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Analog cosmological reheating in an ultracold Bose gas
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Cosmological reheating describes the transition of the postinflationary universe to a hot and thermal state. In
order to shed light on the underlying dynamics of this process, we propose to quantum-simulate the reheating-like
dynamics of a generic cosmological single-field model in an ultracold Bose gas. In our setup, the excitations on
top of an atomic Bose-Einstein condensate play the role of the particles produced by the decaying inflaton
field after inflation. Expanding spacetime as well as the background oscillating inflaton field are mimicked in
the nonrelativistic limit by a time dependence of the atomic interactions, which can be tuned experimentally
via Feshbach resonances. As we illustrate by means of classical-statistical simulations for the case of two
spatial dimensions, the dynamics of the atomic system exhibits the characteristic stages of far-from-equilibrium
reheating, including the amplification of fluctuations via parametric instabilities and the subsequent turbulent
transport of energy towards higher momenta. The transport is governed by a nonthermal fixed point showing
universal self-similar time evolution as well as a transient regime of prescaling with time-dependent scaling
exponents. While the classical-statistical simulations can capture only the earlier stages of the dynamics for
weak couplings, the proposed experiment has the potential of exploring the evolution up to late times even
beyond the weak coupling regime.

DOI: 10.1103/PhysRevA.104.023302

I. INTRODUCTION

Cosmological inflation is a well-established paradigm that
solves the puzzles of flatness, homogeneity, and isotropy of
the universe [1,2], and explains the generation of density
perturbations for structure formation [3]. According to this
paradigm, the early universe underwent a stage of accelerated
expansion which, in a typical scenario, is driven by a scalar
field, the inflaton. Inflation is followed by a reheating phase
[4], during which the inflaton decays, e.g., into degrees of
freedom of the standard model of particle physics. The heating
process can start with a preheating stage of rapid particle pro-
duction far from equilibrium, and finally completes after the
particles, due to their interactions, approach thermal equilib-
rium at the reheating temperature [5,6]. Over the recent years,
it has been realized that many salient features of the dynamics
become universal in the far-from-equilibrium regime, across
physical systems at vastly different scales [7–12]. This univer-
sality makes it particularly appealing to gain insight into the
nonequilibrium processes during reheating by use of table-top
experiments, such as ultracold atomic gases. Due to their high
degree of controllability, these systems are ideally suited to
realize and study processes relevant for the early universe that
are otherwise challenging to access [13–21].

Here we propose a quantum simulation of reheating-like
dynamics in a single-component Bose gas, leveraging the
ability to modulate the atomic interaction in time by means
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of Feshbach resonances [22]. The description of an ultracold
Bose gas formally coincides with the nonrelativistic limit of
a scalar field in an expanding Friedmann-Robertson-Walker
(FRW) spacetime, where the expansion is encoded in the time
dependence of the interaction. This simplifies the simulation
of such a system compared to approaches with explicit ex-
pansion [23] by lifting the restrictions associated with the
expansion of the trap. Remarkably, for the particular case of
two spatial dimensions, where the Bose gas exhibits scale
invariance [24–26], the dynamics becomes independent of the
expansion, such that arbitrary expanding backgrounds may be
studied by postprocessing the data of a single experiment. It is
our aim to reproduce the postinflationary dynamics of generic
single-field models [7] in an ultracold Bose gas. Relativis-
tic effects, such as particle production from the coherently
oscillating inflaton field during the preheating stage, are ab-
sent in the atomic system, but preheating-like dynamics can
be introduced also in the nonrelativistic theory by a sinu-
soidal modulation of the coupling, mimicking an oscillating
background field. As we demonstrate by means of classical-
statistical (or truncated Wigner) simulations [27–30], the
proposed setup exhibits the characteristic stages of reheating
dynamics [6], including the preheating stage of parametric
amplification of quantum fluctuations as well as the self-
similar transport of energy towards higher momenta driving
turbulent thermalization [7]. In this respect, our setup provides
an analog to cosmological reheating, as illustrated schemati-
cally in Fig. 1.

Analog models of gravity build on emergent curved space-
times for low-energy excitations on top of Bose-Einstein
condensates (BECs) or other systems [31]. These can be

2469-9926/2021/104(2)/023302(27) 023302-1 ©2021 American Physical Society

https://orcid.org/0000-0001-5632-7895
https://orcid.org/0000-0001-9411-3898
https://orcid.org/0000-0002-0414-1754
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.023302&domain=pdf&date_stamp=2021-08-03
https://doi.org/10.1103/PhysRevA.104.023302


ALEKSANDR CHATRCHYAN et al. PHYSICAL REVIEW A 104, 023302 (2021)

FIG. 1. Schematic illustration of postinflationary reheating dy-
namics in the early universe and the simulation of an analogous
process in an ultracold Bose gas. We consider a scenario where
a single-component homogeneous “inflaton” field oscillates around
the minimum of its potential, producing particles via parametric
instabilities (“preheating”). Later the system enters a turbulent state
where energy is transported towards higher momenta in a self-similar
way as the universe approaches thermal equilibrium (“reheating”).
In the simulation, expanding spacetime as well as the oscillating
inflaton field are mimicked in the nonrelativistic limit by modulating
the scattering length of a BEC, whose excitations play the role of
particles produced by the decaying inflaton.

generated, for instance, by modulating trapping potentials or
interactions, allowing one to simulate cosmological particle
production during inflation [13,14,32]. The mapping to an
emergent expanding spacetime is, however, valid only for
linear excitations, and incorporating nonlinear effects into
this framework, which are crucial for postinflationary re-
heating dynamics and responsible for thermalization, can be
challenging. Nonetheless, several experimental setups have
been proposed for simulating postinflationary dynamics in
Bose gases [16–20]. Besides these theoretical proposals,
preheating-like dynamics has recently been observed in exper-
iments with a ring-shaped condensate after rapidly expanding
the trap [23]. In our setup, a preheating-like parametric am-
plification of sound waves on top of the BEC is induced by
modulating the atomic interaction, which mimics the oscilla-
tions of the inflaton field around the minimum of its potential
[5]. Parametric instabilities in Bose gases have been stud-
ied extensively in the literature [33–38] and the concept has
evolved into a promising tool for state preparation [39]. Go-
ing beyond the well-understood linear regime of parametric
resonance, our main focus is geared towards the nonlinear
stages of the dynamics, involving a secondary amplifica-
tion of excitations [5,19,40] that herald the development of
turbulence [7].

The preheating-like instabilities drive the system far away
from equilibrium into the vicinity of a nonthermal fixed
point, where the dynamics becomes universal and self-similar
[41]. A nonthermal fixed point characterizes the far-from-
equilibrium behavior of an entire universality class of physical
systems as diverse as the inflaton in the early universe,

ultracold atomic gases in the laboratory, or even the quark-
gluon plasma explored in heavy-ion collisions [7,8,10,42].
Such universal dynamics far from equilibrium has been ob-
served experimentally in spinor and tunnel-coupled Bose
gases in form of inverse cascades transporting conserved
quantities towards lower momenta [11,12]. Bidirectional
cascades involving additionally a self-similar transport of
energy towards higher momenta have been studied numer-
ically in one-dimensional (1D) spinor Bose gases [43] and
have recently been observed experimentally in an isolated
three-dimensional (3D) Bose gas following a cooling quench
[44]. Our protocol of parametrically exciting a pure single-
component BEC constitutes a complementary path of entering
the regime of self-similar dynamics far from equilibrium and
allows one to study the direct energy cascade in both driven
and isolated systems.

We distinguish a regime of driven turbulence in the pres-
ence of continuous parametric driving and a regime of free
turbulence after the modulation of the interaction is switched
off, corresponding to the decay of the inflaton. Recently a
new type of prescaling phenomenon [45,46] has been estab-
lished, which is closely related to the onset of a hydrodynamic
behavior far from equilibrium [45]. In this regime the dy-
namics is governed by the fixed-point scaling function and
time-dependent scaling exponents, which slowly relax to their
universal values. Remarkably, our numerical results indicate
that such a behavior emerges during the transition from driven
to free turbulence, which opens the door for an experimental
observation of this phenomenon in cold Bose gases.

At late times, when the occupancies at characteristic mo-
menta become of order unity, the system is expected to
thermalize [7]. This final stage of the dynamics is dominated
by quantum fluctuations and therefore cannot be captured by
means of classical-statistical simulations [28,47]. In contrast,
it can be accessed by experimental studies in cold atomic
systems, which are quantum-mechanical by nature.

For reasons of consistency with standard cosmology, the
inflaton must necessarily decay into more familiar forms of
matter and gauge fields, e.g., those that constitute the standard
model of particle physics, before the universe thermalizes at
the reheating temperature. In contrast, reheating in our setup
involves the decay of the condensate into its own fluctuations
only, as in the relativistic λϕ4 model that has been studied in
Ref. [7]. Despite this simplicity, these models capture many
characteristic features of the reheating process, which can be
directly probed in our proposed experiment.

This paper is organized as follows. In Sec. II we present
our approach of simulating expansion in a Bose gas via a
time-dependent interaction, establishing an analogy to the in-
flaton field in the early universe after inflation. We proceed in
Sec. III (“analog preheating”) with discussing preheating-like
dynamics, where particle production is mimicked by paramet-
rically exciting Bogoliubov quasiparticles via a modulation of
the interaction. Though our approach works in principle for
any dimensionality, we focus here on the case of a spatially
two-dimensional (2D) Bose gas. We explain and interpret
the momentum spectrum resulting from these instabilities,
emphasizing the important role of nonlinear effects leading
to the onset of turbulent dynamics. In Sec. IV (“analog re-
heating”), we analyze the universal self-similar time evolution
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for both the driven and the free direct cascade, comparing
the numerically extracted scaling exponents with predictions
from kinetic theory. We also show that the system exhibits
prescaling during the transition from driven to free turbulence.
Moreover, we discuss how expansion affects the dynamics
and can, under certain conditions, even prevent the system
from thermalizing. In Sec. V we discuss details relevant for an
experimental implementation, before we conclude in Sec. VI.

II. EXPANDING SPACETIME IN BOSE GASES

The inflaton is commonly described by a relativistic real
scalar field φ(x) in curved spacetime with the action [48]

S =
∫

dd+1x
√−g

[
1

2
gμν∂μφ∂νφ − V (φ)

]
, (1)

where V is the potential, gμν is the metric tensor, g its
determinant, and d the number of spatial dimensions. The
expansion of the universe is well described with the help of
the flat FRW metric [48]. It corresponds to a homogeneous
and isotropic universe, in accordance with the cosmological
principle, which is Minkowskian at each time slice. The FRW
metric has the form

ds2 = gμν dxμ dxν = c2 dτ 2 − a2(τ ) dx2, (2)

where c is the speed of light and τ denotes the cosmic time.
The cosmic scale factor a(τ ) grows with time in an expanding
universe and relates the comoving distance x to the proper
distance r(τ ) = a(τ )x.

Our goal is to observe reheating-like dynamics in an ultra-
cold Bose gas in analogy to reheating in the early universe.
A Bose gas is described by a nonrelativistic complex field
operator �̂ subject to the Hamiltonian [49]

Ĥ =
∫

dd x

[
�̂†

(
− h̄2∇2

2m
+ U

)
�̂ + g

2
�̂†�̂†�̂�̂

]
, (3)

where h̄ is the reduced Planck constant, m the atomic mass,
U an external trapping potential, and g the quartic coupling
which determines the strength of the atomic interactions via
the s-wave scattering length. In what follows, we briefly
discuss possible strategies of how to realize an expanding
spacetime according to Eq. (2) in an ultracold Bose gas, before
we detail the approach chosen in this work.

The most straightforward approach to incorporate expan-
sion in a trapped Bose gas is to physically expand the trap
geometry [15,23,25]. While this approach is simple and direct
in principle, there are practical limitations such as the restric-
tion to short times or small expansion velocities due to a finite
optical imaging system.

Alternatively, one can keep the trap geometry fixed, as-
sociating physical distances with the comoving distances of
an expanding system. In this way, however, the redshift of
momenta as well as dilution of the system due to the expan-
sion have to be explicitly accounted for in form of a modified
kinetic term and a nonunitary evolution, as discussed in the
subsequent subsection (see also Ref. [50]). Besides possi-
ble technical difficulties in engineering such non-Hermitian
Hamiltonians, this formulation has the additional drawback
that it implies a decreasing atomic density, which diminishes
the experimental signal with progressing laboratory time.

We follow here a third approach, wherein the expansion
of spacetime is encoded solely in the time dependence of the
atomic interaction [13,25,32]. For experiments with ultracold
atoms where a broad Feshbach resonance is available to tune
the interactions, this third approach may be the preferred way
of studying a broad range of expansion scenarios. In what
follows, we will discuss our approach of incorporating expan-
sion. In Secs. III and IV we will then illustrate the dynamics
of preheating and reheating that becomes accessible in this
setup.

A. Relativistic versus nonrelativistic dynamics
in expanding spacetime

We model the inflaton as a real scalar field, whose
dynamics is described by the action (1) with a potential
V (φ) = m2c2φ2/2h̄2 + λφ4/4!, where m is the mass and λ a
quartic coupling.

The classical equations of motion for the inflaton field can
be obtained from Eq. (1) using the principle of least action.
For the metric defined in Eq. (2) they read

1

c2
φ̈ + 1

c2
dH φ̇ − ∇2

a2
φ + m2c2

h̄2 φ + λ

6
φ3 = 0, (4)

where H = ȧ/a is the Hubble parameter and the dot denotes
the derivative with respect to the cosmic time τ . This equation
is of a Klein-Gordon type with a modified spatial derivative
term and an additional friction term, which express the red-
shift of momenta in the comoving frame and the dilution of
the field due to the expansion, respectively [48].

The analogous equations for the nonrelativistic system
have a similar structure. To see this, we factor out the fast os-
cillations due to the mass term in Eq. (4) from the canonically
quantized inflaton field φ̂(τ, x), defining a slowly varying
complex field ψ̂ (τ, x) via the relation

φ̂ = h̄√
2mc

(
ψ̂e−imc2τ/h̄ + H.c.

)
, (5)

where H.c. denotes the Hermitian conjugate. As shown in
Appendix A, provided typical momenta, expansion velocities,
and field values are small, this new field evolves according to
the equation [50]

ih̄ ˙̂ψ =
(

− h̄2

2m

∇2

a2
− ih̄

d

2
H + gψ̂†ψ̂

)
ψ̂, (6)

with coupling g = λh̄4/8m2c. Equation (6) is reminiscent of
the Heisenberg equations of motion generated by the Hamil-
tonian of an ultracold Bose gas (3) in absence of an external
trapping potential. The kinetic term is proportional to a−2,
which describes the redshift of momenta in the comoving
frame, and the dilution of the system due to the expansion
is expressed by a non-Hermitian term causing the norm of the
field to decay.

In analogy to the transformation to conformal variables
known in quantum field theory on curved spacetime [51],
we now introduce a new time variable t via the relation
dt = dτ/a2, which we refer to as the laboratory time, and the
rescaled field operator �̂ = ψ̂ad/2. Equation (6) then takes the
standard form of the equations of motion for a nonrelativistic
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bosonic field generated by the Hamiltonian (3),

ih̄
∂�̂

∂t
=

[
− h̄2∇2

2m
+ geff (t )�̂†�̂

]
�̂, (7)

with the time-dependent effective coupling

geff (t ) = ga2−d (t ). (8)

The transformation back to the original variables is performed
in postprocessing.

