an environment. As a ubiquitous effect in nature, dissipation
in quantum systems has received great attention. Dissipa-
tive quantum models are at the heart of studying various
phenomena, such as parity-time reversal symmetry breaking
[7,8], non-Hermitian skin effect [9–11], dissipative bind-
ing mechanisms [12,13], and phase transitions of dynamical
nonequilibrium steady states [14–38]. Dissipation has been a
crucial issue in quantum engineering, since it causes deco-
herence of the quantum state. It can also be manipulated in
the preparation of particular quantum states [39–44]. Under-
standing the nonequilibrium dynamics is of common interest
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in a wide range of physical contexts, including ultracold gases
[39,40,45–47], trapped ions [48–50], exciton-polariton Bose-
Einstein condensates [51], and cavity QED arrays [52–54].

For the dynamics of quantum systems with dissipation,
the equation of motion includes coherent parts as well as
quantum jumps. Here we present two theorems applicable to
dissipative quantum many-body models to determine the exis-
tence of the dynamical symmetry. Remarkably, constraints on
the quantum jump and the single-particle Hamiltonian induce
a symmetry in dynamics for strong-interacting models. We
demonstrate the presence of the dynamical symmetry in dis-
sipative Ising and Hubbard models. Furthermore, by applying
the theorem to a spin-1/2 Fermi-Hubbard model (FHM) with
dissipation, a mapping between spin and charge dynamics is
established.

II. DYNAMICAL SYMMETRY

In general, we consider Hamiltonians of the form Ĥ =
Ĥ0 + ξ Ĥint. For the transverse-field Ising model, Ĥ0 = ∑

i σ̂
x
i ,

and Ĥint = ∑
〈i, j〉 σ̂ z

i σ̂ z
j is the nearest-neighbor spin interac-

tion, with σα
i being the α-Pauli matrix at site i. Here ξ >

0 (ξ < 0) corresponds to antiferromagnetic (ferromagnetic)
interaction. For the Hubbard model, Ĥ0 includes single-
particle hopping terms. The on-site interaction is written
either as Ĥint = ∑

i n̂i(n̂i − 1) for spinless bosons or as Ĥint =∑
i n̂i,↑n̂i,↓ for spin-1/2 fermions. Then ξ > 0 (ξ < 0) cor-

responds to repulsive (attractive) interaction. The dynamical
symmetry here refers to the phenomenon that an observable
Ô has the same time-evolution for models with positive (+)
and negative (−) ξ , i.e., 〈Ô(t )〉+ξ = ±〈Ô(t )〉−ξ .

Since a pure state evolves as |ψ (t )〉 = e−i(Ĥ0+ξ Ĥint )t |ψ0〉,
the combination of time reversal and an operation (which
flips the sign of Ĥ0) leads to the dynamics of an effective
Hamiltonian Ĥ0 − ξ Ĥint. Let us take the transverse-field Ising
model Ĥ = (hx/2)

∑
i σ̂

x
i + (J/4)

∑
〈i, j〉 σ̂ z

i σ̂ z
j as an example.
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The physics is unchanged under a π rotation around the
z axis in spin space (Ŵ −1σ̂xŴ = −σ̂x and Ŵ −1σ̂yŴ = −σ̂y

with Ŵ = e± i
2 πσ̂z ). By applying time reversal followed by this

rotation, we can map the evolution operator e−iĤt of an antifer-
romagnetic model to that of a ferromagnetic model. Thus, as
long as the initial state satisfies (R̂Ŵ )−1|ψ0〉 = eiφ |ψ0〉, with
R̂ being the time-reversal operator (R̂−1iR̂ = −i) and φ an
arbitrary phase, we have 〈Ô(t )〉+J = 〈Ô(t )〉−J for Ô = σ̂z, σ̂y

and 〈Ô(t )〉+J = −〈Ô(t )〉−J for Ô = σ̂x, with + or − in the
subscripts indicating the sign of J .

