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The dynamics of molecules exposed to intense x-ray radiation involve a large number of multiply ionized and
highly excited electronic configurations. To model these dynamics a reliable and efficient electronic structure
model is imperative. Employing the Hartree-Fock-Slater electronic structure model in combination with the
maximum overlap method, we quantify the associated convergence failures when calculating electronic states of
carbon monoxide with multiple vacancies in the core and valence levels. We characterize these cases and describe
strategies to overcome the convergence problems. The described techniques not only eliminate all convergence
issues for CO but also result in a significant reduction of convergence failures for simulations of the x-ray-
induced multiple ionization dynamics of the phenol molecule.
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I. INTRODUCTION

X-ray free-electron lasers (XFELs) provide extremely
short and ultraintense x-ray pulses [1–6]. Their unique
properties have been used to study a diverse range of phe-
nomena [7–14]. For many XFEL experiments a detailed,
microscopic understanding of the radiation damage during the
pulse exposure is crucial, e.g., to estimate the structural degra-
dation in diffractive imaging experiments [8,15] or to interpret
time-dependent spectroscopic signals [16,17]. However, the
strong ionization by the x-ray pulses poses strong challenges
for theoretical modeling.

To understand the interaction of intense x-ray light with
matter, one must consider that a molecule interacting with
the x-ray pulse may undergo a series of photoionization, flu-
orescence, and Auger decay processes eventually causing the
ionization of a significant fraction of the electrons. It has been
demonstrated that these ionization dynamics can be mod-
eled via rate equations for the time-dependent populations
of electronic configurations assuming multiple consecutive
photoionization and electronic relaxation (Auger decay and
fluorescence) steps [16,18–32]. To that end the relevant cross
sections and rates have to be provided. In light of the vast
number of exotic electronic configurations involved, it is clear
that such rates and cross sections are not available from
tables in the literature. Instead, these crucial parameters must
be provided from electronic structure calculations. Because
of the large number of electronic configurations involved,
it is critical to employ an efficient and robust electronic
structure method. To that end, we seek to calculate excited
electronic states by employing a mean-field approximation
directly solving the self-consistent-field (SCF) equation for
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excited electronic configurations [33–42]. In our previous
works [16,25,28,31,43], we employed the excited state or-
bitals obtained with the Hartree-Fock-Slater (HFS) [44]
method as implemented in the XMOLECULE toolkit [25,43] to
obtain cross sections and rates. By solving the SCF equations
for each electronic configuration, the molecular orbitals are
adapted to the new electronic configuration after each pho-
toionization, fluorescence, or Auger decay step. This orbital
adaptation results in a spatial redistribution of the initially
created charge in the molecule [25], which turned out to be
a key mechanism for the response of molecules exposed to
intense x-ray light [25,28].

In this work, we report on strategies to solve the HFS-
SCF equations to obtain a robust and efficient description for
the many multiply ionized, excited electronic configurations.
We analyze cases of convergence failure, and provide tech-
niques to resolve them, for an exemplary molecule, the carbon
monoxide molecule (CO). These techniques are implemented
in the XMOLECULE toolkit. For the phenol molecule, we show
that the implementations lead to a significant reduction of con-
vergence failures in the simulation of x-ray-induced ionization
dynamics.

The paper is structured as follows: In Sec. II we give a brief
summary of the employed HFS electronic structure model
and provide details on its implementation [25,43]. Section III
introduces a benchmark setup consisting of all the electronic
configurations of the CO molecule that can be reached via
sequentially stripping off electrons. By generalizing our cal-
culation scheme to fractional occupation numbers we show in
Sec. IV that a number of convergence failures can be over-
come and, furthermore, we characterize cases that cannot be
addressed via this technique. In Sec. V we present a scheme
to address the remaining convergence failures. Section VI
contains our results for the phenol molecule. In Sec. VII we
summarize and draw final conclusions.
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II. THE HARTREE-FOCK-SLATER SCHEME
FOR EXCITED STATES

The specific implementation of the HFS-SCF excited-state
method in XMOLECULE is described in Ref. [43]. Here, we
only give a brief summary.