Equations (7) and (8) describe a Bose gas in an expand-
ing spacetime, where the expansion enters only in the time
dependence of the interaction term via the scale factor a(t ).
We stress that the correspondence to Eq. (4) is restricted to
the nonrelativistic limit and therefore not capable of captur-
ing relativistic effects, such as the resonant amplification of
fluctuations during the preheating stage. As discussed in the
next section, we can mimic an analogous process in the non-
relativistic system by periodically modulating the interaction.
Despite these restrictions, it is worth emphasizing that the
relation between Eqs. (4) and (7) holds on the nonlinear level,
i.e., it does not rely on any linearization. This is in contrast
to the analog gravity framework, where a mapping to Eq. (4)
is achieved by engineering an emergent expanding spacetime
for linear excitations on top of the condensate [32]. Such a
mapping, however, typically breaks down on the nonlinear
level. Thus, our approach based on Eq. (7) is well suited for
simulating reheating-like dynamics, where nonlinear effects
are essential.

B. The special case of expansion in two dimensions

For d = 2, the effective coupling in Eq. (8) becomes inde-
pendent of the scale factor a(t ). This is a consequence of a
dynamical symmetry in 2D Bose gases known as scale invari-
ance [24]. While quantum anomalies in strongly interacting
systems can lead to violations of scale invariance [52,53], it
has been well tested experimentally in the weakly interacting
regime [26,54]. Thus, if scale invariance holds, the equations
of motion are the same as in the case of a static spacetime. The
nature of the expansion, encoded in the scale factor a(t ), then
enters the transformation only back to the original temporal
and spatial coordinates as well as field variables. This makes
the simulation in two spatial dimensions particularly efficient,
since the evolution of a single experiment can conveniently be
mapped to arbitrary expanding spacetimes in a postprocessing
step. For this reason, we will focus on weakly interacting
2D Bose gases in the remainder of this work. Although our
universe is clearly not 2D, this geometry captures most of the
essential physics of reheating dynamics, as we demonstrate in
the following sections.

III. ANALOG PREHEATING

Having discussed the connection between a scalar field in
an expanding spacetime and an ultracold Bose gas, we are
now in the position to address the question of how an analog
of the preheating stage of postinflationary dynamics can be
simulated in a Bose gas.

A. Preheating in the early universe

In this subsection, we briefly review the basic mechanism
of preheating in the early universe. After inflation, the energy
budget of the universe is assumed to be stored predominantly
in the homogeneous inflaton field, which oscillates around the
minimum of its potential. The stage of preheating consists
of an explosive, nonperturbative particle creation from the
decaying inflaton.

A common mechanism for preheating is via the paramet-
ric amplification of quantum fluctuations in the presence of
the effective potential induced by the inflaton [5,40]. This
effect can most conveniently be understood by linearizing
the fluctuations of the inflaton field around its homogeneous
background, φ(τ, x) = φ0(τ ) + δφ(τ, x), and inserting it in
Eq. (4). The resulting equation describes damped oscillations
of the background field,

1

c2
φ̈0 + 1

c2
dH φ̇0 + m2c2

h̄2 φ0 + λ

6
φ3

0 = 0. (9)

The equations of motion for the fluctuations, dropping all
terms of quadratic or higher order in δφ, read in Fourier space

δφ̈p + dHδφ̇p + ω2
p(φ, τ )δφp = 0 (10)

with ω2
p(φ0, τ )/c2 = p2/h̄2a2(τ ) + m2c2/h̄2 + λφ2

0/2 and
the Fourier transform δφp(τ ) = ∫

dd x δφ(τ, x)e−ipx/h̄.
Equation (10) describes a collection of parametric oscillators
for each momentum mode p, driven by the background
oscillations of φ0(τ ). Modes within certain instability bands
satisfy resonance conditions, which leads to an exponential
growth of occupancies corresponding to particle production
[40,55]. The growth of fluctuations eventually invalidates the
linearized approach of Eq. (10). Note that in more realistic
models, couplings of the inflaton to other bosonic fields can
lead, in a similar way, to a production of those degrees of
freedom via parametric resonances as well [5]. Here we focus
on the simplest scenario corresponding to a decay of the
inflaton solely into its own quanta of excitation.

B. Analog preheating in Bose gases

Our aim is to observe an analog of preheating dynamics
in a cold-atom Bose gas. Motivated by the discussions in the
previous sections, we mimic the state of the universe after
inflation by a homogeneous BEC. (Possible implications of
the presence of an external trapping potential are discussed
in Sec. V). It is tempting to search for a direct analog of the
inflaton’s oscillations, which could trigger parametric insta-
bilities in the condensate. However, this effect is not present
for a single-component Bose gas in its ground state.

In fact, the absence of parametric resonance is a con-
sequence of the nonrelativistic limit considered in Sec. II.
To reintroduce parametric instabilities in the nonrelativistic
model, we add a periodic modulation of the coupling with fre-
quency ω as g → g(1 + sin ωτ ). As discussed in Appendix B,
this procedure does not map one-to-one to the parametric
resonance scenario described by Eq. (10). For instance, the
modulation frequency ω is nonrelativistic in the simulation,
while according to Eq. (9), the inflaton oscillates at relativis-
tic frequencies ωrel � mc2/h̄ on the scale given by its rest
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mass. Furthermore, there is no dynamical mechanism of back
reaction of the fluctuations on the modulation frequency or
amplitude, as contained in the full model (4).

Despite these differences, modulating the interaction as
described above suffices to generate the desired parametric
resonance phenomena in the Bose gas [33–39], analogous to
the ones taking place in the preheating stage of most infla-
tionary models [5,40]. This is demonstrated in detail in the
subsequent subsections.

C. Numerical study of preheating dynamics

We illustrate our implementation of preheating dynam-
ics by means of numerical simulations based on Eq. (7),
which corresponds to a static ultracold Bose gas with a time-
dependent interaction. We consider here a Bose gas in two
dimensions, where the expansion does not explicitly enter the
equations of motion, as discussed in Sec. II B. (Nonetheless,
we keep the number of spatial dimensions d in all formulas
general). Equation (7) is then formally equivalent to the equa-
tion of motion generated by the Hamiltonian (3), and the back
transformation to the original time and field variables can be
performed in postprocessing. The latter is illustrated at the
example of a matter-dominated expansion in Sec. IV E.

Following the argumentation in Sec. III B, we induce
parametric instabilities by harmonically modulating the
coupling as

g(t ) = g0(1 + r sin(ωt )), (11)

where g0 is a positive offset value, r is the amplitude of
the modulation and ω is its frequency. Note that here we
have used the laboratory time t in the argument of the sine
function instead of the cosmic time τ , which, when expressed
in terms of the laboratory time t , results in oscillations with
increasing frequency. This substitution is based on the simpli-
fying assumption that the expansion is insignificant during the
duration of the modulation, in which case the relation between
both time variables becomes linear and the corresponding
proportionality constant can be absorbed in the modulation
frequency.

In contrast to the postinflationary setting, where the pro-
duced particles back-react on the inflaton, the modulation of
the coupling is imposed externally in the simulation. Switch-
ing off the modulation thus corresponds to the decay of the
inflaton, which constitutes a free parameter in the model.

A particularly useful observable for the study of parametric
resonance and turbulent thermalization is the single-particle
momentum distribution

f (t, p) = 1

V
〈�̂†

p(t )�̂p(t )〉 , (12)

where V is the volume and �̂p(t ) = ∫
dd x �̂(t, x)e−ipx/h̄

denotes the Fourier transform of the Bose field �̂(t, x).
Importantly, this quantity can be experimentally accessed
in time-of-flight measurements (see Sec. V for further
discussion).

We evaluate the quantum expectation value in Eq. (12)
by means of classical-statistical (or truncated Wigner) sim-
ulations [27–30]. This method takes into account quan-
tum fluctuations by stochastically sampling classical field

configurations from the Wigner distribution of the initial state.
Each realization is propagated deterministically according to
the Gross-Pitaevskii equation (GPE) and quantum mechanical
observables are obtained as statistical averages over multiple
realizations. Here the initial state is taken to be a spatially
homogeneous BEC, and for each realization, all nonzero
momentum modes are populated with vacuum noise corre-
sponding to an average occupancy of half a particle per mode.
This mimics quantum fluctuations acting as a seed for para-
metric instabilities. It is important to note that this approach
goes beyond a mean-field description, which fails to capture
parametric resonance since the occupancies of all excited
modes are exactly zero. Further details about the simulation
method can be found in Appendix C.

In what follows, we express length and time in units of
the characteristic scales x0 = h̄/

√
mn0g0 and t0 = h̄/n0g0,

respectively, where n0 = N/V is the homogeneous parti-
cle density in a system of N particles in a volume V .
Momenta are given either in units of the lowest nonzero
momentum pL = 2π h̄/L or in units of the characteristic mo-
mentum pξ = 2π h̄/ξ corresponding to the healing length
ξ = h̄/

√
2mn0g0. In a quasi-2D Bose gas, the interaction

strength g0 = g̃h̄2/m is characterized by the dimensionless
parameter g̃ = √

8πas/aHO, where as is the s-wave scatter-
ing length and aHO is the oscillator length of the harmonic
potential in the strongly confined direction [57]. If not stated
otherwise, we consider a uniform quasi-2D system of N =
106 weakly interacting particles with coupling g̃ = 2.5×10−3

in a square box with periodic boundary conditions. This
choice of parameters fixes the box length as L/x0 = 50. More-
over, in this isotropic setting, the momentum distribution
depends only on the magnitude p = |p| of the momentum,
f (t, p) ≡ f (t, p).

Figure 2 shows the radially averaged momentum dis-
tribution of a parametrically excited system described by
Eq. (7). The interaction is modulated according to Eq. (11)
with r = 0.25, and the modulation frequency ω is chosen as
the resonance frequency of the momentum |pres| = 12×pL,
as discussed below Eq. (16) in the next subsection. In this
simulation, the noise cutoff has been chosen as p� = pξ ≈
70.7×pL. To gain a qualitative impression of the induced pre-
heating dynamics, see the video in the Supplemental Material,
where we show the evolution of both the density and the phase
of a single realization [56].

At early times, t � 30×t0, in Fig. 2, we observe a single
narrow resonance around the resonance momentum pres sat-
isfying the resonance condition εpres = h̄ω/2 (cf. Sec. III D).
Due to particle number conservation, the growing occupancy
of the resonant momentum causes the condensate to decay,
mimicking particle production from the decaying inflaton
in the early universe. At later times, secondary resonances
at higher harmonics of the modulation frequency appear
as a result of nonlinear interactions among the produced
quasiparticles.

In addition to the narrow resonance peaks, a transient
growth of fluctuations at low momenta occurs at early times
before the primary peak becomes visible. This growth can
be interpreted as a consequence of the fact that the sampled
initial state corresponds to the ground state of an ideal Bose
gas. At t = 0, the system is effectively quenched to a finite
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FIG. 2. Radially averaged momentum distribution f (t, p) as a
function of the radial momentum p = |p| at different times t ,
demonstrating preheating dynamics. The coupling is modulated with
relative strength r = 0.25 at a frequency ω, chosen such that the
resonance condition εpres = h̄ω/2 for the momentum pres = 12×pL

with pL = 2π h̄/L is fulfilled [see discussion below Eq. (16)]. At
early times t � 30×t0, a single narrow resonance can be observed
around pres. At later times, a broad resonance band emerges with
peaks at higher harmonics of the modulation frequency. These sec-
ondary resonances are due to nonlinear interactions, as discussed in
Sec. III E. See the video in the Supplemental Material for a qualita-
tive illustration of the dynamics of a single realization [56].

interaction, producing a power law in the momentum distribu-
tion proportional to p−1 at low momenta (cf. Appendix C 1).
This early-time behavior has, however, no influence on the
preheating dynamics we are interested in here.

In the following subsections, we provide analytical insights
into both the linear regime of parametric resonance and the
nonlinear regime of secondary resonances.

D. The linear regime of parametric resonance

Parametric instabilities play a crucial role in many modern
experiments with BECs [33–35,37–39] and can conveniently
be understood by adopting a semiclassical point of view. To
this end, we consider the GPE for the condensate wave func-
tion �(t, x),

ih̄∂t� =
[
− h̄2∇2

2m
+ g(t )|�|2

]
�, (13)

which is formally obtained as the classical equation of mo-
tion after replacing the Bose field operator in Eq. (7) by
its expectation value, �̂(t, x) → �(t, x) = 〈�̂(t, x)〉. It is in-
structive to work in the Madelung representation, �(t, x) =√

n(t, x) exp[iθ (t, x)], which allows us to express the GPE
(13) in form of the hydrodynamic equations [49]

∂t n = − h̄

m
∇(n∇θ ), (14a)

h̄∂tθ = −g(t )n + h̄2

2m

[∇2√n√
n

− (∇θ )2

]
. (14b)

To obtain some intuition about the early stages of the
evolution, we express both the density and the phase in terms
of a homogeneous background with fluctuations on top of it,
n(t, x) = n0(t ) + n1(t, x) and θ (t, x) = θ0(t ) + θ1(t, x). Lin-
earizing Eq. (14) with respect to the fluctuations, yields the
equations ∂t n0 = 0 and ∂tθ0 = −g(t )n0/h̄ for the background
condensate. For the fluctuations, we obtain

∂t n1 = − h̄n0

m
∇2θ1, (15a)

h̄∂tθ1 = −g(t )n1 + h̄2

4mn0
∇2n1. (15b)

Taking the time derivative and inserting the resulting equa-
tions into each other, fluctuations of the density and the phase
decouple to linear order. Transforming to momentum space,
n1 p(t ) = ∫

dd x n1(t, x)e−ipx/h̄ and similarly for the phase, the
linearized equations can be expressed as

∂2
t n1 p + ω2

p(t )n1 p = 0, (16a)

∂2
t θ1 p + 2n0∂t g(t )

2n0g(t ) + εp,0
∂tθ1 p + ω2

p(t )θ1 p = 0, (16b)

where h̄2ω2
p(t ) = εp,0[εp,0 + 2n0g(t )] is a time-dependent

form of the famous Bogoliubov dispersion relation [58], and
εp,0 = p2/2m denotes the dispersion relation of a free particle.

Equaton (16) describes a collection of parametric oscil-
lators for each momentum mode p, which are undamped
for the density and damped for the phase. As discussed in
Appendix D, these are special cases of Mathieu’s equation
[59], which admits oscillatory solutions with exponentially
growing amplitudes ∼eζpt , describing parametric resonance
[40,55]. The resonance condition for the momentum mode pres
reads εpres

= h̄ω/2, where εp = √
εp,0(εp,0 + 2n0g0) denotes

the Bogoliubov dispersion relation and ω is the modulation
frequency defined in Eq. (11). That is, resonance occurs for
those momentum modes pres whose energy equals half a
quantum of energy h̄ω/2 injected in the system through the
modulation.