The dynamics of dissipative quantum systems can be de-
scribed by means of a master equation, which is obtained
by tracing over the degree of freedom of the environment
[55–57]. For Markovian systems, the Lindblad master equa-
tion constitutes the most general form, which is given by

d

dt
ρ̂ = −i[Ĥ , ρ̂] +

∑
μ

γ

(
L̂μρ̂L̂†

μ − 1

2
{L̂†

μL̂μ, ρ̂}
)

. (1)

Here ρ̂ is the reduced density matrix of the system, Ĥ is the
system Hamiltonian, and L̂μ are the Lindblad operators, which
describe the dissipation. [· · · ] and {· · · } denote commutator
and anticommutator. γ is a positive constant quantifying the
dissipation rate. We have set h̄ = 1 for convenience. The first
term on the right-hand side of Eq. (1) describes the unitary
evolution, as in the case of Liouville-von Neumann equation.
The second term is the Lindbladian describing the nonunitary
quantum jumps. The dissipative dynamics of Eq. (1) often
leads to a nonequilibrium steady state ρ̂ss = limt→∞ ρ̂(t ) sat-
isfying d

dt ρ̂ss = 0. Here we assume that the stationary state
is unique, which is indeed the case under quite general as-
sumptions [58–60]. In contrast to closed quantum systems,
the existence of the dynamical symmetry in dissipative models
requires us to pose conditions on the jump operators L̂μ. We
present our findings in the form of two theorems.

Theorem 1. For a dissipative quantum model with a Hamil-
tonian Ĥ = Ĥ0 + ξ Ĥint and jump operators L̂μ, we consider
the measurement of an observable Ô under steady state ρ̂ss.
We have 〈Ô〉ss,+ξ = ±〈Ô〉ss,−ξ upon finding an antiunitary op-
erator Ŝ that satisfies the following conditions: (i) {Ŝ, Ĥ0} = 0
and [Ŝ, Ĥint] = 0, (ii) Ŝ−1L̂μŜ = eiφ L̂μ with φ an arbitrary
phase, and (iii) Ŝ−1ÔŜ = ±Ô. Here the expectation value
〈Ô〉ss,±ξ corresponds to the steady state with ±ξ .

Proof of Theorem 1. Equation (1) can be written
as d ρ̂/dt = L̂[ρ̂] with L̂ the Liouvillian superoperator.
Straightforwardly, with conditions (i) and (ii), we have
Ŝ−1L̂[ρ̂ss]+ξ Ŝ = L̂[Ŝ−1ρ̂ssŜ]−ξ = 0, where ρ̂ss is the steady
state corresponding to L̂(+ξ ). Thus Ŝ−1ρ̂ssŜ is the steady state
for L̂(−ξ ). If we further have condition (iii), we can conclude
that

〈Ô〉ss,+ξ = Tr(Ŝ−1ρ̂ssŜŜ−1ÔŜ) = ±〈Ô〉ss,−ξ . (2)

In practice, it is convenient to express Ŝ = R̂Ŵ with R̂ the
antiunitary time-reversal operator and Ŵ a unitary operator.
This is based on the fact that a time-reversal operation is
equivalent to inverting the sign of Ĥ . Then we need to find Ŵ
that may invert the sign of Ĥ0. Condition (ii) is easily satisfied
when considering atom gain (loss) in the case of a Hubbard
model or spin flip in the case of spin models. This theorem can

be taken as an advantage in analyzing the steady-state phase
diagram.

Theorem 2. We consider the real time-evolution starting
from an initial state ρ0. Upon finding an antiunitary operator
Ŝ that satisfies conditions (i)–(iii) in Theorem 1 as well as (iv)
[Ŝ, ρ̂0] = 0, we have 〈Ô(t )〉+ξ = ±〈Ô(t )〉−ξ with the ± sign
in accordance with that in (iii).