The HFS method is based on an approximate exchange
interaction that is used to solve the molecular orbitals in the
mean-field potential of all electrons [44]. A set of molecular
orbitals (MO) is found by seeking stationary points of the total
electronic energy as a functional of the electron density ρ(r).
The electron density is

ρ(r) =
∑

i

ni|φi(r)|2, (1)

where ni ∈ {0, 1, 2} is the occupation number of molecular
orbital φi(r). We expand the orbitals φi(r) using a set of basis
functions χμ(r),

φi(r) =
∑

μ

Cμiχμ(r), (2)

rendering the SCF problem to be equivalent to solving the
Roothaan-Hall equation [45],

FC = SCE, (3)

which is a generalized eigenvalue problem for the expansion
coefficients Cμi and the diagonal matrix E that contains the
orbital energies. In Eq. (3), F is the Fock matrix,

Fμν =
∫

d3r χ∗
μ(r)

[
−1

2
∇2 + Veff (r)

]
χν (r), (4)

with the effective one-particle potential

Veff (r) = −
∑

A

ZA

|r − RA| +
∫

d3r′ ρ(r′)
|r − r′| − 3

2

[
3

π
ρ(r)

] 1
3

,

(5)
and S is the overlap matrix,

Sμν =
∫

d3r χ∗
μ(r)χν (r). (6)

The first term on the right-hand side of Eq. (5) describes the
Coulomb interaction of an electron with the nuclei, where ZA

is the nuclear charge of atom A, the second term is due to the
electrostatic interaction with the electron density ρ(r), and
the last term represents the Slater exchange potential [44].
Equations (4) and (5) are expressed in atomic units, where
h̄ = e = me = 1.

For the calculations considered here, we have employed a
basis set constructed from a minimal set of numerical atomic
orbitals obtained with the XATOM toolkit [46] calculated for
the respective atomic core-hole configurations [43].

The solution of the SCF equation is obtained by iteratively
solving the generalized eigenvalue problem [Eq. (3)] and
using the obtained expansion coefficients of iteration k − 1,
C(k−1)

i , to construct a new density, ρ (k)(r), and a new Fock
matrix, F(k), until self-consistency is fulfilled. Convergence of
the resulting iterative sequence is accelerated by level shifting
methods [47] and the direct-inversion-of-iterative-subspace
method [48,49].

When considering a general, excited electronic state, the
construction of the electron density in iteration k involves am-
biguities as the eigenvectors C(k−1)

i of the previous step have
to be associated with the occupation numbers ni. Here, one
has to choose a mapping that provides the occupation numbers
of the current orbitals φ

(k−1)
i with coefficients C(k−1)

μi . For the
ground configuration one can employ an ordering according
to the one-particle energy, i.e., the corresponding eigenvalues
of the Fock matrix F(k−1). According to such an aufbau prin-
ciple the energetically lowest orbitals are occupied resulting
in the electronic ground state. For an excited electronic state
this association becomes problematic, because the order of
eigenvalues may change during the iterative sequence. Such
a change in order can result in either convergence problems or
convergence to an undesired state. This problem in the conver-
gence of excited electronic states has been termed variational
collapse [35,50,51].

To overcome this issue, several techniques have been sug-
gested [35,41,42,52–55]. In our calculations we employ the
maximum-overlap method (MOM) [35,53], where the above
ambiguity is resolved by assigning an occupation number to
each orbital based on orbital shape rather than orbital energy.
We employ a variant of the MOM, where at each iteration
the occupation numbers of the orbitals are determined by a
criterion given by the overlap of the molecular orbitals with
given reference orbitals [43,53]. Given a set of Norb orbitals
{φ̃i} that solve the SCF problem for an N-electron config-
uration with occupation numbers ñ1, . . . , ñNorb , we calculate
an (N − 1)-electron configuration with occupation numbers
n1 = ñ1, . . . , n j = ñ j − 1, . . . , nNorb = ñNorb , where an elec-
tron has been removed from the occupied orbital φ̃ j by using
the set of orbitals {φ̃i} as reference orbitals. These reference
orbitals also serve as initial guess orbitals for the start of
the SCF iterations. To assign orbital occupation numbers in
each iteration, we calculate the overlaps between the current
orbitals and the reference orbitals,