In fact, there is an entire range of modes around pres which
experience a positive growth rate, and the width of this in-
stability band increases with the modulation amplitude r. To
leading order in perturbation theory [60] (see Appendix D),
the growth rate of the resonant momentum mode is given by

ζpres
= rω

(
n0g0

h̄ω

)2[√
1 +

(
h̄ω

2n0g0

)2

− 1

]
. (17)

For h̄ω � n0g0, this rate simplifies to ζpres
≈ rω/8. In this

regime, the Bogoliubov dispersion becomes linear, εp ≈
cs|p|/h̄ with the speed of sound cs = √

n0g0/m, and the pro-
duced quasiparticles have the character of sound waves. In the
opposite limit, h̄ω � n0g0, particles with quadratic dispersion
εp ≈ n0g0 + p2/2m are produced.

In the simulation presented in Fig. 2, parametric resonance
is clearly visible as a pronounced peak at the momentum
satisfying the resonance condition. Likewise, the excitation
of a single dominant wave length in the linear stage of the
dynamics is qualitatively confirmed in the evolution of both
the density and the phase of a single realization, as can be
seen in the video in the Supplemental Material [56] as well
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as in the snapshots1 shown in the central panels in the lower
part of Fig. 1. It is worthwhile emphasizing that parametric
instabilities can be triggered only if the initial occupancy is
nonzero. This seed is not contained in the mean-field analysis
presented in this subsection, but is added in the simulation
in form of vacuum noise according to the truncated Wigner
prescription.

The linearized Eqs. (15) are helpful to get an intuitive ana-
lytical understanding for the early stages of the dynamics and
describe the emergence of the primary resonant peak in Fig. 2.
However, as a result of the exponential growth of occupancies,
this approach fails to describe the later stages where nonlin-
ear effects play a fundamental role. These nonlinearities are
taken into account by our numerical simulations, which are
based on the full GPE (13), and include secondary excitations
outside the resonance band, as shown in Fig. 2. These will be
discussed further in the subsequent section.

E. Secondary instabilities

In this section we discuss the first nonlinear corrections,
which lead to secondary instabilities [19,40]. Within our semi-
classical picture, these can be understood by considering the
hydrodynamic equations of motion (14) for the fluctuations to
quadratic order, i.e., including terms O(θ2

1 ), O(θ1(n1/n0)) and
O((n1/n0)2). This leads to

∂t n1 = − h̄n0

m
∇2θ1 − h̄

m
(n1∇2θ1 + ∇n1∇θ1), (18a)

h̄∂tθ1 = −gn1 + h̄2

4mn0
∇2n1

− h̄2

2m

[
(∇θ1)2 + (∇n1)2

4n2
0

+ n1∇2n1

2n2
0

]
. (18b)

As can be seen, density and phase fluctuations no longer
decouple to this order.

Taking the time derivative of the above equation for the
density fluctuations and inserting the expressions for the first-
order time derivatives of the fluctuations, the result can be
written in momentum space as

∂2
t n1 p + ω2

p(t )n1 p = n0

2m2h̄2

∫
q
θ1 p−qθ1 qu(p, q)

+
∫

q
n1 p−qn1 q

[
v(p, q)

8m2 h̄2n0
− g(t )

mh̄2 pq
]

(19)

with u(p, q) = p2(pq − q2) + 2(pq)(p − q)2, v(p, q) =
p2(2p2 − 3pq + q2) − 2(pq)q2, and

∫
q = ∫

dd q/(2π h̄)d . In
deriving Eq. (19), we have neglected all cubic terms in the
fluctuations.

1Since n1 and θ1 are conjugate variables, they are phase shifted
such that the density fluctuations reach their maximum when the
phase fluctuations cross zero and vice versa. To create a better visual
impression, the central snapshot of the phase in Fig. 1 has been
shifted forward in time by a quarter of an oscillation period until
the phase fluctuations reach their next maximum.

The above momentum integrals are dominated by the con-
tribution from the exponentially growing unstable modes q,
for which |p − q| ≈ |q| ≈ pres. For modes that are stable on
the linear level, the integrals therefore act as source terms
and Eq. (19) describes forced harmonic oscillators with an
exponentially growing force. This effect is analyzed in more
detail in Appendix E. There we show that the forcing leads
to an exponential growth of the momentum modes with p �
2pres proportional to e2ζpres t , with a growth rate ζpres

given by
Eq. (17). Modes, for which in addition εp ≈ 2εpres

holds, ex-
perience a resonant amplification and are strongest enhanced.

These features of secondary instabilities are captured by
our numerical simulations. In particular, one can observe
both the narrow peak and the broad band in the distribution
function in Fig. 2 between t = 46×t0 and t = 58×t0. Similar
peaks at higher multiples of the resonance frequency appear
at later times due to higher-order corrections to Eq. (14).

The perturbative analysis breaks down when n1/n0 ≈ 1,
i.e., when the number of excited atoms becomes comparable
to the number of condensate atoms. At this point, the expo-
nential growth stops and turbulent dynamics sets in, which
can be observed qualitatively in the video in the Supplemental
Material [56]. A typical snapshot of the density and the phase
of a single realization after the onset of turbulence is shown in
the right panels in the lower part of Fig. 1. In the next section,
we present a quantitative analysis of turbulent dynamics in
momentum space.

In Appendix F, we discuss the theory of parametric in-
stabilities and secondary excitations from the perspective of
quantum equations of motion for correlation functions, which
validates the use of the classical-statistical approximation.

F. Analysis of growth rates

Figure 3 depicts the time evolution of the occupancies
corresponding to the primary and secondary resonances anno-
tated in Fig. 2. The growth of the secondary resonance marks
the onset of the nonlinear regime where the quasiparticles
produced in the primary resonance start to interact, and the
linear picture presented in Sec. III D breaks down.

Before comparing the numerically extracted growth rates
to the analytical predictions presented in the previous sec-
tions, we first relate the momentum distribution f (t, p)
to the hydrodynamic density and phase variables. On the
mean-field level, linear fluctuations of the condensate wave
function, expressed as �(t, x) = �0(t ) + �1(t, x), are related
to linear density and phase fluctuations via �1(t, x)/�0(t ) =
n1(t, x)/2n0 + iθ1(t, x). The momentum distribution on the
linear level then corresponds to

|�1 p|2 = n0

[
n2

1 p

(2n0)2
+ θ2

1 p

]
. (20)

Therefore, a parametric resonance where the density and
phase fluctuations grow as n1 p ∼ θ1 p ∼ eζpt results in a
growth of the momentum distribution as f (t, p) ∼ e2ζpt .

The oscillations of the occupancies in Fig. 3 can be un-
derstood from the linearized parametric oscillator Eqs. (16).
Recall that the latter admit oscillatory solutions with ex-
ponentially growing amplitudes. However, being conjugate
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FIG. 3. Radially averaged momentum distribution f (t, p) as a
function of time t showing the exponential growth of the primary and
secondary resonances corresponding to the annotated peaks in Fig. 2.
We have extracted the growth rates by fitting a straight line to the
quantity ln f (t, p), as shown in the insets. The resulting growth rate of
the primary resonance ζ (1)

num = 0.13×t−1
0 agrees well with the analyti-

cal prediction 2ζ
(1)
pert = 0.15×t−1

0 obtained from Eq. (17). The growth
of the secondary instability starts later, but its rate ζ (2)

num = 0.23×t−1
0

is approximately twice as large as the one of the primary resonance,
as expected from our discussion in Sec. III E. The exponential growth
stops when the number of excited atoms becomes comparable to the
number of condensate atoms.

variables, the oscillations of n1 and θ1 are shifted in phase
by approximately π/2. According to Eq. (20), the momentum
distribution thus corresponds to the sum of two phase-shifted
oscillating functions with slightly different initial amplitudes.
This results in the residual oscillations on top of the expo-
nential growth observed in Fig. 3. We have checked that the
oscillation frequency of the primary resonance agrees with the
modulation frequency, while the oscillations of the secondary
resonance additionally contain frequency components corre-
sponding to twice the modulation frequency, reflecting the
interactions between the resonantly produced quasiparticles.

We have extracted the growth rate of the primary resonance
ζ (1)

num = 0.13×t−1
0 by fitting an exponential function to the

numerical data, as shown in the insets of Fig. 3. The result
is close to the analytical prediction (17) obtained from per-
turbation theory, 2ζ

(1)
pert = 0.15×t−1

0 . The secondary resonance
at 2εpres

in Fig. 3 grows at the rate ζ (2)
num = 0.23×t−1

0 , which is
indeed approximately twice the growth rate of the primary res-
onance. The secondary resonance quickly saturates, indicating
the breakdown of the perturbative analysis presented in the
previous section. This marks the transition into a highly non-
linear regime leading to the formation of turbulence, which is
the topic of the next section.

IV. ANALOG REHEATING

Having studied the main features of preheating-like dy-
namics along with a possible implementation in an ultracold
Bose gas, we now turn to the reheating process and the

question of how the system finally approaches thermal
equilibrium.

Particle spectra formed during preheating are highly non-
thermal with large occupation numbers at low momenta. As a
consequence, the system enters a turbulent state, characterized
by a local transport of conserved quantities in momentum
space. Typically, an inverse cascade transports particles to-
wards lower momenta, while a direct cascade transports
energy towards higher momenta, constituting a key process in
the context of turbulent thermalization [7]. At early times, this
transport is driven, i.e., the oscillating inflaton acts as a source
injecting energy into the system at resonant momenta. Even-
tually, the inflaton decays, marking the transition from driven
to free turbulence. The system remains in the turbulent state
for a long time, until the occupancy of characteristic momenta
eventually becomes comparable to the vacuum expectation
value given by the “quantum half.” In this final stage, which
is dominated by quantum fluctuations, the system relaxes to
thermal equilibrium, completing the reheating process [6,7].

Turbulent dynamics is accompanied by the emergence of
self-similarity and universality. This is reflected by a power-
law behavior of the momentum distribution within a certain
inertial range of momenta. One well-known example within
the theory of weak wave turbulence is the prediction of a
stationary direct cascade with a universal power-law distri-
bution f (p) ∝ p−d [61]. More generally, self-similarity in
far-from-equilibrium systems can become manifest in their
time evolution. In such a scenario the evolution of the dis-
tribution function can be expressed as

f (t, p) = sα fS(sβ p), (21)

where s = t/tref and tref is an arbitrary reference time. The
scaling hypothesis (21) constitutes a significant reduction of
complexity as it allows to describe a relevant part of the sys-
tem’s dynamics by simply rescaling a single-variable scaling
function fS as determined by the scaling exponents α and β.
Remarkably, in many far-from-equilibrium scenarios, both the
exponents as well as the scaling form of the distribution are
universal, which means they are insensitive to microscopic
details as well as initial conditions, and depend only on a few
macroscopic system parameters like dimensionality, symme-
try, or the number of field components [7,8,10,42,62]. As a
result, if universality holds, physical systems with vastly dif-
fering energy scales can behave quantitatively the same. This
makes ultracold Bose gases a particularly promising target for
simulating universal aspects of far-from-equilibrium dynam-
ics like that of the inflaton in the early universe. Universal
self-similar time evolution reflects the system being in the
vicinity of a nonthermal fixed point, which acts as an attractor
on the way towards thermal equilibrium [41,63,64].

In this section, we demonstrate by means of classical-
statistical simulations that the salient features of these
phenomena can be observed in our implementation of re-
heating dynamics. We first study the regimes of driven and
free turbulence separately, before considering a transient
prescaling regime, where the universal shape of the scal-
ing function is maintained, but the scaling exponents change
over time. From our numerical simulations, we extract the
scaling exponents as well as the scaling form of the distri-
bution and compare the results with analytical predictions
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FIG. 4. Self-similar time evolution of the momentum distribution in form of a direct energy cascade for driven (a) and free turbulence (b).
Energy is injected at low momenta by modulating the scattering length according to Eq. (11) with a relative amplitude r = 1 at a frequency ω

chosen such that h̄ω/2 = εpres with pres = 3×2π h̄/L. In the case of continuous modulation (a), a stationary distribution with a power law close
to p−2 develops, whose front is evolving self-similarly. If the driving is switched off once the primary resonance has saturated, corresponding
here to t = 80×t0 (b), energy is propagated in a self-similar way to higher momenta, but the distribution at a given momentum decreases with
time, reflecting energy conservation. A power law proportional to p−2 is shown in form of a dotted line as a guide to the eye. The insets show
the distributions rescaled according to Eq. (21) using the numerically extracted scaling exponents displayed below the respective distributions.

from kinetic theory. Finally, we discuss the relaxation to
thermal equilibrium, which is, however, not captured by our
classical-statistical simulations as it is dominated by quantum
fluctuations. We conclude this section with a discussion of
an example of how expansion may prevent the system from
thermalizing, building a bridge to Sec. II.

A. Driven versus free turbulence

In order to drive the system into a turbulent state, we follow
the protocol presented in Sec. III C of parametrically exciting
a homogeneous BEC. Here our focus lies on the later stages
of the nonlinear dynamics after the proliferation of secondary
instabilities when a smooth distribution in form of a power law
has formed. We distinguish the regime of driven turbulence,
realized by continuously modulating the interaction according
to Eq. (11), and free turbulence, developed if the modulation is
switched off shortly after the primary resonance has saturated.
In our analogy to reheating in the early universe, the former
case corresponds to the situation where the inflaton possesses
enough energy to drive turbulence for a long time, while in
the latter case, the inflaton runs out of energy rather quickly at
around the same time when turbulence sets in.

To maximize the inertial range where self-similar scaling
can be observed, it is desirable to inject energy at momentum
scales close to the lowest momenta supported by the system
where occupancies can become large. To this end, the interac-
tion is modulated with a relative amplitude r = 1 at frequency
ω chosen such that the resonant momentum becomes pres =
3×2π h̄/L (cf. Sec. III D).

The left and right panels of Fig. 4 show a comparison of the
direct cascades emerging in the regimes of driven and free tur-
bulence, respectively. All parameters for both simulations are
identical, with the exception that in Fig. 4(a), the interaction
is modulated continuously, while in Fig. 4(b), the modula-
tion is switched off smoothly2 within two modulation periods
2π/ω ≈ 8.2×t0 at time t = 80×t0, roughly corresponding to
the time when the primary resonance saturates. In the latter
case, energy is conserved already at the onset of turbulence
and the driven regime is skipped. In both scenarios, the mo-
mentum distribution takes a scaling form corresponding to

2We have checked that the differences between switching off the
modulation suddenly or smoothly within a few modulation periods
are insignificant.
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a power law close to f (t, p) ∝ p−2, which is indicated by a
dotted line as a guide to the eye. A power law proportional to
p−d is characteristic for weak wave turbulence [61,65,66] and
has been observed experimentally in Ref. [67].

Moreover, as it can be seen in Fig. 4, the distributions in
the two regimes exhibit self-similar time evolution in different
ways. In the case of driven turbulence, Fig. 4(a), the front of
the cascade evolves self-similarly, leaving behind a stationary
distribution. Stationary turbulence arises in the theory of weak
wave turbulence as a stationary solution of the scattering
integral. However, such a configuration necessarily requires
the existence of at least a source and a sink for energy to
be injected and dissipated, respectively [61]. In the present
case, the energy source is provided by the modulation of the
interaction. We have verified that the rate of energy injection
into the system is approximately constant in this stationary
regime, as expected for driven turbulence [7]. Since energy
is transported locally in momentum space, unoccupied higher
momentum modes play the role of an energy sink [7]. This
allows for the build-up of a stationary distribution, although
the model lacks a mechanism of dissipation. By contrast, the
distribution in the case of free turbulence, Fig. 4(b), is not
stationary, but decreases as a function of time for a given
momentum, reflecting energy conservation.