Proof of Theorem 2. We utilize the so-called Choi’s isomor-
phism, which can be intuitively understood by the mapping
|ψ〉〈φ| ↔ |ψ〉 ⊗ |φ〉 [61,62]. The insight is to vectorize (re-
shape) the density matrix ρ̂ into a super-ket state |ρ〉# and
rewrite Eq. (1) as |ρ̇〉# = L̂#|ρ〉#. Here (see the Appendix for
details)

L̂# = − i(Ĥ ⊗ Î − Î ⊗ ĤT )

+
∑

μ

(
L̂μ ⊗ L̂∗

μ − 1

2
L̂†

μL̂μ ⊗ Î − 1

2
Î ⊗ L̂T

μ L̂∗
μ

)
(3)

is the vectorized Liouvillian superoperator [62]. Operators on
the two sides of ⊗, respectively, act on the ket and the bra of
ρ̂. Î is a d × d identity matrix with d = dim(Ĥ ). In addition,
we have the mapping

Tr(ρ̂Ô) ↔# 〈O|ρ〉#, Ŝ−1ÔŜ ↔ Ŝ−1|O〉#, (4)

with |O〉# the vectorized observation operator and Ŝ−1 ≡
(Ŝ−1 ⊗ ŜT ). Now with conditions (iii) and (iv), the expecta-
tion value of Ô is given by

〈Ô(t )〉 = #〈O|eL̂#t |ρ0〉# =# 〈O|ŜŜ−1eL̂#t ŜŜ−1|ρ0〉#

= ±#〈O|eŜ−1L̂#Ŝ t |ρ0〉#. (5)

From Eq. (3), we can straightforwardly verify that
Ŝ−1L̂#(+ξ )Ŝ = L̂#(−ξ ) under conditions (i) and (ii) (see the
Appendix). This leads to 〈Ô(t )〉+ξ = ±〈Ô(t )〉−ξ from Eq. (5).

This theorem imposes a restriction on the initial density
matrix and leads to a stronger constraint on the dynam-
ics induced by interactions. As will be demonstrated in the
following examples, condition (iv) can be easily fulfilled,
especially for pure states such as a spin ordered state or a Fock
state. In fact, we can always choose an eigenstate of Hint as the
initial state which satisfies condition (iv). This indicates that
theorem 1 can be inferred from theorem 2. We mention that
our theorems are applicable to spin models with spin-1/2 and
larger spins. They are also suitable for tight-binding models
with both fermions and bosons. In addition, the theorems have
no restriction on the form of interactions, more complicated
cases are also considerable, such as three-body interactions
[63–66] or long-range interactions [67–69] in the Hubbard
model.

III. NUMERICAL METHOD

There have been numerical efforts in simulating dissipa-
tive quantum many-body systems [70–73]. To perform time
evolutions, we take the recent proposed tensor network (TN)
method which is based on the TN representation of a quantum
state/operator [62]. The main idea is to map an operator (such
as projected entangled-pair operators) to a TN state (such as
a projected entangled-pair state (PEPS) [74,75]) according to
Choi’s isomorphism. This is done by binding the two physical
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indices into a single one through (i, j) → j · d + i, with i and
j the row and column indices of the operator in its matrix
form. Thus the traditional TN algorithms can be applied. The
infinite-PEPS (iPEPS) algorithm has been demonstrated to be
reliable in simulating the steady state of two-dimensional (2D)
square lattice systems in the thermodynamic limit [62]. Here
we use the projected entangled-simplex operator TN [76] as
a representation of the density matrix and apply the simple
update algorithm [77,78]. For infinite 2D systems, the TN is
translationally invariant and we take a 2 × 2 unit cell. This
method is efficient and stable in real-time simulations with
bond dimensions D = 6 for the spin-1/2 model and D = 4
for the Bose-Hubbard model. A time step δt ∼ 0.01 is suffi-
cient in our simulations. We apply the corner transfer matrix
method (CTM) [79] to contract the TN for the expectation
value of an observable. Convergence of the results have been
verified with the truncated bond dimension χ = 10 in CTM.