O(k−1)
i j = 〈

φ
(k−1)
i |φ̃ j

〉
, (7)

and the projections of each orbital onto the set of reference
orbitals with a given occupation number,

Pi(m) =
n j=m∑

j

∣∣O(k−1)
i j

∣∣2
, (8)

where j runs over all reference orbitals with occupation
numbers n j = m. For constructing the density in iteration k
[Eq. (1)], the orbital occupation numbers ni are chosen such
that the product

s =
∏

i

(Pi(ni ))ni (9)

is maximized. Note that this optimization target is slightly
different from the one used in an earlier implementation [43];
Eq. (9) represents a more natural measure of the overlap
between many-electron states.

Analogously to the described ionization step, we conduct
electron attachment steps by taking the orbitals obtained for
an (N − 1)-electron configuration as reference orbitals for
calculating orbitals for an N-electron configuration, where an
electron has been added to a specific orbital.
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FIG. 1. Graph connecting different electronic configurations via ionization and attachment of single electrons.

III. GRAPH OF MULTIPLY IONIZED CONFIGURATIONS

With the methodology described in Sec. II one can cal-
culate, in the absence of convergence issues, the full set of
electronic hole configurations that occur as a result of se-
quential ionizations by removing one electron after another. In
each ionization step, one employs the orbitals of the preceding
N-electron configuration as reference orbitals for the target
(N − 1)-electron configuration. In a similar way, one can start
with no electrons and add one electron after another into
an empty or singly occupied orbital. In each such electron
attachment step, one employs the orbitals of the preceding
(N − 1)-electron configuration as reference orbitals for the
SCF iteration for the target N-electron configuration.

Such a sequential ionization or electron attachment proto-
col is visualized as a graph in Fig. 1 for the CO molecule and
serves in the following as a benchmark set for the reliability
of our scheme to calculate the electronic structure of gener-
ally excited and multiply ionized electronic configurations.
The nodes in the graph represent electronic configurations
that are ordered according to the number of electrons from
bottom to top. The configurations are connected via edges
that represent ionization or electron attachment processes; i.e.,
they connect the configurations either upwards or downwards
by adding or removing an electron in a particular orbital.
In total, the graph contains 1215 nodes connected via 5022
edges. Notably, in the configuration labels the orbital symbols
are not necessarily ordered by energy eigenvalue. Instead, we
order the orbitals by similarity with respect to shape. Thus,
it may occur, for example, that the orbital 4σ in some con-
figurations has an orbital energy eigenvalue lower than that
of the orbital 3σ . To eliminate ambiguities for the degen-
erate π orbitals, we employ fractional occupation numbers

that equally distribute the π electrons between the πx and
πy orbitals. The graph in Fig. 1 contains loops; i.e., one
can connect two configurations via different sequences of
ionization and attachment steps. For example, the electronic
configuration 1σ 22σ 23σ 24σ 2π35σ 1 can be reached from the
neutral configuration 1σ 22σ 23σ 24σ 2π45σ 2 by first stripping
off an electron from the 5σ orbital and subsequently from
the π orbital or, alternatively, by removing the electrons in
opposite order.

In each ionization or electron attachment step, we quantify
the orbital similarity by employing the MOM optimization
target s [Eq. (9)]. The quantity s serves as a measure for how
strongly the converged orbital sets for a given configuration
overlap. An orbital set identical to the reference results in
s = 1, whereas s = 0 if one of the occupied orbitals is orthog-
onal to all the occupied reference orbitals. In the following,
the quantity s is thus referred to as overlap between the two
orbital sets.

In general, it is not guaranteed that each ionization or
electron attachment step in such a graph yields a solution,
since the iterative scheme described in Sec. II may not con-
verge to a self-consistent solution within a given number of
iterations. Without considering any of the implementations
reported in this manuscript, we observe for the above graph
for CO that ∼0.8% of the edges cannot be calculated as the
SCF iterations do not converge. Moreover, we observe that
for some loops the graph yields contradicting solutions for
the same electronic configuration. These cases (∼0.1% of
the transitions involving ∼0.5% of the configurations) can be
identified with ionization or electron attachment steps where
the obtained orbitals have a particularly low overlap with the
reference orbitals (small s), suggesting that the SCF iterations
converged to an undesired solution.
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TABLE I. Initial and final configurations of CO for ionization
steps that do not converge by smoothly adapting the occupation
numbers in fractional steps.