To quantify the self-similar time evolution, we have ex-
tracted the scaling exponents α and β defined in Eq. (21)
from our numerical data at different times using the maximum
likelihood technique described in Appendix G. In the turbu-
lent stage of the dynamics, the exponents are approximately
constant at late times, as shown in the lower part of Fig. 4.
The observed slow relaxation of the exponents at early times
in Fig. 4(b) can be interpreted as prescaling, as discussed in
the subsequent subsection. At the latest simulated times, the
exponents take the values

αdriven = −0.95 ± 0.17, βdriven = −0.46 ± 0.06, (22)

for driven turbulence, and

αfree = −1.05 ± 0.11, βfree = −0.27 ± 0.03, (23)

for free turbulence, respectively. Rescaling the distribution ac-
cording to Eq. (21) with the extracted exponents, as described
in Appendix G, all data points collapse to a single universal
scaling function fS(p), as shown in the insets of Fig. 4. The
exponent β describes the speed of energy propagation towards
higher momenta, which is higher for the driven cascade than
for the free cascade. Analytical predictions for this expo-
nent from kinetic theory as well as the relations between α

and β following from conservation laws will be discussed in
Sec. IV C.

The above values of the exponents are insensitive to the
details of how the far-from-equilibrium state is approached.
In particular, we have observed the same exponents starting
from an initial state with a highly occupied narrow window
of momenta on top of a condensate background. Such an
initial state is similar to the state of the system at the end
of the preheating stage, when a certain momentum mode is
overpopulated as a consequence of parametric resonance.

The slow power-law dynamics of the direct cascade can be
challenging to capture with classical-statistical simulations for

experimentally realistic configurations, since this method is
known to be prone to instabilities caused by the vacuum noise
[30]. These instabilities manifest in a decay of the “quan-
tum half” and the generation of spurious quantum pressure,
resulting in an unphysical dependence of the results on the
ultraviolet (UV) cutoff [47]. Classical statistical simulations
are therefore restricted to large occupancies and weak cou-
plings, where these inevitable deficiencies are mitigated via a
separation of scales. To simulate reheating dynamics in the
turbulent regime, we have therefore increased the particle
number and reduced the coupling such that the validity of
the classical-statistical approximation can be ensured. This is
discussed in detail in Appendix C 3, where we also assess
the range of accessible coupling strengths for our setup. In
Sec. V we discuss how our numerical results relate to realistic
experimental conditions.

B. Prescaling

So far we have investigated the two limiting cases where
turbulence is either driven or free. Now we address the tran-
sient regime corresponding to the somewhat more realistic
situation where, in the beginning, turbulence is driven by
the inflaton oscillations, but at some point goes over to free
turbulence when the inflaton has decayed.

This scenario is illustrated in Fig. 5. Up to the time
t = 256×t0, the direct cascade is driven (blue curves), as in
Fig. 4(a). At this time, the modulation is switched off, mim-
icking the decay of the inflaton. We then observe a slowing
down of the speed of energy propagation and the distribu-
tion decreases in time for a given momentum (red curves),
reminiscent of the direct cascade of free turbulence shown in
Fig. 4(b).

On the right-hand side of Fig. 5, the numerically extracted
scaling exponents are shown as a function of time. After
switching off the modulation, the exponent β slowly evolves
from a value close to the one reported in Eq. (22) for driven
turbulence to a value close to the one reported in Eq. (23)
for free turbulence. By contrast, the ratio α/β changes rather
quickly between these two regimes. This behavior is expected
since this ratio is fixed by energy conservation, which is en-
forced instantaneously after switching off the modulation; cf.
Sec. IV C. Surprisingly, the self-similar scaling form of the
distribution is approximately preserved during the transition,
which is clearly visible in the inset of Fig. 5, where the
distributions, rescaled according to Eq. (21) with the time-
dependent scaling exponents, fall on top of each other.

Recently, such a situation, where the system’s dynamics
is governed by a universal scaling function much before the
corresponding exponents have attained their universal val-
ues, has been studied in the context of heavy-ion collisions
[45]. This phenomenon, termed prescaling, is closely related
to the emergence of a far-from-equilibrium hydrodynamic
behavior, as it allows to describe the dynamics in terms of
few slowly changing parameters [45]. A different type of
prescaling, where certain correlation functions already scale
with their universal exponents at early times while others do
so only at much later times, has been studied numerically in
three-component Bose gases [46]. Our results indicate that
prescaling, as defined in Ref. [45], can be observed during
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FIG. 5. Prescaling at the transition from driven to free turbulence. The simulation parameters are identical to those in Fig. 4, but the
modulation is switched off suddenly at a later time t = 256×t0. Before this time (blue curves), turbulence is driven and both the momentum
distribution as well as the scaling exponents α and β are the same as in Fig. 4(a). After switching off the modulation (red curves), the ratio α/β

quickly changes to the one expected for free turbulence, reflecting energy conservation. The exponent β gradually changes towards the value
obtained for free turbulence in Fig. 4(b), reducing the speed of energy transport in the cascade. Although the scaling exponents still change in
time, the distribution has already attained its universal scaling form. This important hallmark of prescaling is indicated in the inset, where all
data points collapse to a single curve after rescaling according to Eq. (21) with the extracted time-dependent scaling exponents α(t ) and β(t ),
as described in Appendix G.

the transition from driven to free turbulence,3 opening up new
paths to studying this phenomenon experimentally.

In Appendix H we corroborate our analysis of prescaling
using an alternative method based on the moments of the
distribution, which is particularly suitable for extracting time-
dependent scaling exponents [45].

C. Kinetic description

We now discuss how the values of the scaling exponents
for the direct cascade presented in Eqs. (22) and (23) can be
understood from an analytical point of view.

One relation between the exponents α and β follows from
the scaling of the total energy. To see this, we assume a
self-similar time evolution according to Eq. (21) as well as a
power-law scaling of the dispersion relation, εp ∝ |p|z, where
z ≈ 2 in the particle regime of the Bogoliubov dispersion.
Then the total kinetic energy scales as

E (t ) = V
∫

dd p

(2π h̄)d
εp f (t, p) =

(
t

tref

)α−(d+z)β

E (tref ).

(24)

In the case of free turbulence, energy is conserved across the
cascade, E = const, while in the case of driven turbulence, it
grows linearly with time, E ∝ t . This implies the relation

α = γ + (d + z)β, (25)

where γ = 1 in the driven regime and γ = 0 in the absence of
driving.

3A much shorter and less pronounced stage of prescaling occurs
also in the scenario shown in Fig. 4(b), where the modulation is
switched off much earlier, at t = 80×t0.

Another relation between the scaling exponents can be
obtained with the help of perturbative4 kinetic theory for Bose
gases [10,65]. The time evolution of the distribution function
in this framework is written in the form of a Boltzmann
equation (see, e.g., Ref. [68]),

∂t f (t, p) = C2↔2[ f ](t, p) + C1↔2[ f ](t, p), (26)

where

C2↔2[ f ] = 4πg2
∫

p2,p3,p4

δ(p + p2 − p3 − p4)

× δ
(
εp + εp2

− εp3
− εp4

)
× [

( fp + 1)
(

fp2 + 1
)

fp3 fp4

− fp fp2

(
fp3 + 1

)(
fp4 + 1

)]
(27)

describes 2 ↔ 2 collisions between noncondensate atoms and

C1↔2[ f ] = 2(2π )4h̄n0g2
∫

p1,p2,p3

δ(p1 − p2 − p3)

× δ
(
ε0 + εp1

− εp2
− εp3

)
× [δ(p − p1) − δ(p − p2) − δ(p − p3)]

× [(
fp1

+ 1
)

fp2
fp3

− fp1

(
fp2

+ 1
)(

fp3
+ 1

)]
(28)

4Large occupation numbers usually require going beyond pertur-
bative kinetic theory for the description of the dynamics near a
nonthermal fixed point. An example is the dynamics of the in-
verse cascade leading to Bose condensation [10]. For the direct
cascade, however, occupation numbers of characteristic momenta
are typically lower (although still much larger than one), such that
a perturbative analysis is applicable (see also [7]).
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arises in the presence of the condensate and describes ef-
fective 1 ↔ 2 collisions between the noncondensate atoms.
Here ε0 and εp are the energies of condensate and nonconden-
sate atoms, respectively, and we have used the abbreviations
fp = f (t, p) and

∫
p = ∫

dd p/(2π h̄)d . In our case, ε0 can be
neglected since we are interested in the direct cascade, which
predominantly involves atoms that are much more energetic
than condensate atoms.

In order to derive the desired relation between the scal-
ing exponents, let us assume that the right-hand side of the
Boltzmann Eq. (26) is dominated by one of the two scattering
integrals, and denote the number of particles involved in the
corresponding scattering processes by l , i.e., we have l = 4
for 2 ↔ 2 scattering and l = 3 for 1 ↔ 2 scattering. Compar-
ing how the left- and right-hand sides of Eq. (26) scale with
time, and assuming large occupation numbers, fp � 1, one
arrives at [10]

(l − 2)α = [(l − 2)d − 2]β − 1. (29)

Combining this result with Eq. (25) yields

β = −−1 − (l − 2)γ

(l − 2)z + 2
. (30)

For driven turbulence, γ = 1, and a quadratic dispersion,
z = 2, both collision terms lead to α = −1 and β = −1/2.
These values are close to those in Eq. (22), extracted from our
simulation in the presence of a modulated coupling. For free
turbulence, γ = 0, one recovers the ratio α/β = 4 reflecting
energy conservation, which is close to the numerical result
in Eq. (23). The value of β in this case is β = −1/6 for
2 ↔ 2 scattering and β = −1/4 for 2 ↔ 1 scattering. The
latter is closer to Eq. (23), which is observed at late times
in our simulations. By contrast, in the experiment reported
in Ref. [44], where, instead of parametrically driving a pure
condensate out of equilibrium, a cooling quench has been ap-
plied to an initially uncondensed Bose gas, a scaling exponent
closer to the 2 ↔ 2 scattering solution, β = −1/6, has been
observed. Deviations from the predicted scaling can in general
be induced by a nonquadratic scaling of the dispersion relation
εp or by the time dependence of the number of atoms in the
condensate.

D. Thermalization

As we have seen, on its way to thermal equilibrium the sys-
tem takes a detour via a nonthermal fixed point, in the vicinity
of which the dynamics is dominated by a turbulent transport
of energy towards higher momenta. The self-similar dynamics
of the direct cascade stops once the occupancy of the char-
acteristic momentum dominating the kinetic energy budget
becomes comparable to the expectation value of the vacuum
noise given by the “quantum half.” At this point, quan-
tum fluctuations become dominant over statistical fluctuations
[7] and the system is expected to relax to a Bose-Einstein
distribution

fBE(p) = 1

exp(εp/kBTf ) − 1
, (31)

where εp is the dispersion relation, kB is the Boltzmann con-
stant, and Tf is the reheating temperature.

The dominance of quantum fluctuations makes this fi-
nal stage of the dynamics inaccessible to classical-statistical
simulations. In contrast to the expected relaxation to a
Bose–Einstein distribution, at sufficiently late times in the
numerical simulation, the cascade stops being self-similar,
slows down, and approaches a classical equilibrium distribu-
tion [8] with a temperature T̃ (�) that depends on the UV
cutoff � and is determined by the equipartition theorem,
fcl,th(p) + 1/2 ∝ kBT̃ (�)/εp. In particular, mode occupan-
cies drop to unphysical values below the vacuum noise of 1/2.

The late-time regime dominated by quantum fluctuations is
beyond the regime of classical-statistical simulation methods.
Here we resort to analytical estimates for the reheating time
and the reheating temperature in our system based on the self-
similar time evolution. Following Ref. [7], we neglect the final
stage of quantum relaxation to a Bose-Einstein distribution
and consider thermalization as complete once the occupancy
of the characteristic momentum dominating the kinetic energy
budget becomes on the order of unity. More precisely, we
define the characteristic momentum p̄(t ) as the momentum
that maximizes the integrand in the expression (24) for the
total kinetic energy. For an isotropic system with dispersion
relation εp ∝ pz, where p = |p|, the characteristic momentum
is given by p̄(t ) = arg maxp pd+z−1 f (t, p).

If the scaling exponents as well as the momentum dis-
tribution at some reference time are known, the assumption
of self-similar time evolution according to Eq. (21) is suffi-
cient to predict the time tf when the occupancy of the final
characteristic momentum pf will reach unity. The time tf
can be regarded as the best possible approximation to the
reheating time obtainable from classical-statistical simula-
tions. However, Eq. (21) is not directly applicable since the
scaling exponents are not constant throughout the entire time
evolution. In fact, they take different universal values in the
regimes of driven and free turbulence, respectively, which are
interpolated during a transient regime of prescaling. Impor-
tantly, as shown in Sec. IV B, the universal scaling form of
the distribution is preserved during prescaling, allowing us to
describe the full evolution solely in terms of time-dependent
scaling exponents.

To properly account for time-dependent exponents α(t )
and β(t ), we generalize the power-law expressions in Eq. (21)
as (t/tref )α → exp

∫ t
tref

α(t ′) dt ′/t ′, and similarly for β [45].
Note that the original expressions are recovered for constant
α and β. This way, the evolution of the initial characteristic
momentum scale for turbulence pi is given by

p̄(t ) = exp

[
−

∫ t

ti

β(t ′)
dt ′

t ′

]
pi, (32)

where ti denotes the time when turbulence sets in. While
the exponent β determines the scaling of the characteristic
momentum, the evolution of its occupancy is governed by the
exponent α,

f (t, p̄(t )) = exp

[∫ t

ti

α(t ′)
dt ′

t ′

]
f (ti, pi ). (33)

By virtue of Eq. (33), it is in principle possible to compute
the time tf by solving f (tf , pf ) = 1, given full knowledge
of the time dependence of the exponent α. It is instructive,
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however, to rewrite this formula using some simplifying ap-
proximations. To this end, we assume that α is approximately
constant during the driven regime, taking its universal value
αdriven, and that, after switching off the modulation at time td,
the relaxation to its universal value for free turbulence αfree

occurs fast compared to the overall reheating time scale. We
then recover power-law scaling for the occupancy of the final
characteristic momentum,

f (tf , pf ) ≈
(

td
ti

)αdriven
(

tf
td

)αfree

f (ti, pi ), (34)

and it reaches unity at the time

tf = td

(
td
ti

)−αdriven/αfree

[ f (ti, pi )]
−1/αfree . (35)

Recall that a direct energy cascade is described by negative
exponents α and β with large initial occupancies f (ti, pi ),
which decrease in time according to Eq. (34). Furthermore,
the condition ti � td � tf requires td � ti[ f (ti, pi )]−1/αdriven . If
the latter inequality is satisfied as an equality, the occupancy
of the characteristic momentum reaches unity already during
driven turbulence before switching off the modulation, such
that tf = td. Here we focus on the situation where td < tf such
that the system spends a dominant part of its evolution in the
regime of free turbulence.