IV. DISSIPATIVE ISING MODEL

Let us now consider a dissipative Ising model on an infi-
nite 2D square lattice as an example of a system satisfying
our theorems. We focus on a spin-1/2 quantum system with
L̂μ = σ̂−

μ , where σ̂−
μ = σ̂ x

μ − iσ̂ y
μ is the spin lowering operator

and μ is the site index. We set γ = 0.1 for the decay rate.
The dynamics is governed by the master equation (1) with the
Hamiltonian given by

Ĥ = hx

2

∑
i

σ̂ x
i + hz

2

∑
i

σ̂ z
i + J

4

∑
〈i, j〉

σ̂ z
i σ̂ z

j . (6)

Here J is the interaction strength and hx (hz) is
the strength of the transverse (longitudinal) field.
This model has received theoretical and experimen-
tal interest due to its connection to the systems
of driven-dissipative Rydberg gases [24,70,80–82].
The steady states are expected to exhibit a first-order
phase transition akin to the liquid-gas transition [70,82].
We take the up spins as particles and measure its density
n↑ = ∑N

i=1〈(1̂ + σ̂ z
i )〉/(2N ) (with i runs over all lattice sites).

We first consider the case of hz = 0 and hence Ĥ0 =
(hx/2)

∑
i σ̂

x
i . We find Ŝ = R̂(⊗iσ̂

z
i ), which commutes with

the spin-spin interaction part, such that {Ŝ, σ̂ x
i } = 0, [Ŝ, (1̂ +

σ̂ z
i )] = 0 and {Ŝ, σ̂−} = 0. One immediately sees that the

measurements of n↑ under steady states are the same for ferro-
magnetic (J < 0) and antiferromagnetic (J > 0) interactions.
As a demonstration, we set a random density matrix ρ̂r as the
initial state and perform simulations with J = ±5γ , hx = 5γ ,
and 8γ . Results are shown in Figs. 1(a1) and 1(a2). In long-
time evolutions, the densities of up spins lead to the same
value for both J = 5γ and −5γ . Obviously, ρ̂0 = ρ̂r does not
commute with Ŝ and hence there is no symmetry in real-time
evolutions. On the other hand, condition (iv) is satisfied if we
assume the initial state to be of the form ρ̂0 = ∑

n Pn|φn〉〈φn|,
where |φn〉 = |s1, · · · , sN 〉n and |si〉 is an eigenstate of σ̂ z. As
an example, we choose ρ̂0 = | ↓ · · · ↓〉〈↓ · · · ↓ |. The spin-up
densities n↑ follow exactly the same evolution as can be seen
from Figs. 1(b1) and 1(b2) with J = −5γ and J = 5γ .

In the presence of a longitudinal field (hz/2)
∑

σ̂ z
i , we

include this term in the spin-interaction part Ĥint instead of

FIG. 1. Time evolution of spin-up density n↑ in the dissipa-
tive transverse-field Ising model. (a1), (a2) Real-time evolutions
with ferromagnetic interaction (J/γ = −5) and antiferromagnetic
interaction (J/γ = 5). The upper and lower curves correspond to
hx/γ = 8 and 5, respectively. The evolutions start from a random
mixed state. There is no symmetry in real-time evolutions. However,
on approaching steady states, spin-up densities become symmetric
between J/γ = −5 and J/γ = +5. (b1), (b2) The same as (a1), (a2)
but with the initial state set to be a polarized state with all spins
pointing down. The dynamical symmetry is satisfied.

Ĥ0 = (hx/2)
∑

σ̂ z
i . By this choice, our theorem still applies

with the same antiunitary operator Ŝ as in the case of hz = 0.
Now the conclusion is about the symmetry between (+J,±hz )
and (−J,∓hz ), i.e., between antiferromagnetic interactions
with positive (negative) longitudinal field and ferromagnetic
interactions with negative (positive) longitudinal field. As
shown in Fig. 2(a) with hx = 6.5γ , ±hz = ±0.5γ , and ±J =
±5γ , the time dependence of n↑ for (+J,+hz ) differs from
that for (−J,+hz ), but is equivalent to the case of (−J,−hz ).