N-electron configuration (N − 1)-electron configuration

1σ 12σ 13σ 04σ 1π 15σ 2 → 1σ 12σ 03σ 04σ 1π 15σ 2

1σ 02σ 03σ 04σ 1π 35σ 2 → 1σ 02σ 03σ 04σ 1π 25σ 2

1σ 12σ 03σ 04σ 1π 25σ 2 → 1σ 02σ 03σ 04σ 1π 25σ 2

1σ 12σ 13σ 04σ 0π 25σ 2 → 1σ 12σ 03σ 04σ 0π 25σ 2

1σ 12σ 03σ 04σ 1π 15σ 2 → 1σ 12σ 03σ 04σ 1π 05σ 2

IV. GENERALIZATION TO FRACTIONAL
OCCUPATION NUMBERS

Since the HFS method can also be applied to frac-
tional occupation numbers, we propose here to traverse the
graph in Fig. 1 by employing fractional occupation num-
bers ni ∈ [0, 2]. Using this generalization of the previous
implementation summarized in Sec. II, we can now smoothly
traverse each edge in the graph, establishing an adiabatic
connection between the N-electron configuration and the
(N − 1)-electron configuration instead of going along an edge
in a single step. To that end, the resulting orbitals of the pre-
ceding fractional ionization step are taken as reference orbitals
for SCF calculation of the next fractional ionization step until
the desired configuration with the integer occupation number
is reached.

We make use of this scheme by refining the SCF calcu-
lation for the cases in which a single-step calculation for the
ionization or attachment does not converge or yields orbitals
that have low overlap with the reference orbitals. Specifically,
we split an ionization or attachment step into 10 fractional
steps. Employing this idea and going through all edges in the
graph for CO where either the obtained orbital set has low
overlap with the reference orbitals (s < 0.5) or the SCF itera-
tions do not converge, we observe that by smoothly adapting
the occupation numbers in fractional steps only ∼0.1% of the
ionization steps still fail to converge. The ionization steps that
cannot be converged are listed in Table I. Moreover, with this
refined procedure, all nodes in the graph in Fig. 1 can now
be reached. For a small subset of configurations (∼4.3%, all
of them with Nel � 6), we still obtain contradicting solutions
through different ionization paths.

To investigate the remaining convergence failures, we
now have a closer look at the exemplary ionization step
1σ 12σ 03σ 04σ 1π15σ 2 → 1σ 12σ 03σ 04σ 1π05σ 2. To that end,
we inspect the overlap s evaluated for the configuration
1σ 12σ 03σ 04σ 1π05σ 2, where the projections Pi(ni ) in Eq. (9)
are now constructed with orbitals that are obtained from
SCF iterations employing fractional occupation numbers f
for the π orbital. Because the orbitals for the target con-
figuration are known through another path in the graph in
Fig. 1, we also inspect the corresponding electron attachment
process 1σ 12σ 03σ 04σ 1π05σ 2 → 1σ 12σ 03σ 04σ 1π15σ 2. To
distinguish the ionization path from the electron attachment
path, we employ the additional subscripts − (for the ionization
path) and + (for the electron attachment path). The violet
solid line in Fig. 2 shows the overlap s− along the ioniza-
tion path as a function of the fractional occupation number
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FIG. 2. Overlap s between orbital sets evaluated for the config-
uration 1σ 12σ 03σ 04σ 1π f 5σ 2 obtained for different values of the
fractional occupation number f . In the missing regions no conver-
gence is achieved. The values s− describe the overlap of the orbital
with the reference orbital set for f = 1, and the values s̃− describe
the overlap with the reference orbitals for f = 0 when starting with
f = 1 and successively decreasing f (ionization path). The values
s+ and s̃+ show the respective overlaps when starting with f = 0 and
successively increasing f (electron attachment path).

f . As can be seen, the orbital set maintains high similarity
(s− close to 1) when the fractional occupation number is
smoothly reduced from 1 to 0.2. For f < 0.2, no conver-
gence can be achieved. The opposite direction, the electron
attachment step, is illustrated by the green solid line (s+) start-
ing from orbitals for the configuration 1σ 12σ 03σ 04σ 1π05σ 2

and increasing f . Also, for the electron attachment step,
the orbitals remain initially similar. For f > 0.5 no conver-
gence can be achieved. The dashed lines in Fig. 2 show the
corresponding overlaps to the respective target orbitals s̃−
and s̃+. As can be seen, in the ionization as well as in the
electron attachment step, the overlaps slightly increase when
approaching the target configuration, but remain relatively
low (s̃± < 0.2).