Using an analogous line of arguments, we can estimate the
final characteristic momentum scale from Eq. (32) as

pf ≈
(

td
ti

)−βdriven
(

tf
td

)−βfree

pi

=
(

td
ti

)−βdriven+αdriven/(d+z)

[ f (ti, pi )]
1/(d+z) pi, (36)

where the second equality follows after inserting our estimate
for the reheating time (35) and substituting the relation (25)
between αfree and βfree imposed by energy conservation. The
use of the latter identity makes the estimate (36) of the final
characteristic momentum independent of the scaling expo-
nents in the regime of free turbulence, reflecting the fact that
pf is closely connected to the total energy in the system [7],
which is conserved after switching off the modulation. By
contrast, the reheating time, according to Eq. (35), is sensitive
to the values of the scaling exponents in both regimes, and,
in particular, can be influenced by the nonuniversal behavior
during prescaling.

Finally, we can obtain an order-of-magnitude estimate for
the reheating temperature Tf in our system by identifying the
latter with the typical kinetic energy of a particle with momen-
tum pf . For a dispersion relation of nonrelativistic particle,
this reads

kBTf ∼ p2
f

2m
. (37)

When interpreting the estimates (35) to (37) in the cos-
mological context, it is important to remember that our time
variable t denotes the laboratory time and should be trans-
formed back to the cosmic time τ by integrating the relation
dt = dτ/a2. Similarly, we need to take into account the
redshift of momenta, p → p/a, as expressed in the kinetic
term of Eq. (6). For the estimate of the reheating temperature
(37), this means Tf → Tf/a2(tf ). This back transformation of

variables is illustrated further in the subsequent subsection at
a specific example.

Although (35) to (37) are useful to estimate asymptotic
quantities without requiring to simulate the dynamics up to the
point where the system thermalizes, the outlined argumenta-
tion is based on the strong assumption that the neglected final
stage of the dynamics, which is dominated by quantum fluctu-
ations, does not have a significant impact on these estimates.
The latter remains to be checked against physical reality,
which can be provided by comparison to an experiment.

E. Thermalization versus expansion

In an expanding spacetime, interaction rates decrease with
the expansion. If the expansion is too rapid, it is therefore
possible that the system is unable to ever reach thermal
equilibrium. In a cosmological setting, this ability is usually
quantified by comparing the typical interaction rate � with
the Hubble parameter H = ȧ/a. If � � H , thermalization is
possible, whereas for � � H , the occupation numbers are
expected to freeze without thermalizing as the mean free path
of the particles exceeds the horizon size of the universe.

The full interpolation between both limiting cases, and
the associated thermalization behavior, can be studied in our
proposed setup. According to Eq. (7), for d = 2, the dynamics
of a Bose gas in an expanding spacetime can be described
in terms of a constant interaction g. Consequently, the simu-
lating experimental system will always thermalize eventually.
However, this does not necessarily imply the same for the sim-
ulated expanding system, whose description is recovered only
after a back transformation to the original spatial and temporal
coordinates as well as field variables. A necessary condition
for thermalization to occur in the simulated system is that the
laboratory time t at which the cosmic time τ becomes infinite
is larger than the reheating time, tf < t (τ = ∞).

An interesting feature of our transformation of the time
coordinate is that in the case of a sufficiently rapid expan-
sion, infinite cosmic time corresponds to a finite value of the
laboratory time, i.e., t (τ = ∞) < ∞. To demonstrate this, we
consider a power-law expansion [69],

a(τ ) =
(

1 + H0τ

ν

)ν

, (38)

with a positive exponent ν. This expression fixes a(0) = 1 and
the initial expansion rate H (0) = H0. The laboratory time is
then given by

t (τ ) =
∫ τ

0

dt ′

a2(t ′)
= 1

H0

ν

1 − 2ν
[a(τ )(1−2ν)/ν − 1]. (39)

If ν > 1/2, such as in the case of expansion in a matter-
dominated universe (ν = 2/3) [48], the limit a = ∞ and
τ = ∞ is reached within a finite laboratory time, given by

t (τ = ∞) = ν

(2ν − 1)H0
, (40)

in line with the intuition that a larger expansion rate leads to a
faster freeze-out.

Remarkably, Eq. (40) associates the state of the simulating
system at each instant of the laboratory time t with the asymp-
totic infinite-time state of a simulated system characterized by
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FIG. 6. Freeze-out of the momentum distribution of a sys-
tem with power-law expansion according to Eq. (38) with
H0 = 0.0045×t−1

0 and ν = 2/3. The numerical data are the same as
in Fig. 5, but the laboratory time t has been transformed back to the
cosmic time τ by virtue of Eq. (40). As shown in the inset, the cos-
mic time diverges at the finite laboratory time t (τ = ∞) ≈ 444×t0,
which is, in particular, shorter than the reheating time of the asso-
ciated simulating system. As a result, the evolution of the simulated
expanding system slows down and eventually freezes before thermal-
ization is complete.

a certain value of the initial expansion rate H0. This is illus-
trated in Fig. 6, where we have used H0 = 0.0045×t−1

0 and
ν = 2/3, leading to the freeze-out time t (τ = ∞) ≈ 444×t0.

The ability to associate the dynamics of a single simulation
with arbitrary expansion schemes is a special case of the 2D
geometry, where, owing to scale invariance, the equations of
motion become independent of the scale factor a. The situa-
tion is different in three spatial dimensions, where, according
to Eq. (8), the coupling becomes time-dependent as g ∝ a−1.
In the presence of a decreasing coupling, freeze-out may al-
ready occur during the simulation before reaching t (τ = ∞),
in which case the expanding system will never thermalize.

V. EXPERIMENTAL PERSPECTIVES

In this section we summarize the experimental require-
ments for observing the salient features of reheating dynamics
discussed in this paper.

The simulating system is a single-component BEC that
is parametrically excited by modulating the interaction ac-
cording to Eq. (11) around some positive offset value. This
can be realized experimentally with the help of a Feshbach
resonance, which allows one to tune the s-wave scattering
length using an external magnetic field [22,33,35,38,39]. The
interaction strength g3D of a 3D Bose gas is related to the
s-wave scattering length as via g3D = 4π h̄2as/m. Our gen-
eral approach is independent of dimensionality (but see our

remarks towards the end of this section about the absence
of a turbulent cascade in one dimension). For concreteness,
we have focused here on 2D geometries, which may be re-
alized through a tight confinement of the atomic gas in the
vertical direction by a harmonic potential. In the quasi-2D
regime, the effective interaction strength g2D = g̃h̄2/m is char-
acterized by the dimensionless parameter g̃ = √

8πas/aHO,
where aHO = √

h̄/mωHO is the oscillator length of the confin-
ing harmonic potential with frequency ωHO [57]. Besides via
Feshbach resonances, 2D Bose gases with tunable effective in-
teractions can therefore alternatively be realized by changing
the frequency of the harmonic trap [70].

The numerical simulations presented in this paper have
been conducted for the fixed value Ng̃ = 2.5×103 of the prod-
uct of the particle number N and the interaction strength g̃.
This value is readily achievable in present-day experiments
with uniform 2D Bose gases [26]. On the classical level,
the parameters N and g̃ enter the equations of motion only
via the product Ng̃ (cf. Appendix C 2), but this no longer
holds on the quantum level. In fact, our classical-statistical
simulations are sensitive to the individual values of N and g̃
since they control the relative magnitude of mode occupancies
with respect to quantum fluctuations mimicked in form of vac-
uum noise. As discussed in Appendix C 3, classical-statistical
simulations are restricted to large occupancies and weak inter-
actions, which is why our simulations of turbulent reheating
dynamics have been conducted for a higher particle number
than currently realizable in experiments. To estimate char-
acteristic quantities for more realistic experimental setups,
we rescale our numerical results to the reference parameters
Nref = 1×106 and g̃ref = 2.5×10−3. Pure BECs with almost
106 atoms can be reached in state-of-the-art experimental
setups, e.g., for 39K [71–73], where a wide range of inter-
actions is accessible through the broad Feshbach resonance
at the magnetic flux B = 560.7 G [74]. We emphasize that
extrapolating weak coupling results to stronger couplings is a
priori not justified. Yet this procedure is often the only way to
be consistent with experimental aspects and commonly used,
e.g., in the context of quantum chromodynamics (QCD) [75].
In the field of ultracold atoms, a number of positive examples
exist, where weak coupling expectations of nonequilibrium
quantum dynamics have been found experimentally at strong
couplings [11,76].

For the above choice Ng̃ = 2.5×103 and a 2D system of
39K atoms in a square box of length L = 50 μm, one ob-
tains the typical values x0 = 1 μm and t0 ≈ 0.6 ms for the
characteristic length and time scales x0 = h̄/

√
mn0g0 and t0 =

h̄/n0g0, respectively. Here g0 is the offset value around which
the interaction is modulated and n0 = N/L2 is the atomic
density.

As shown in the previous sections, the reheating dynam-
ics studied in this work can be subdivided into two distinct
stages, namely, the early stage of preheating, where occupan-
cies of resonant momenta grow exponentially as a result of
parametric instabilities, and the subsequent stage of turbulent
thermalization, characterized by a self-similar transport of en-
ergy towards higher momenta. The timescales at which these
phenomena can be observed depend on the choice of the mod-
ulation frequency ω and the relative modulation amplitude r
in Eq. (11). The choice r = 1, i.e., modulating the scattering
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length with an amplitude close to its offset value, is efficient
for rapidly driving the system out of equilibrium. (Note that
the perturbative expression for the growth rate Eq. (17) is no
longer applicable in this case). The direct cascade is observed
best if occupancies of the initial characteristic momentum,
where energy is injected in the system, are as high as possible.
To this end, the modulation frequency ω should be chosen
close to the frequency of the lowest nonzero momentum mode
supported by the system, which is typically deep in the phonon
regime where the Bogoliubov dispersion is linear. In our
simulations of reheating dynamics presented in Figs. 4 and
5, we have chosen the modulation frequency such that the
primary resonance occurs at the momentum pres = 3×2π h̄/L,
i.e., ω = 2εpres/h̄ ≈ 2π×199 Hz for the example parameters
mentioned above. The onset of turbulence, marking the end
of the preheating stage, occurs at around t ≈ 80×t0, corre-
sponding to roughly 10 oscillations of the scattering length.
The subsequent turbulent scaling regime extends up to times
of about tf ≈ 1500×t0, which can be deduced from Figs. 4 and
5 with the help of Eq. (35) after rescaling the occupancies to
the reference particle number N = 1×106 (cf. Appendix C 3).
The estimated reheating time tf is well within the reach of
modern experiments, where typical lifetimes of BECs are on
the order of a few seconds [72].

In our analysis, we have considered the momentum dis-
tribution f (t, p) = 〈�̂†

p(t )�̂p(t )〉 as the main observable.
Experimentally, this quantity can be accessed in time-of-flight
(TOF) measurements [57]. In the case of driven turbulence
[cf. Fig. 4(a)], by virtue of Eq. (36), we find that the charac-
teristic momentum at the reheating time tf is roughly given
by p f ≈ 1.5×pξ , which is on the order of the momentum
corresponding to the healing length ξ . In general, this value
depends on the duration of the regime of driven turbulence
and tends to be smaller in the case of free turbulence [cf.
Fig. 4(b)] or in the prescaling scenario [cf. Fig. 5], where
less energy is injected into the system. It is a fortunate
circumstance that higher momenta, which are increasingly
populated as the direct cascade progresses, are typically easier
to resolve in TOF measurements since they require a shorter
expansion time. As an alternative means of detection, in situ
images of the density profile may be used. We have checked
that all relevant signatures of both the parametric resonance
and the turbulent cascade can be extracted from the quantity
〈n̂†

p(t )n̂p(t )〉, where n̂p(t ) is the Fourier transform of the op-
erator n̂(t, x) = �̂†(t, x)�̂(t, x) describing the spatial density
profile of the Bose gas.

Although in this paper we have put our main focus on
uniform systems, nowadays available in many laboratories
[70,77], we expect the characteristic features of the dynam-
ics to be prevalent even in the presence of a harmonic
trap. In general, such an external trapping potential cou-
ples different momenta and thereby changes the nature of
Bogoliubov quasiparticles. However, within a local density
approximation, a harmonically trapped BEC in the Thomas-
Fermi regime can be regarded as locally uniform around the
center [49]. Thus, while inhomogeneities of the trap may
distort long-range correlations in the system, the dynamics
on small scales or at large momenta, relevant for the direct
cascade, remains unaffected. We have confirmed this explic-
itly by means of GPE simulations of a harmonically trapped
system (not shown).

We conclude this section with some remarks on dimen-
sionality. The observation of a turbulent cascade in a scalar
BEC requires at least two spatial dimensions. This is owed
to the fact that in a strictly 1D system, due to kinematic
constraints, there can be no 2 ↔ 2 scattering processes re-
distributing momenta. If, however, the system is elongated,
but not as strongly confined in the transversal direction to be
considered in the quasi-1D regime, turbulent energy transport
sets in once transversal modes are excited. We have confirmed
this by numerically simulating a 3D system in an elongated
periodic box.

Compared to the 3D case, the study of reheating dynamics
in two dimensions is somewhat simpler for at least two rea-
sons. First, as discussed in Sec. II B, the effective interaction
in two dimensions is independent of the cosmic scale factor
and there is no need to continuously adjust the scattering
length according to the specific expansion model chosen. Sec-
ond, an absorption image of an atomic cloud, taken after a
TOF expansion or in situ, will always be a 2D projection on
the plane transversal to the optical axis. In three dimensions,
this means that the distribution is integrated along the optical
axis, thereby mixing momenta of different magnitudes. We
have mimicked this in a simulation of a 3D system in a
periodic box, where we checked in particular that the scaling
is robust if we integrate the momentum distribution along
one spatial dimension before performing the radial average.
Thus, our scheme can be readily applied to experimentally
investigate reheating dynamics in three dimensions, which is
of fundamental interest from a cosmological point of view.

VI. CONCLUSION

In this work, we have demonstrated by means of classical-
statistical simulations how single-component ultracold Bose
gases with tunable self-interactions can be employed for
simulating the characteristic stages of the dynamics of postin-
flationary reheating. We have shown how expansion can be
encoded in the time dependence of the interaction, and that in
the special case of 2D, arbitrary expanding backgrounds can
be associated with a single experiment in postprocessing. The
resonant production of particles in the preheating stage of the
early universe, driven by the oscillating inflaton, is mimicked
by a modulation of the scattering length inducing parametric
instabilities in the BEC.

Following the proliferation of secondary instabilities due
to nonlinear effects, the system enters a turbulent state, char-
acterized by a self-similar transport of energy towards higher
momenta. We have analyzed the universal scaling exponents
describing this direct cascade, which in general undergoes a
transition from a driven to a free regime after the inflaton has
decayed. This transition is characterized by a prescaling stage,
where the momentum distribution has already attained its
universal scaling form, but the scaling exponents are nonuni-
versal and time-dependent, yet fully describe the dynamics
of the Bose gas. Our setup opens the door to the experimen-
tal observation of both the universal direct cascade and the
prescaling regime.

The approach to a nonthermal fixed point as well as
prescaling represent a dramatic reduction of sensitivity to the
initial state as well as a gradual loss of complexity in the
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system’s dynamics, leading to the emergence of universal
physics. Thus, from a more general point of view, our setup
provides a distinct platform for exploring the fundamental
mechanisms of thermalization dynamics in quantum many-
body systems far from equilibrium.