Symmetric behaviors also appear in the steady-state phase
diagram. In Fig. 2(b), we show the spin-up density n↑ (un-
der steady states) as a function of hx. The sudden jump of
n↑ indicates a first-order transition from a lattice gas phase
with low density of up spins to a lattice liquid phase char-
acterized by nearly half-filling of up spins and vanishing
compressibility (−∂n↑/∂hx) [35,70]. For J = 5γ and hz = 0,
the solid curve with the transition point at hx ∼ 6γ is in
good agreement with the results from both the variational
method with correlated ansatz [70] and the real-time simple
update with iPEPS [62]. The transition point shifts leftward
(rightward) with positive (negative) hz. We observe that the
n↑-hx relations with (J, hz )/γ = (5, 0), (5,0.5), and (5,−0.5)
reproduce those with (J, hz )/γ = (−5, 0), (−5,−0.5), and
(−5, 0.5), respectively. We complement our demonstration
with the hx-hz phase diagram, as depicted in Fig. 2(c) for
J = +5γ and Fig. 2(d) for J = −5γ . One can clearly see
that the diagrams for antiferromagnetic and ferromagnetic
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FIG. 2. (a) Time dependence of spin-up density n↑ in the dissipa-
tive Ising model with transverse field (hx/γ = 6.5) and longitudinal
field. n↑(t ) obtained with parameters (+J,+hz) (red dashed line)
differs from that for (−J, +hz) (blue square) but it agrees with the
data of (−J, −hz) (red triangle). (b) Spin-up density n↑ under steady
state as a function of hx . Steady states for (+J, ±hz ) and (−J,∓hz )
share the same n↑. We take ±J = ±5γ and ±hz = ±0.5γ in all
plots. (c), (d) The steady-state phase diagram spanned by hx and hz.
The two diagrams in (c) and (d) are for antiferromagnetic (+J) and
ferromagnetic (−J) models. They are symmetric about hz = 0.

interacting models are symmetric about the (hz = 0) axis. The
symmetry of phase diagrams is due to the dissipative nature of
the system, which is remarkably different from the situation
in closed quantum systems. Note that in nondissipative Ising
models with a small transverse field, the antiferromagnetic
and ferromagnetic interactions correspond to distinct phases
that are characterized by n↑ = 1/2 and 1, respectively.

V. DISSIPATIVE HUBBARD MODEL

We proceed by considering a dissipative Hubbard model.
We first take the Bose-Hubbard model with two-body inelastic
atom loss as a demonstration. This consideration is motivated
by the recent experimental realization with ultracold gases in
an optical lattice [83]. The experiment in Ref. [83] imple-
mented a slow ramp-down of lattice depth starting from a Mott
insulator to observe the crossover to superfluid state. The atom
number per site can be measured through fluorescence detec-
tion. Here we consider the quench dynamics in a 2D square
lattice and show that the time evolutions of the average density
are symmetric between repulsive and attractive interactions.

The two-body dissipation can be engineered through a
single photon photoassociation process for ultracold lattice
gases [83], which leads to the jump operator of the form
L̂μ = √

γ b̂μb̂μ. The Hamiltonian is given by

Ĥ = −
∑
〈 j,l〉

b̂†
j b̂l + U

2

∑
j

n̂ j (n̂ j − 1), (7)

FIG. 3. Decay of the average density n in the Bose-Hubbard
model with two-body atom loss. The evolutions start from a double-
filled MI or a (2,1)-filled CB state. The time-dependent densities
are symmetric between the attractive (left panel) and repulsive (right
panel) models.

with b̂ j (b̂†
j) the bosonic annihilation (creation) operator

and n̂ j = b̂†
j b̂ j . The dynamical symmetry corresponds to

the unitary operator Ŵ given by Ŵ −1b̂ jŴ = (−1) j b̂ j . Then
Ŝ = R̂Ŵ commutes with the interaction term and anticom-
mutes with Ĥ0 = −∑