This result demonstrates that the solutions of the HFS
equation for the two configurations cannot be connected by
smoothly varying the fractional occupation number f . More-
over, for fractional occupation numbers 0.2 � f � 0.5, the
solution of the SCF equation depends on whether we have
followed the ionization path or the electron attachment path.
Qualitatively similar observations can be made for the other
convergence failures listed in Table I.

Further insight into the cause of convergence failure is
revealed by inspecting the total energy as a function of the
fractional occupation number. For the exemplary ionization
step 1σ 12σ 03σ 04σ 1π15σ 2 → 1σ 12σ 03σ 04σ 1π05σ 2, it turns
out that the convergence problems can be characterized by
reducing the problem to a simplified, two-orbital model in
which orbital mixing is restricted to the two-dimensional sub-
space spanned by the 4σ and 5σ orbitals of the reference
configuration. These two orbitals dominate the changes be-
tween the solutions for the two configurations.
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FIG. 3. HFS total energy for the configuration
1σ 12σ 03σ 04σ 1π f 5σ 2 as a function of the rotation angle θ

between the f = 1 orbitals 4σ and 5σ . All remaining orbitals are
kept fixed at the SCF solution for the configuration with f = 1.
The reference angle θ � 0 corresponds to the solution for the
configuration with f = 1.

To construct such a model, we constrain the electron den-
sity ρ(r) by employing an orbital set in which all but the 4σ

and 5σ orbitals are kept fixed with coefficients taken from the
SCF solution for f = 1. Together with the orbital orthogonal-
ity constraint, ∫

d3rφ∗
i (r)φ j (r) = δi j, (10)

this renders the total energy into a one-dimensional reduced
energy function [56,57] that depends only on the rotation
angle θ between the f = 1 4σ and 5σ orbitals.

Figure 3 shows the resulting energy E (θ ) for selected
fractional occupation numbers. It can be seen how the sta-
tionary points of E (θ ) (marked with circles) vary with
the fractional occupation number f . The specific stationary
point we are following as the solution for the configuration
1σ 12σ 03σ 04σ 1π f 5σ 2 is the local maximum, which is for
f = 1 at θ = 0. The minimum at θ � 0.375π can be asso-
ciated with the configuration 1σ 12σ 03σ 04σ 2π f 5σ 1, where
the orbitals 4σ and 5σ have been swapped. Notably, the
angle θ between the two stationary points is not 0.5π as
one would expect from a constant mean field, i.e., where the
two solutions are orthogonal to each other, indicating that the
two configurations have a considerably different mean-field
potential.

For fractional occupation numbers f in the range from 1
to 0.3 the positions of the two stationary points shift only
slightly. This illustrates that the dominant character of the
SCF solutions does not change dramatically, which is in ac-
cordance with the observation that the corresponding overlap
in Fig. 2 hardly changes. Accordingly, the orbitals obtained
for the current fractional ionization step are similar to the
SCF solutions (i.e., stationary points) of the previous frac-
tional ionization step. The situation is, however, different
when the fractional occupation number becomes lower than
0.2. Here the maximum at θ � 0 vanishes, the energy E (θ )
around θ � 0 becomes flat, and another maximum appears

at θ � 0.25π . Since the maximum suddenly moves to a dif-
ferent angle θ , the character of the SCF solution no longer
changes smoothly with the occupation number f , but, instead,
shows a sudden change in character. The orbitals obtained
from the previous fractional ionization step at f = 0.3 are
thus not appropriate reference orbitals for the SCF solution
at fractional occupation number f = 0.2. We note that such a
disappearance of stationary points is reminiscent of the disap-
pearance of SCF solutions for H2 with increasing bond length
at the so-called Coulson-Fischer point [58]. Because close
to the new maximum position at the angle θ � 0.25π both
orbitals have similar overlap with both 4σ and 5σ reference
orbitals (θ � 0), it is clear that the MOM must have severe
difficulties with assigning occupation numbers in each SCF
iteration. By inspecting the SCF iterations, we can confirm
that the restriction of the MOM enforcing high overlap with
the reference orbitals hinders convergence of the SCF itera-
tions due to repeated flipping in the assignment of occupation
numbers.