The final stage of the dynamics, when the system relaxes
to thermal equilibrium, is dominated by quantum fluctuations
and therefore not captured by the classical-statistical approxi-
mation. In contrast, it can be accessed by experimental studies
in cold atomic systems, which are quantum-mechanical by
nature and not restricted to the weak-coupling regime.
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APPENDIX A: NONRELATIVISTIC LIMIT OF THE
KLEIN-GORDON EQUATION IN EXPANDING SPACETIME

In this Appendix we derive the nonrelativistic limit of the
equations of motion of the inflaton field (4) on the quantum
level and discuss in detail the relevant approximations that
enter the derivation.

Canonical quantization can be performed, as usually in
quantum field theory on curved spacetime, by transforming to
conformal time, dη = dτ/a, and conformal field variables,
� = a(d−1)/2φ, [51]. The equations of motion then take the
same form as in Minkowski spacetime,

1

c2
�′′ − ∇2� + m2

effc
2

h̄2 � + λa3−d

6
�3 = 0, (A1)

with a time-dependent coupling and effective mass

m2
eff (a) = m2a2 − h̄2(d − 1)

2c4

[(
a′

a

)2 (d − 3)

2
+ a′′

a

]
. (A2)

Here (·)′ denotes the derivate with respect to conformal time
η. The field � and its conjugate momentum � = �′/c are
then promoted to operators that satisfy the canonical commu-
tation relations

[�̂(η, x), �̂(η, y)] = ih̄δ(x − y),

[�̂(η, x), �̂(η, y)] = [�̂(η, x), �̂(η, y)]

= 0. (A3)

We have used the transformation to conformal variables in
order to quantize the system. We now switch back to the orig-
inal variables τ and φ̂ = a−(d−1)/2�̂, since the nonrelativistic
limit is most conveniently studied in terms of these.

To this end, we consider the complex field operator ψ̂ (τ, x)
defined in Eq. (5), where we have factored out the rapid oscil-
lations of the inflation field on the frequency scale determined
by its rest mass. For taking the nonrelativistic limit, we require
the field to change much slower than these oscillations, i.e.,
we demand the mass term to be the dominant contribution
on the right-hand side of the equations of motion (4). This
requires the following conditions to hold. First, the typical
field values should be not too large, λ〈φ̂2〉 � m2c2/h̄2, which
implies that the self-interactions are relatively weak. Simi-
larly, the typical physical momenta should be nonrelativistic,
|p| � mc. Finally, the expansion should not be too rapid,
H = ȧ/a � mc2/h̄, since otherwise the field would be in the
over-damped regime and not perform oscillations at all, as
during inflation. Note that the first two assumptions are not
necessarily satisfied by the inflaton field, especially at the
early stages of preheating (see Sec. III).

The outlined assumptions imply the hierarchy

|〈ψ̂ · · ·〉| �
∣∣∣∣ h̄

mc2
〈 ˙̂ψ · · ·〉

∣∣∣∣ �
∣∣∣∣ h̄2

m2c4
〈 ¨̂ψ · · ·〉

∣∣∣∣, (A4)

where 〈· · ·〉 denotes the expectation value. These inequalities
are to be understood to hold for any correlation function
involving the field or its derivatives.

Inserting the ansatz (5) into Eq. (4) without any approxi-
mation yields

{
1

c2

[
¨̂ψ − 2imc2

h̄
˙̂ψ + dH

(
˙̂ψ − imc2

h̄
ψ̂

)]
− ∇2

a2
ψ̂ + λh̄2

12mc

(
ψ̂3e−2imc2τ/h̄ + 3ψ̂ψ̂†ψ̂

)}
e−imc2τ/h̄ + H.c. = 0. (A5)

Employing the inequalities (A4) allows us to neglect two of
the first four terms in Eq. (A5). Furthermore, we can use rela-
tions (A4) to neglect the rapidly oscillating terms proportional
to ψ̂3e±2imc2τ/h̄ in the last bracket. The latter describe number-
changing processes in the relativistic theory and neglecting
them leads to an emergent U (1) symmetry implying particle
number conservation. As a result, Eq. (A5) reduces to Eq. (6),

where we have normal-ordered the operators, dropping an
irrelevant energy shift.5

5Indeed, normal-ordering gψ̂ψ̂†ψ̂ produces the commutator
g[ψ̂, ψ̂†]ψ̂ = ga−dδ(0)ψ̂ , as follows from (5) and (A3). This term
can then be absorbed into an irrelevant dynamical phase via the
transformation ψ̂ → ψ̂ exp [ih̄δ(0)

∫
ga−d dτ ].
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By virtue of the relations (A4), it is straightforward to show
that within the outlined approximations the canonical commu-
tation relations (A3) imply bosonic equal-time commutation
relations for the field �̂ = ψ̂ad/2,

[�̂(t, x), �̂†(t, y)] = δ(x − y),

[�̂(t, x), �̂(t, y)] = [�̂†(t, x), �̂†(t, y)] = 0. (A6)

APPENDIX B: FORMAL DIFFERENCES OF PARAMETRIC
OSCILLATIONS IN THE RELATIVISTIC

AND NONRELATIVISTIC MODEL

To pinpoint the formal differences between the paramet-
ric oscillations described by Eq. (10) and those induced
in the Bose gas by periodically modulating the interac-
tion, we consider Eq. (A5), which is an exact rewriting
of the original relativistic equation of motion (4). Lineariz-
ing the field operator around the homogeneous condensate,
ψ̂ (τ, x) = ψ0(τ ) + δψ̂ (τ, x), the interaction term takes the
form

∼g
(
3ψ2

0 δψ̂e−2imc2τ/h̄ + 2|ψ0|2δψ̂ + ψ2
0 δψ̂†

)
, (B1)

which corresponds to the term proportional to λφ2
0δφ in

Eq. (10). When taking the nonrelativistic limit to derive
Eq. (7), we have neglected the rapidly oscillating U (1)-
violating term proportional to e−2imc2τ/h̄, keeping only the
U (1)-conserving, slowly varying part. However, since the
former reflects the oscillations of the inflaton responsible for
parametric resonance, this effect is no longer present in the
nonrelativistic model.

To reintroduce parametric instabilities in the nonrelativistic
model, we add a periodic modulation of the coupling with fre-
quency ω, such that the linearized interaction term in Eq. (7)
takes the form

∼g(1 + sin(ωτ ))
(
2|ψ0|2δψ̂ + ψ2

0 δψ̂†
)
. (B2)

On a formal level, this is similar to Eq. (B1) in the sense that
we have an oscillating prefactor multiplying a term cubic in
the field, although it does not have exactly the same form and
therefore the mapping is not exact.

APPENDIX C: NUMERICAL METHODS

1. Classical-statistical simulations

We simulate the dynamics of an ultracold Bose gas, gov-
erned by the Heisenberg equations of motion (7), by means
of classical-statistical simulations [27,28], known in the lit-
erature also under the name truncated Wigner simulations
[29,30]. This method takes into account quantum fluctua-
tions in form of stochastic initial conditions, but relies on a
deterministic time evolution governed by semiclassical equa-
tions of motion. Quantum expectation values are obtained as
statistical averages over multiple realizations. The following
summary of the truncated Wigner method is mainly based on
Refs. [29,30].

For each realization, the initial field configuration is
sampled from the Wigner distribution of the corresponding

quantum state, which is commonly taken as the Bogoliubov
state in equilibrium. Here we consider a homogeneous scalar
BEC of N atoms at zero temperature in a box of volume V
with periodic boundary conditions. The initial wave function
is sampled as

�cl(0, x) = √
n0eiθ0 +

∑
p�=0

[αpup(x) − α∗
pv

∗
p(x)]. (C1)

Here the first term represents the condensate with particle
density n0 = N/V and phase θ0. Due to the large occu-
pancy of the condensate mode, the finite width of its Wigner
function can be neglected, and thus the same value of the
density can be used in each realization. To preserve the
U (1) symmetry, the phase is randomly sampled from the
uniform distribution over the interval [0, 2π ) for each realiza-
tion. The mode functions up(x) = upeipx/h̄/

√
V and vp(x) =

vpeipx/h̄/
√

V are solutions of the Bogoliubov–de Gennes
equations for a uniform system in a periodic box, with real co-
efficients up = √

(εp,0 + n0g0)/2εp + 1/2 and vp determined
by the normalization u2

p − v2
p = 1 (cf. Sec. III D for details of

the notation) [78]. In order to mimic quantum fluctuations, the
quasiparticle amplitudes αp are sampled as complex Gaussian
random variables with zero mean, satisfying α∗

pαq = δp,q/2 at

zero temperature. Here (. . . ) denotes the ensemble average
over all realizations. This vacuum noise corresponds to an
average occupancy of half a particle per mode, which is also
known as the “quantum half.” Unless stated otherwise, the
vacuum noise is cut off at the highest lattice momentum.

Here we use a simplified approach, setting up = 1 and
vp = 0, such that the mode functions reduce to ordinary plane
waves. Effectively, this corresponds to preparing the Bogoli-
ubov ground state of an ideal gas, which is appropriate for our
application since the precise nature of the quasiparticles seed-
ing the parametric resonance is unimportant. As a side effect,
we observe a transient growth of population at low momenta
in our simulations at early times (cf. Fig. 2). The resulting
p−1 behavior of the momentum distribution at low momenta
matches the behavior of u2

p and v2
p for |p| → 0. Therefore,

the observed growth can be interpreted as an artifact of the
effective quench from an ideal Bose gas to a system with finite
interaction at time t = 0.

In the truncated Wigner method, quantum expectation
values are replaced by statistical averages over the Wigner
distribution. The latter correspond to expectation values of
symmetrically ordered quantum operators. Thus, the momen-
tum distribution obtained from classical-statistical simulations
corresponds to the one defined in Eq. (12) plus an extra con-
tribution in form of the “quantum half” stemming from the
commutation relations,

1

V
|�cl(t, p)|2 = f (t, p) + 1

2
. (C2)

Here �cl(t, p) = ∫
dd x �cl(t, x)e−ipx/h̄ denotes the Fourier

transform of the classical field �cl(t, x).
The classical-statistical simulations presented in this work

have typically been averaged over at least 64 runs. The statis-
tics is even further enhanced through radial averages due to
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the isotropy of the system. The statistical error bars are thus
typically smaller than the line width in the plots.

2. Dimensionless Gross-Pitaevskii equation

Each realization is propagated in time according to the
GPE (13). To cast this equation into a dimensionless form
suitable for numerical simulations, we express time and
length in units of the characteristic scales t0 = h̄/n0g0 and
x0 = h̄/

√
mn0g0, respectively. In terms of the dimensionless

time t̃ = t/t0, position x̃ = x/x0, and field �̃cl = xd/2
0 �cl, the

GPE takes the form

i∂t̃ �̃cl = [− 1
2 ∇̃2 + g̃(t̃ )|�̃cl|2

]
�̃cl, (C3)

with the dimensionless coupling g̃ = g×t0/h̄xd
0 .

In a quasi-2D system (and in the absence of time-
dependent modulations), the dimensionless coupling is, up
to logarithmic corrections, given by g̃ = √

8πas/aHO, where
as is the s-wave scattering length and aHO is the oscillator
length of the confining harmonic potential in vertical direction
[57]. If the wave function is normalized to unity, the coupling
changes as g̃ → Ng̃, where N is the particle number. This
shows that the parameters N and g̃ enter the classical equations
of motion (C3) only through the product Ng̃ as the single rel-
evant model parameter. Moreover, also the dimensionless box
length L/x0 = √

Ng̃ is fixed by this quantity as a consequence
of scale invariance. By contrast, on the quantum level, the
relative magnitudes of the parameters N and g̃ play a role (cf.
Appendix C 3).

The GPE (C3) is discretized in space by means of a Fourier
pseudospectral discretization and propagated in time using
the well-known split-step method [79]. The accuracy of the
time evolution is further enhanced with the help of the opti-
mized fourth-order time splitting scheme given in Table 2 of
Ref. [80].

In our 2D simulations of turbulent reheating dynamics (cf.
Sec. IV), we use a spatial Ng×Ng grid with at least Ng = 512
grid points per dimension, while Ng = 256 turns out to be
sufficient for simulating early-time preheating dynamics (cf.
Sec. III). For a system of size L×L with L/x0 = 50, the
corresponding grid spacing �x = L/Ng ensures that the heal-
ing length ξ = x0/

√
2, which is the smallest physical length

scale in the system, is well resolved. Numerical stability for
late-time dynamics is achieved by choosing the numerical
time step �t̃ such that �t̃ k̃2

max � 2π , where k̃max = π/�x̃
with �x̃ = �x/x0 is the maximum numerical wave number
supported by the grid [81].

3. Validity of classical-statistical simulations

Quantum dynamics is well described by classical-
statistical simulations in the regime of large occupancies and
weak couplings [28,47]. In particular, the truncated Wigner
method is known to produce unphysical results if the num-
ber of virtual particles added to mimic quantum fluctuations
becomes comparable to the number of real particles in
the system [29,30]. At zero temperature, the failure of the
classical-statistical approximation is indicated by the insta-

FIG. 7. Snapshot of the radially averaged, rescaled momentum
distribution for the driven turbulent cascade [cf. Fig. 4(a)] at time
t = 640×t0 for different values of the coupling g̃. The particle num-
ber is chosen according to N (g̃) = Nref×(g̃/g̃ref )−1, such that the
product Ng̃ = Nref g̃ref remains constant. The vertical dashed line
marks the characteristic momentum (cf. Sec. IV D), calculated for the
distribution corresponding to the smallest value of g̃. The horizontal
dotted lines mark the location of the “quantum half” after rescaling.
Within the range of validity of classical-statistical simulations, the
rescaled distributions are expected to collapse to a single curve.
Deviations can be observed for g̃/g̃ref � 0.1, indicating a breakdown
of the method for larger values of the coupling.

bility of the vacuum and a resulting unphysical dependence
of observables on the UV cutoff [47]. This decay of the
“quantum half,” which inevitably occurs at sufficiently late
times, naturally restricts the classical-statistical method to the
weak coupling regime, where the instability is mitigated via a
separation of scales. Moreover, if the coupling is too strong,
physical observables risk attaining a dependence on the UV
cutoff already at relatively early times through the spurious
quantum pressure generated by the decaying vacuum. This is
because the coupling controls the relative magnitude of mode
occupancies with respect to the vacuum noise, which, in turn,
is regulated by the UV cutoff [47].

To ensure that our numerical simulations of reheating
dynamics, in particular, in the turbulent scaling regime at
late times, lie within the range of validity of the classical-
statistical method, we follow a similar procedure as presented
in Ref. [47]. Formally, the classical statistical limit is given
by N → ∞ and g → 0, where N is the particle number and
g is the coupling, such that Ng = const. To approach this
limit in our 2D simulation, we fix the value Ng̃ = (L/x0)2 by
the choice L/x0 = 50 and repeat the simulation for different
values of the coupling g̃, using the parametrization N (g̃) =
Nref×(g̃/g̃ref )−1 with reference parameters Nref = 1×106 and
g̃ref = 2.5×10−3. Figure 7 shows the radially averaged mo-
mentum distribution for the driven turbulence scenario [cf.
Fig. 4(a)] at time t = 640×t0 for different values of the cou-
pling g̃. All configurations have been averaged over at least
25 single runs. To assess up to which value of the coupling
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the simulations are valid, we rescale the curves by g̃/g̃ref ,
in which case they are expected to lie on top of each other
in the region f (t, p)×g̃/g̃ref � 1. (Note that regions where
the occupancy drops below unity are outside of the range of
validity per se). The vertical dashed line marks the position
of the characteristic momentum (cf. Sec. IV D), calculated for
the distribution with the lowest value of g̃, around which the
UV scaling properties of the distribution are most sensitive.
It can be seen that deviations occur for g̃/g̃ref � 0.1. For
larger values of the coupling, the shape of the power law
changes and the distribution hits the UV cutoff, such that
cutoff independence of the results is no longer guaranteed.
Furthermore, the distribution at large momenta drops below
the “quantum half,” as indicated by the horizontal dotted lines,
which formally corresponds to the unphysical situation of
negative occupancies. We have also checked, using a similar
approach as in Ref. [47], that the contribution of the vacuum
noise to the total energy budget of the system becomes signif-
icant for g̃/g̃ref � 0.1, which coincides with the values of the
coupling for which deviations in the momentum distribution
are observed.