〈 j,l〉 b̂†
j b̂l . Explicitly, we present Ŵ =

⊗ j exp[i π
2 n̂ j + (−1) j i π

2 n̂ j] that meets the requirements. As
a result, the relation Ŝ−1L̂μS = eiφ L̂μ is always fulfilled for
on-site dissipations consisting of b̂ j and b̂†

j (e.g., L̂μ = b̂ j ,

L̂μ = b̂ j b̂ j or L̂μ = n̂†
j,↓). In general, we take the initial state

as ρ̂0 = ∑
m Pm|φm〉〈φm| with |φm〉 = |n1, · · · , nN 〉m, and the

physical operator as Ô = (1/N )
∑N

j=1 n̂ j . It is straightforward
to verify that Ŝ commutes with ρ̂0 and Ô. Thus, condi-
tions (i)–(iv) are all satisfied and the dynamical symmetry
〈Ô(t )〉+U = 〈Ô(t )〉−U is guaranteed. We show results of nu-
merical simulations in Fig. 3 with γ = 0.5, U = ±5. We
measure the time dependence of the average density. The evo-
lutions start from a double-filled Mott insulator (MI) (black
lines) and a checkerboard state with filling factors nA = 2
and nB = 1 on neighboring sites (red dashed lines). Both
cases lead to identical density decays in attractive and re-
pulsive interacting systems. Note that the analysis can be
directly extended to other realizable configurations, including
the Harper-Hofstadter Hamiltonian [5] and the Aubre-André
model [3].

Considering the fermionic case can lead to more interesting
results. We turn to the dissipative FHM with the Hamiltonian
given by

HFHM = −
∑

〈i, j〉,σ
ĉ†

i,σ ĉ j,σ + U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
,

(8)

where n̂i,σ = c†
i,σ ci,σ and ci,σ (c†

i,σ ) is the fermionic annihila-
tion (creation) operator acting on site i with spin σ ∈ {↑,↓}.
We have set the interaction term in a particle-hole symmetric
form. The above analysis can also be applied here by simply
appending a spin dependance to the operators. Analogously,
the unitary operator Ŵ is defined by Ŵ −1ĉ j,σŴ = (−1) j ĉ j,σ

and the dynamical symmetry appears for Ô = n̂i,σ .
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FIG. 4. Time evolution of 〈Ôs〉 starting from |ψSDW〉 and time
evolution of 〈Ôc〉 starting from |ψCDW〉. (a) The dissipation in the
FHM is given by L̂μ = n̂†

i,↓ (dashed and solid lines). (b) The dissipa-

tions are L̂μ = ĉi,↓ (dashed line) and L̂μ = ĉ†
i,↓ (solid line).

Furthermore, it is of natural interest to study the spin and
charge dynamics of the FHM. Recently, the measurements
of spin and charge transport have been performed, respec-
tively, by the MIT group and the Princeton group [84,85].
For the two kinds of dynamics, we can take a spin den-
sity wave |ψSDW〉 = ∏

s ĉ†
2s+1,↑ĉ†

2s,↓|0〉 or a charge density

wave |ψCDW〉 = ∏
s ĉ†

2s+1,↑ĉ†
2s+1,↓|0〉 as the initial state. The

corresponding observable operators are Ôs = n̂i,↑ − n̂i,↓ and
Ôc = n̂i,↑ + n̂i,↓. These two dynamics can be equivalent under
certain conditions for closed systems [86]. We show that this
is also the case with dissipations of the form L̂μ = n̂†

j,↓. Such
a Lindblad operator refers to the effect of incoherent light
scattering where the dominant process is to scatter an atom
into higher bands followed by a spontaneous emission [87].
Upon a particle-hole transformation defined as P̂−1ĉi,↓P̂ =
(−1)iĉ†

i,↓, P̂−1ĉ†
i,↓P̂ = (−1)iĉi,↓ (the operators for spin-↑ are

left invariant), we have P̂−1ÔcP̂ = Ôs + 1 and P̂−1ρ̂cP̂ =
ρ̂s, where ρ̂c ≡ |ψCDW〉〈ψCDW| and ρ̂s ≡ |ψSDW〉〈ψSDW|. It is
straightforward to verify that P̂−1L̂#(+U )P̂ = L̂#(−U ) with
L̂#(±U ) the Liouvillian superoperator (3) with interaction
strength ±U and P̂−1 ≡ (P̂−1 ⊗ P̂T ). Following Eq. (5) with
Ŝ replaced by P̂ , we conclude that the time evolution of
〈Ôc〉+U starting from ρ̂c is exactly equivalent to the time
evolution of 〈Ôs + 1〉−U starting from ρ̂s. We further apply
the result of dynamical symmetry and relate the time evolu-
tions for repulsive and attractive interactions. Then we obtain
〈Ôc(t )〉CDW,+U = 〈Ôs(t ) + 1〉SDW,+U , which maps the mea-
surement of charge density to that of spin density.

However, in the situation of atom loss (gain), e.g.,
L̂μ = ĉi,↓ (ĉ†

i,↓), the conclusion is altered since now

P̂−1L̂#(+U, loss)P̂ = L̂#(−U, gain). Consequently,
〈Ôc(t )〉+U starting from ρ̂c in the FHM with atom loss
(gain) is exactly equivalent to 〈Ôs(t ) + 1〉+U starting from
ρ̂s with atom gain (loss). This proposition provides a linking
between atom gain and atom loss in the FHM. In Fig. 4, we
show a numerical verification (through exact diagonalization
method) of the above relations in one-dimensional dissipative
FHM with γ = 0.5, U = 1 and lattice size L = 6. For
simplicity, we prepare the model initially in |ψSDW〉 and
|ψCDW〉, respectively, followed by the measurements of spin
density Ôs = n̂L/2,↑ − n̂L/2,↓ (solid lines) and charge density
Ôc = n̂L/2,↑ + n̂L/2,↓ (dashed lines). In Fig. 4(a), we have
set L̂μ = n̂i,↓ and the relation 〈Ôc(t )〉CDW = 〈Ôs(t ) + 1〉SDW

holds. Whereas in Fig. 4(b) we set L̂μ = ĉ†
i,↓ and L̂μ = ĉi,↓,

respectively, for spin and charge dynamics. We observe
〈Ôc(t )〉loss

CDW = 〈Ôs(t ) + 1〉gain
SDW as expected.

VI. SUMMARY AND DISCUSSION

In summary, we have provided two theorems to character-
ize the situations in which a dynamical symmetry may appear
in dissipative quantum many-body systems. Applications to
Ising and Hubbard models suggest that the symmetric behav-
iors in the time evolutions is connected to the intrinsic features
of the dissipation system. In contrast to closed systems, the
symmetry for steady states is valid without the constraint on
initial states. This can be propitious to the symmetry analysis
for steady-state phases. The discussion on dissipative FHM
also reveals a connection between spin and charge dynamics,
as well as a connection between atom loss and gain. Our
theorems and propositions are rigorous and the results can be
readily verified by experiments. As dissipation is ubiquitous in
nature, our findings may also have applications in future ex-
periments with dissipative quantum many-body systems, such
as in the study of lattice gases, Rydberg polaritons, optical
cavities, as well as solid-state materials.

It is worth noting that for non-Markovian systems, under-
standing the dynamics remains a challenging task due to the
memory effects characterized by the exchange of information
between the system and the reservoir [88,89]. In Markovian
systems, the decay rate γ is a positive constant. By writing this
decay rate as γμ(t ) (which may oscillate over time and take
negative values), Eq. (1) can be referred to as a time-local non-
Markovian master equation, which describes the dynamics of
some particular open systems [90,91]. In this case, we obtain
|ρ(t )〉# = e

∫
L̂# (t )dt |ρ0〉# and Eq. (5) can be rewritten as

〈Ô(t )〉 = #〈O|ŜŜ−1e
∫

L̂# (t )dt ŜŜ−1|ρ0〉#

= ±#〈O|e
∫
Ŝ−1L̂# (t )Ŝ dt |ρ0〉#. (9)

The time dependance of γμ(t ) has no effect on verifying the
relation Ŝ−1L̂#(+ξ )Ŝ = L̂#(−ξ ). Thus, our results may also
be applicable in such a situation. Investigating the dynamical
symmetry in concrete models of non-Markovian systems are
of our further interest.
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APPENDIX: GRAPHICAL REPRESENTATIONS
OF THE FORMALISM