While the early-time preheating dynamics presented in
Sec. III is only insignificantly affected by these deficien-
cies for the reference parameters Nref = 1×106 and g̃ref =
2.5×10−3, this is no longer true for the late-time turbulent
reheating dynamics, as illustrated in Fig. 7. The results pre-
sented in Sec. IV have therefore been computed for g̃/g̃ref =
0.01, which safely lies within the range of validity of classical-
statistical simulations.

APPENDIX D: PARAMETRIC RESONANCE
AND MATHIEU’S EQUATION

To gain analytical insight in the mechanism behind para-
metric resonance, we rewrite the equation for the density
fluctuations (16a) in the form

∂2n1 p(s)

∂s2
+ [Ap − 2qp cos(2s)]n1 p(s) = 0 (D1)

with the dimensionless time s = ωt/2 + π/4, and param-
eters Ap = ε2

p/(h̄ω/2)2 and qp = rεp,0n0g0/(h̄ω/2)2, where
εp = √

εp,0(εp,0 + 2n0g0) denotes the Bogoliubov dispersion
relation. Equation (D1) is the standard form of Mathieu’s
Eq. [59]. Importantly, this equation admits solutions which
can be expressed as the product of an oscillatory function and
an exponentially growing prefactor ∼ eζpt , describing para-
metric resonance [40,55]. The condition for exact resonance
is given by Ap = 1, or equivalently εp = h̄ω/2.

The growth rate ζp of unstable modes can be estimated
for small modulation amplitudes qp � 1 using perturbation
theory [60]. To leading order, it is given by

ζp = ω

4

√
q2

p − (Ap − 1)2, (D2)

which reduces to Eq. (17) for the resonant momentum pres.
Moreover, as it can be seen in Eq. (D2), there is an entire

range of modes around pres that experience a positive growth
rate, and which thus undergo parametric resonance. The width
of this instability band is delimited by the modes satisfying

Ap = 1 ± qp, which increases with the amplitude r of the
modulation.

The growth rate predicted from Eq. (D2) is compared to
our numerical simulations in Fig. 3.

APPENDIX E: SECONDARY INSTABILITIES

In this Appendix, we discuss the secondary amplification
of fluctuations due to the nonlinear corrections in Eq. (19).
For modes that are stable on the linear level, the inte-
gral on the right-hand side of Eq. (19) acts as a source
term. It has a complicated momentum structure, but its
time evolution is straightforward since it is dominated by
the contribution from the exponentially growing unstable
modes q, for which |p − q| ≈ |q| ≈ pres. This condition can
be satisfied if p � 2pres, as can be seen from the triangle
inequality,

p = |p − q + q| � |p − q| + |q| ≈ 2pres.

For p � 2pres, on the other hand, the growth of the integral
is exponentially suppressed. The narrower the primary reso-
nance, the more rapid the integral drops at p ≈ 2pres.

As in the previous Appendix, we assume here that the
resonance is not too strong, such that ζpres

� ω. The time
evolution of resonant modes can then be written as a product
of an exponential growth and an oscillating function [59,60],

n1 p ∝ eζpres t e±iωrest , θ1 p ∝ eζpres t e±iωrest ,

with the growth rate ζpres
given by Eq. (D2) and ωres being the

frequency of the resonant modes. As a result, Eq. (19) takes
the form of a forced harmonic oscillator,

n̈1 p + ω2
pn1 p = e2ζpres t (Spe2iωrest + Qpe−2iωrest + Pp). (E1)

Here Qp and Sp contain the momentum-dependent contribu-
tions of the integrals in Eq. (19) corresponding to positive
and negative frequencies, respectively, and Pp contains the
nonoscillating part. The contribution to the amplitude of n1 p

from the first term on the right-hand side of Eq. (E1) propor-
tional to Sp is given by

|n1 p| = e2ζpres t |Sp|√(
8ζpres

ωres
)2 + [

ω2
p + (

2ζpres

)2 − 2ω2
res

]2
, (E2)

and analogous expressions can be obtained for Qp and Pp, re-
spectively. In other words, the modes in the above-mentioned
momentum range are amplified as exp(2ζpres

t ) and a resonant
amplification occurs if ωp ≈ 2ωres. A smoother spectrum is
expected in the case of strong driving, i.e., large ζpres

.
The pattern described above is indeed observed in Fig. 2,

where the secondary and higher-order peaks at multiple fre-
quencies are clearly visible.

APPENDIX F: ANALYSIS OF INSTABILITIES IN TERMS
OF QUANTUM EQUATIONS OF MOTION

FOR CORRELATION FUNCTIONS

In this Appendix, we study the instabilities arising in
the presence of a periodically modulated coupling using
quantum equations of motion for the two-point correlation
functions. We validate the results of Sec. III, where quantum
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fluctuations have been treated within the classical-statistical
approximation.

The classical action for a (nonrelativistic) bosonic field �

with a quartic self-interaction is given by [82]

S[�]=
∫

x,C

[
ih̄

2
(�∗�̇−�̇∗�) − h̄2

2m
∇�∗∇� − g

2
(�∗�)2

]
.

(F1)

The integration is performed over the Schwinger–Keldysh
closed-time contour [83]. In the following discussion, we treat
ϕ1 = √

2Re� and ϕ2 = √
2Im� as the two independent field

components.
In quantum theory, the central objects are field correla-

tion functions. The one-point correlation function is defined
as φi(x) = 〈ϕ̂i(x)〉. Throughout this Appendix, we use the
notation x = (x0, x) ≡ (t, x). For homogeneous systems, the
one-point function depends only on time, and we can identify
it with the wave function of the condensate. The time-ordered
connected two-point function is defined as [82,84]

Gi j (x, y) = 〈T ϕ̂i(x)ϕ̂ j (y)〉 − φi(x)φ j (y)

= Fi j (x, y) − i

2
sgnC (x0 − y0)ρi j (x, y), (F2)

where T is the time-ordering operator along the closed-time
contour and sgnC (x0 − y0) takes the values ±1 depending on
whether x0 is after or before y0 on the Schwinger-Keldysh
contour. In the last step, the propagator has been decomposed
into the spectral function ρ and the statistical propagator F ,
defined as

Fi j (x, y) = 1
2 〈{ϕ̂i(x), ϕ̂ j (y)}〉 − φi(x)φ j (y), (F3)

ρi j (x, y) = i〈[ϕ̂i(x), ϕ̂ j (y)]〉. (F4)

Here [·, ·] and {·, ·} denote the commutator and the anti-
commutator, respectively. The spectral function describes the
spectrum of the excitations and, in particular, encodes the
equal-time commutation relations, while the statistical prop-
agator characterizes its occupations.

The equations of motion for the one- and two-point func-
tions can be obtained by a variational principle from the
two-particle irreducible (2PI) effective action. For the two-
point functions, they have the form [84]

Dik (x)Fk j (x, y) =
∫ x0

t0

dz�ρ

ik (x, z)Fk j (z, y)

−
∫ y0

t0

dz�F
ik (x, z)ρk j (z, y),

Dik (x)ρk j (x, y) =
∫ x0

yt0

dz�ρ

ik (x, z)ρk j (z, y), (F5)

where Dik (x) = [−ih̄σ2,ik∂x0 − Mik (x)],

Mi j (x) = δi j

{
− h̄2�x

2m
+ g

2
[φk (x)φk (x) + Fkk (x, x)]

}
+ g[φi(x)φ j (x) + Fi j (x, x)], (F6)

and �F and �ρ are the components of proper self-energy
�ab(x, y) = �F

ab(x, y) − (i/2) sgnC (x0 − y0)�ρ

ab(x, y), which

sums all nonlocal two-point one-particle-irreducible diagrams
constructed from the interaction vertices in the action (F1)
and with lines associated to full time-ordered propagators G.
Summation over repeated indices is implied in all expressions
in this Appendix. The presence of a nonvanishing one-point
function generates effective cubic interactions in addition to
the quartic one, which follows from the shift ϕi → φi + ϕi.
The resulting interaction part of the action, in terms of the
fields ϕi, reads

Sint[ϕ, φ] = −g

8

∫
x,C

[ϕiϕiϕ jϕ j + 4φiϕiϕ jϕ j]. (F7)

Equations (F5) are supplemented with analogous equations
of motion for the one-point function φ. For the discussion of
instabilities, the back-reaction of produced excitations on φ

is negligible, and, as a result, its evolution is approximately
governed by the classical GPE.

1. Primary instabilities

In the linear regime, the self-energies in Eq. (F5) as well the
F -dependent corrections to the mass in (F6) can be neglected.
We consider the evolution of the statistical propagator F ,
which can be written as{

−ih̄σ2,ik∂x0 + δik

[
h̄2�x

2m
− g

2
φl (x)φl (x)

]
− gφi(x)φk (x)

}
Fk j (x, y) = 0. (F8)

It is convenient to introduce the “normal” and the “anoma-
lous” correlation functions, defined as [82]

ñ(x, y) = 1
2 〈{�̂(x), �̂†(y)}〉 − 〈�̂(x)〉〈�̂†(y)〉

= 1
2 Fi j (x, y)(δi j + σ2,i j ) = ñ∗(y, x), (F9)

m̃(x, y) = 1
2 〈{�̂(x), �̂(y)}〉 − 〈�̂(x)〉〈�̂(y)〉

= 1
2 Fi j (x, y)(σ3,i j + iσ1,i j ) = m̃(y, x), (F10)

which are complex-valued functions. Assuming homogeneity,
these functions depend only on the relative spatial coordinate,
i.e., ñ = ñ(t, t ′, x − y). The evolution Eqs. (F8) for the com-
ponents of the statistical propagator, Fourier transformed with
respect to this relative coordinate, are given by[

ih̄∂t − p2

2m
−2g(t )|�(t )|2

]̃
np(t, t ′) − g(t )�2(t )m̃∗

p(t, t ′) = 0,

[
ih̄∂t − p2

2m
−2g(t )|�(t )|2

]
m̃p(t, t ′) − g(t )�2(t )̃n∗

p(t, t ′) = 0.

These equations have the same form as the ones for the lin-
earized (classical-statistical) fluctuation field δ�p(t ). In par-
ticular, the linear combinations ψ∗(t )̃np(t, t ′) + ψ (t )m̃∗

p(t, t ′)
and (i/2)[m̃∗

p(t, t ′)/ψ (t ) − ñp(t, t ′)/ψ∗(t )] satisfy the wave
Eqs. (16). Therefore, ignoring the time dependence of the
coupling, one has

ñp(t, t ′) ∝ ei(±ωp−g0n0 )(t−t ′ ),

m̃p(t, t ′) ∝ ei(±ωp−g0n0 )(t+t ′ ),

where ωp corresponds to the Bogoliubov dispersion relation.
The dependence on t ′ in the above expression is determined
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FIG. 8. Diagrammatic illustration of the local (left) and nonlocal
(right) one-loop contributions to the self-energy. The second diagram
accounts for secondary instabilities.

from the symmetry properties of the functions ñp(t, t ′) and
m̃p(t, t ′), given in (F9).

The unstable modes exhibit an exponential amplifica-
tion, ñp(t, t ′) ∝ m̃p(t, t ′) ∝ exp(ζp(t + t ′)), as explained in
Sec. III D. Here we again employed the symmetry proper-
ties of ñ and m̃. The same holds for the components of the

spectral function. However, at t = t ′ the spectral function is
determined solely by the commutation relations, as follows
from its definition (F4),

ρi j (x, y)
∣∣
x0=y0

= −i σ2,i j δ(x − y). (F11)

In the next subsection we include the first nonlinear correc-
tions to describe the secondary amplification of fluctuations.

2. Secondary instabilities

As the fluctuations become sufficiently strong, the linear
approximation for the dynamics becomes inapplicable. The
nonlocal one-loop correction, which is diagrammatically il-
lustrated in the right part of Fig. 8, accounts for secondary
instabilities [19,40]. The corresponding self-energy, which
can be calculated by means of standard Feynman diagram
techniques, reads

�i j (x, y; φ, G) = −g(x0)g(y0)

2h̄
[φi(x)φ j (y)Gac(x, y)Gac(x, y) + 2φb(x)φd (y)Gi j (x, y)Gbd (x, y)

+ 2φb(x)φd (y)Gid (x, y)Gb j (x, y) + 2φb(x)φ j (y)Gic(x, y)Gbc(x, y) + 2φi(x)φd (y)Ga j (x, y)Gad (x, y)]. (F12)

The other one-loop correction is the tadpole diagram, shown in the left part of Fig. 8, which is explicitly included in the definition
(F6) of the effective mass. As can be seen from that definition, this correction becomes relevant only later, when the components
of Fi j become of the order of the condensate density |�|2 (see also [40]).

Including the one-loop self-energy in Eq. (F5) leads to integrals over the past evolution, i.e., memory integrals, on the right-
hand side. Due to the exponential growth of fluctuations, these integrals are, however, dominated by the latest times [19,84],
which allows to simplify them. Note that � contains terms proportional to

Gαβ (x, y)Gγ δ (x, y) = Fαβ (x, y)Fγ δ (x, y) − 1

4
ραβ (x, y)ργδ (x, y)︸ ︷︷ ︸

�F

− i

2
sgnC (x0 − y0) Fαβ (x, y)ργδ (x, y) + ραβ (x, y)Fγ δ (x, y)︸ ︷︷ ︸

�ρ

.

The
∫

�ρF term in the limit of z0 → x0 represents a “tadpole”-like contribution, which becomes important only at later times
[40]. For the

∫
�F ρ term one obtains

−
∫ y0

t0

dz�F
ac(x, z)ρcb(z, y) ≈ −

∫ y0

y0−c
dz�F

ac(x, z)ρcb(z, y) ≈ ih̄c�F
ac(x, y)σ2,cb,

where c−1 = O(g0n0) is some parameter of the order of the oscillation frequency of the condensate. In �F , there will be terms
∝F 2 and ∝ρ2. We first consider the ∝ F 2 part in �F , which is equivalent to �|G→F . Inserting Eq. (F12) into the equations of
motion (F5) and using the transformation (F9) and (F10), one arrives at the following equations for the momentum modes of the
normal and the anomalous two-point functions:[

ih̄∂t − p2

2m
− 2g(t )|�(t )|2

]̃
np − g(t )�2(t )m̃∗

p = icg(t )g(t ′)
∫

q
[4�(t )�∗(t ′)(̃nqñ∗

p−q + m̃qm̃∗
p−q)

+4�∗(t )�∗(t ′ )̃nqm̃p−q + 4�(t )�(t ′ )̃nqm̃∗
p−q + 2�∗(t )�(t ′ )̃nqñp−q], (F13)[

ih̄∂t − p2

2m
− 2g(t )|�(t )|2

]
m̃p − g(t )�2(t )̃n∗

p = −icg(t )g(t ′)
∫

q
[4�(t )�(t ′)(nqn∗

p−q + mqm∗
p−q)

+4�∗(t )�(t ′)m̃qñp−q + 4�(t )�∗(t ′)m̃qñ∗
p−q + 2�∗(t )�∗(t ′)m̃qm̃p−q], (F14)

where we have omitted the arguments t and t ′ from the two-
point functions.