To have an intuitional understanding of Choi’s
isomorphism [61,62], we introduce a graphical representation
as illustrated in Fig. 5. Now Eq. (1) is represented by Fig. 5(a).
The density matrix and operators are shown in their matrix
forms. The two open legs are physical indices indicating
the row and column of those matrices. Connecting two legs
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FIG. 5. Graphical representations of (a) the Lindblad master equation (1), (b) the equation for vectorized density matrix [Eq. (A1)], and
(c) expectation value of an observable Ô as well as the superoperators Ŝ = Ŝ ⊗ (ŜT )−1 and Ŝ−1 = Ŝ−1 ⊗ ŜT . (d) Operation of Ŝ acting on the
Liouvillian superoperator L̂# with graphical representations given in (a)–(c).

means matrixmultiplication (or tensor contraction for rank-2
tensors). According to the isomorphism, we can rewrite
Eq. (1) as

d

dt
|ρ〉# = L̂#|ρ〉# (A1)

and hence |ρ(t )〉# = eL̂#t |ρ0〉#. Here |ρ〉# is the vectorized
density matrix and L̂# is the Liouvillian superoperator given
by Eq. (3). To vectorize the density matrix and obtain
Eq. (A1), we simply bend the upper leg down to form the
Equation in Fig. 5(b). Note that this notation is widely
adopted in the TN language [62,74,75]. We can bind the two
downward legs into a row index and treat this density matrix
as a ket state |ρ〉#. Thus Fig. 5(b) yields Eq. (A1). In addition,
the expectation of Ô, the operators Ŝ and Ŝ−1 are graphically
shown in Fig. 5(c).

Now conditions (iii) and (iv) are interpreted as Ŝ−1ÔŜ =
Ŝ†|O〉# = ±|O〉# and Ŝ−1ρ̂0Ŝ = Ŝ−1|ρ0〉# = |ρ0〉#, respec-
tively. If we have such an Ŝ,

〈Ô(t )〉 = 〈O|ρ〉# =# 〈O|eL̂#t |ρ0〉#

= #〈O|ŜŜ−1eL̂#t ŜŜ−1|ρ0〉#

= ±#〈O|eŜ−1L̂#Ŝ t |ρ0〉#. (A2)

Then we need to verify that Ŝ−1L̂#(+ξ )Ŝ = L̂#(−ξ ) under
conditions (i) and (ii). With Eq. (3), we obtain the equation in

Fig. 5(d), which further yields

Ŝ−1L̂#(+ξ )Ŝ

= i(Ŝ−1Ĥ Ŝ ⊗ Î − Î ⊗ (Ŝ−1Ĥ Ŝ)T )

+
∑

μ

(
L̂μ ⊗ L̂∗

μ − 1

2
L̂†

μL̂μ ⊗ Î − 1

2
Î ⊗ L̂T

μ L̂∗
μ

)
, (A3)

where we have used Ŝ−1L̂μS = eiφ L̂μ, (ŜT )−1 = (Ŝ−1)T as
well as the antiunitary relation Ŝ−1iŜ = −i. Furthermore, we
have Ŝ−1Ĥ0Ŝ = −Ĥ0 and Ŝ−1ĤintŜ = Ĥint, which lead to

Ŝ−1Ĥ (+ξ )Ŝ = Ŝ−1(Ĥ0 + ξ Ĥint )Ŝ, (A4)

= −Ĥ0 + ξ Ĥint = −Ĥ (−ξ ). (A5)

Thus, Eq. (A3) yields

Ŝ−1L̂#(+ξ )Ŝ

= − i(Ĥ (−ξ ) ⊗ Î − Î ⊗ Ĥ (−ξ )T )

+
∑

μ

(
L̂μ ⊗ L̂∗

μ − 1

2
L̂†

μL̂μ ⊗ Î − 1

2
Î ⊗ L̂T

μ L̂∗
μ

)

= L̂#(−ξ ) (A6)

Combining Eqs. (A2) and (A6), we obtain the relation
〈Ô(t )〉+ξ = ±〈Ô(t )〉−ξ , as expressed in Sec. II.
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