The ∝ρ2 part in �F , which is equivalent to �|G→iρ/2, leads
to an analogous expression on the right-hand side. However,
the components ρ are of order one in the t ′ → t limit (in mo-
mentum space) due to Eq. (F11). As a result, that contribution
is negligible compared to the exponentially growing one from

the ∝F 2 part. This also justifies the use of classical-statistical
simulations for studying the evolution of equal-time observ-
ables.

The momentum integrals on the right-hand side are analo-
gous to the ones in Eq. (19) and therefore lead to a secondary
exponential amplification, i.e., ñp(t, t ′) ∝ exp[2ζp(t + t ′)], in
the momentum range p � 2pres. One can check that the terms
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on the right-hand side oscillate6 as functions of t either as
exp(−ig0n0t ) or as exp[−i(g0n0 ± 2ωres)t]. Hence, one ex-
pects enhanced amplification near ωp = 0 and ωp = 2ωres.
The resonant frequencies correspond to the conservation of
energy (in addition to the conservation of momentum) in the
vertices of the Feynman diagrams.

To conclude, in this Appendix we have analyzed the pri-
mary and secondary instabilities within the nonequilibrium
2PI framework and explained the validity of the classical-
statistical approximation, justifying its use in Sec. III to
describe the regime when typical occupation numbers of ex-
citations become sufficiently large.

APPENDIX G: MAXIMUM LIKELIHOOD TECHNIQUE
FOR EXTRACTING SCALING EXPONENTS

In this Appendix, we describe the maximum likelihood
technique used in Sec. IV to extract the scaling exponents
α and β describing self-similar time evolution according to
Eq. (21) from our numerical data.

To extract the exponents, we use numerical fits, similar
to the procedure in Ref. [85]. More specifically, at different
times t , the distribution functions at t and t/2 are compared.
Assuming the behavior of Eq. (21), we test different values
of the exponents. For each pair of exponents, we define the
(normalized) likelihood

W (α, β ) ∝ exp[−χ (α, β )/(2χ̄ )], (G1)

where

χ (α, β ) =
∫ {[ f (t ′, p) − 2α f (t ′/2, 2β p)]pl}2 d p∫

[ f (t ′, p)pl ]2 d p
. (G2)

Here χ̄ is the minimal observed value of χ (α, β ), which cor-
responds to the best fit. We use the third moment of the radial
distribution function because for d = 2 and ωp = p2/2m, it
is proportional to the energy density per momentum interval.
The integrals are performed over large momenta for which
f (p) � 1. We find the best-fitting values of the exponents
and identify the fitting errors with the Gaussian widths of the
marginal likelihoods

∫
W dβ and

∫
W dα.

The variable t always denotes the time elapsed from
the beginning of the simulation. This includes the stage
of parametric resonance, which is unrelated to turbulence.
While irrelevant for late times, a more reasonable choice
of the initial time, closer to the beginning of turbulent dy-
namics, improves the scaling analysis at early times, by
allowing to avoid the extraction of large exponents de-
creasing with time. For the considered set of parameters in
Sec. IV, we set t = 63×t0 in the fitting routine described
above.

APPENDIX H: ANALYSIS OF PRESCALING
USING THE METHOD OF MOMENTS

To gain a deeper understanding of the phenomenon of
prescaling, we provide here a complementary scaling analysis

6Here we neglect the time dependence of g, which is suppressed for
small values of r.

using the method of moments [45]. As explained in Ap-
pendix G, the maximum likelihood technique used to extract
the scaling exponents in Figs. 4 and 5 locally compares the
distributions at two reference times t1 and t2 > t1. By iterating
over all times t1, time-dependent scaling exponents are ob-
tained that best collapse the pairs of distributions f (t1, p) and
f (t2, p) on top of each other. By contrast, the method intro-
duced in Ref. [45] relies on the moments as global properties
of the distribution and allows one to extract instantaneous
scaling exponents α(t ) and β(t ) that do not depend on a
reference time. In what follows, we briefly outline the method
of moments and apply it to the prescaling scenario discussed
in Sec. IV B.

The nth moment of the distribution f (t, p) is defined as

M(n)(t ) = V
∫

dd p

(2π h̄)d

(
p

p0

)n

f (t, p), (H1)

where V is the volume, p = |p|, and p0 is an arbitrary momen-
tum scale to make the moment dimensionless. Note that in an
isotropic system, as considered here, the distribution in fact
depends only on the magnitude of the momentum, f (t, p) =
f (t, p). For each moment M(n), the integrand is peaked around
a certain characteristic momentum whose scaling properties
are probed. In particular, the zeroth moment is the total parti-
cle number and the second moment is proportional to the total
kinetic energy for a system with quadratic dispersion.

The most straightforward way of introducing time-
dependent scaling exponents α(t ) and β(t ) is to make the
replacements α → α(t ) and β → β(t ) in the scaling ansatz
Eq. (21), such that the latter reads f (t, p) = sα(t ) fS(sβ(t ) p)
with s = t/tref . However, the exponents defined in this way
depend on the reference time tref . To lift this dependency, it is
advantageous to define α(t ) and β(t ) instead in terms of the
scaling functions

sα (t ) = exp

[∫ t

tref

α(t ′)
dt ′

t ′

]
(H2)

and sβ (t ) defined in an analogous way. The scaling ansatz in
Eq. (21) then generalizes to

f (t, p) = sα (t ) fS[sβ (t )p]. (H3)

For constant exponents α and β, the power-law scaling of
Eq. (21) is recovered.

Inserting the above scaling ansatz into Eq. (H1), it is
straightforward to derive that the moments scale with time as

M(n)(t ) = sα (t )sd+n
β (t )M(n)(tref ). (H4)

Given a pair of moments M(n1 )(t ) and M(n2 )(t ) with n1 �= n2,
it is thus possible to express the scaling functions sα (t ) and
sβ (t ) in terms of these moments,

sα (t ) =
[

Md+n2
(n1 ) (t )/Md+n2

(n1 ) (tref )

Md+n1
(n2 ) (t )/Md+n1

(n2 ) (tref )

]1/(n2−n1 )

, (H5a)

sβ (t ) =
[

M(n1 )(t )/M(n1 )(tref )

M(n2 )(t )/M(n2 )(tref )

]1/(n2−n1 )

, (H5b)
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which allows one to access the scaling exponents as

α(t ) = 1

n2 − n1

d

dlnt
ln

Md+n2
(n1 ) (t )

Md+n1
(n2 ) (t )

, (H6a)

β(t ) = 1

n2 − n1

d

dlnt
ln

M(n1 )(t )

M(n2 )(t )
. (H6b)

Note that the dependency on the reference time tref drops
out as a consequence of the derivatives.

Since each moment condenses the information about the
distribution into a single number, it is necessary to examine
many different moments, each sensitive to a different charac-
teristic momentum, to certify that a given distribution scales as
a whole. Figures 9 and 10 show the scaling functions and time-
dependent scaling exponents, respectively, extracted using the
method of moments outlined above for all possible combi-
nations of moments 1 � n1 < n2 � 4. We exclude the zeroth
moment from our analysis since the associated particle num-
ber conservation is incompatible with the energy-conserving
direct cascade. All simulation parameters are the same as in
Fig. 5, with the exception that the modulation is switched off
at a later time, t = 56×2π/ω ≈ 458.6×t0, allowing one to
better distinguish the regimes of driven and free turbulence.
The classical-statistical simulation presented in Figs. 9 and 10
has been conducted on a spatial grid of 768×768 grid points
to increase the UV resolution and the data have been averaged
over 100 runs. To reduce numerical errors of the calculated
moments due to instabilities near the UV cutoff, we restrict
the integral in Eq. (H1) to absolute momenta |p| � 3×pξ

(|p| � π h̄/�x, where �x is the lattice spacing) before (after)
switching off the modulation. As explained in Appendix G,
we shift the origin of time as t → t − 63×t0 to improve the
scaling analysis at early times.

Figure 9 shows the scaling functions sα (t ) and sβ (t ) with
respect to the reference time tref = 85×t0. As turbulence de-
velops, the scaling functions approach power laws sα (t ) ∝
(t/tref )α and sβ (t ) ∝ (t/tref )β . In the driven regime, before
switching off the modulation, the corresponding exponents
are close to the analytical predictions from kinetic theory,
αdriven = −1 and βdriven = −1/2 (see Sec. IV C). At the time
when the modulation is switched off instantaneously, the
scaling functions exhibit a kink and continue evolving asyn-
chronously for some time. This indicates that the shape of
the distribution is not preserved exactly, but slightly read-
justs during the transition from driven to free turbulence. The
changes in the shape of the distribution are more pronounced
at lower momenta, which is reflected by the fact that those
curves in Fig. 9 extracted from lower moments react stronger
at the transition. Despite these local adjustments, it is re-
markable that the global scaling form of the distribution is
approximately preserved during the transition from driven to
free turbulence, as can be seen in Fig. 5. For t � 1000×t0,
the scaling functions again approach a power law with expo-
nents close to the analytical predictions for free turbulence,
αfree = −1 and βfree = −1/4. In the region where the scaling
functions extracted from different combinations of moments
all evolve in parallel, the distribution scales self-similarly
as a whole. To certify that the distribution also exhibits
prescaling, i.e., a self-similar evolution with time-dependent
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FIG. 9. Scaling functions sα (t ) (upper panel) and sβ (t ) (lower
panel) with respect to the reference time tref = 85×t0 extracted from
the moments of orders 1 � n1 < n2 � 4. The vertical dotted line
marks the time t ≈ 458.6×t0 when the modulation is switched off
instantaneously. Before this point, the oscillatory behavior of the
moments is directly reflected in the evolution of the scaling functions.
As driven turbulence develops, their time averages approach power
laws with exponents close to the predictions from kinetic theory,
αdriven = −1 and βdriven = −1/2 (dashed lines). After the modula-
tion is switched off, the scaling functions exhibit a kink and the
oscillations vanish. In the subsequent evolution, the scaling functions
extracted from different moments evolve asynchronously, until they
adopt a power-law behavior again for times t � 1000×t0 with expo-
nents close to the predictions from kinetic theory in the regime of free
turbulence, αfree = −1 and βfree = −1/4 (dashed-dotted lines). The
system evolves self-similarly where all curves have the same slope,
as analyzed in Fig. 10.

scaling exponents, we analyze the change of the scaling func-
tions as quantified by the exponents α(t ) and β(t ) in what
follows.

In the driven regime, the scaling functions oscillate in time,
as indicated in the inset in the lower panel of Fig. 9. These
oscillations originate from the modulated interaction, which
causes the distribution and therefore the moments to oscillate
in time (cf. Fig. 3). As a result, the instantaneous scaling
exponents α(t ) and β(t ), which are derivatives of the scaling
functions according to Eq. (H6), exhibit the strong oscillatory
behavior shown for β(t ) in the inset in the upper panel of
Fig. 10. To connect with our previous results obtained using
the maximum likelihood technique (cf. Fig. 5), it is convenient
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FIG. 10. Time-dependent scaling exponents extracted from the
moments of orders 1 � n1 < n2 � 4. The inset in the upper panel
shows the instantaneous exponent β(t ), which strongly oscillates due
to the modulation. The time-averaged quantities β̄(t ) and ᾱ(t )/β̄(t )
are displayed in the main plots in the upper and lower panel, respec-
tively. The data have been smoothed using simple moving means
and the shaded regions show the corresponding moving standard
deviations. The vertical dotted line represents the time when the
modulation is switched off. Before this point, in the regime of
driven turbulence, the exponents are approximately constant and
close to the analytical predictions from kinetic theory, βdriven =
−1/2 and αdriven/βdriven = 2 (dashed lines). After the modulation
is stopped, the exponents jump discontinuously and the exponents
extracted from different combinations of moments exhibit discrep-
ancies. For t � 1000×t0, they converge and continue evolving as
a single curve, certifying the existence of a prescaling regime of
self-similar time evolution. The exponent β(t ) gradually approaches
the universal value βfree = −1/4 (dashed-dotted line in the upper
panel) predicted from kinetic theory in the regime of free turbulence,
while the ratio of the exponents quickly adjusts to the prediction
αfree/βfree = 4 (dashed-dotted line in the lower panel), reflecting
energy conservation.

to consider instead the time-averaged exponents ᾱ(t ) and β̄(t ),
defined as

β̄(t ) = 1

ln(1 + T/t )

∫ t+T

t
β(t ′)

dt ′

t ′ , (H7)

and analogously for ᾱ(t ), where T = 2π/ω is the modulation
period. After switching off the modulation, the oscillations of
the moments vanish and the time averaging of the exponents
is not required any more.

Figure 10 shows the quantities β̄(t ) (upper panel) and
ᾱ(t )/β̄(t ) (lower panel) as a function of time. The derivatives
in Eq. (H6) are sensitive to small fluctuations in the data due
to statistical uncertainties, resulting in a large spread of the
data points. This is especially true where moments of lower
orders are involved since they probe the distribution at smaller
momenta with a lower density of states. To better visualize
the trend of the exponents, the data have been smoothed by
calculating simple moving means (separately in the regimes
of driven and free turbulence) using a window size of 8 (16)
periods involving 512 (1024) data points for n1 > 1 (n1 = 1).
The shaded regions represent the corresponding moving stan-
dard deviations.

Before the modulation is switched off, the system is in
the state of driven turbulence. Indeed, for t � 200×t0, both
β̄(t ) and ᾱ(t )/β̄(t ) are approximately constant and for all con-
sidered moments close to the analytical predictions βdriven =
−1/2 and αdriven/βdriven = 2 (cf. Sec. IV C). After suddenly
switching off the modulation, the exponents jump discontinu-
ously, reflecting the kink in the scaling functions (cf. Fig. 9).
Furthermore, there are discrepancies in the values of the expo-
nents extracted from different combinations of moments after
the modulation is stopped. As discussed above, this indicates
a slight readjustment of the shape of the distribution, which
is consistent with the behavior in Fig. 5, where the exponents
exhibit large error bars in this regime. For times t � 1000×t0,
the exponents extracted from different moments converge to
a single curve, certifying a self-similar evolution of the distri-
bution as a whole. During this prescaling stage, the exponent
β̄(t ) evolves gradually towards the analytical prediction for
free turbulence, βfree = −1/4. By contrast, the ratio ᾱ(t )/β̄(t )
adjusts rather quickly to the value αfree/βfree = 4, expressing
energy conservation.

In conclusion, our analysis certifies the existence of a
prescaling regime during the transition from driven to free
turbulence, where the momentum distribution scales self-
similarly with time-dependent scaling exponents approaching
gradually their universal values.
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