The observed sudden change in character of the stationary
point is a conceptual challenge for the graph in Fig. 1 that
relies on the idea that SCF solutions can uniquely be identified
with the removal of an electron from a specific molecular
orbital. In the following, we propose a strategy to overcome
the remaining convergence failures.

V. SOLUTION FOR REMAINING
CONVERGENCE FAILURES

In Fig. 3 we have demonstrated that convergence failures,
which persist even when the HFS solution is sought by means
of fractional ionization steps, are linked to the sudden dis-
appearance and appearance of stationary points in the total
energy. At these points the MOM prevents the SCF iterations
from reaching a stationary point since the overlap with the
reference orbitals becomes too low. We therefore propose a
scheme where the MOM is lifted for a selected orbital pair,
thereby allowing the SCF iterations to converge to a stationary
point that is not close to the provided reference orbitals. At
the same time, the scheme ensures that the remaining orbitals
remain similar to the provided reference orbitals.

To that end, we solve a number of constrained SCF prob-
lems, where the SCF equation is solved within a reduced
subset of n orbitals, while the remaining orbitals in the or-
thogonal (Nbasis − n)-dimensional subspace are kept constant.
In particular, we solve in each iteration instead of Eq. (3) the
projected Roothaan-Hall equation,

(Č† F Č) U = U E, (11)

for the rotation matrix U, where the matrix Č has dimen-
sion Nbasis×n and is composed of n selected reference orbital
coefficient vectors C̃i, i = i1, . . . , in (the identity Č†SČ = 1
holds). In each SCF iteration, the resulting orbital coefficients
are then given by

Cμi =
{∑

j Čμ jUjk, for i = ik,

C̃μi, for i /∈ {i1, . . . , in}.
(12)

Building on this, we employ the solution strategy illus-
trated in Fig. 4. In detail, we seek the solution through a series
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FIG. 4. Freeze-and-release strategy to resolve convergence
failures.

of constrained and unconstrained SCF calculations, which we
call the freeze-and-release strategy.

(i) Using the provided reference orbitals we select a pair
of orbitals that shows a particularly strong change in character
in the respective ionization step. This is done by calculating
the Fock matrix in the MO space (F(MO) = C†FC) and finding
the orbital pair that has the largest nondiagonal relative Fock
matrix elements, (l, m) = argmax(i, j)|F (MO)

i, j /(F (MO)
i,i −F (MO)

j, j )|.
This choice is motivated by the fact that |F (MO)

i, j /(F (MO)
i,i −

F (MO)
j, j )| is proportional to the Newton step optimizing the

total energy with respect to the rotation between orbitals i
and j.

(ii) Using the reference orbitals we perform a constrained
SCF calculation employing the MOM strategy in which the
two orbitals l and m are not modified. If this calculation does
not converge, we continue with the reference orbital set.

(iii) Taking the orbitals from the previous step as reference
orbitals, we perform a constrained SCF calculation in which
only the two orbitals l and m are modified; i.e., only rotations
between these two selected orbitals are allowed. In this SCF
calculation we do not employ the MOM, and this, therefore,
allows for a more flexible solution (within the subspace of the
selected orbital pair) beyond the restrictions imposed by the

MOM. Since this is effectively a one-dimensional optimiza-
tion, a stationary point is usually always found.

(iv) Using the obtained orbitals from the previous step as
reference orbitals, we now perform an unconstrained SCF cal-
culation with the MOM. If this calculation does not converge,
we continue with step 1 using the orbitals obtained in step 3
as a new set of reference orbitals. If the maximum number of
iterations imax = 10 of this cycle is reached, the calculation
exits with convergence failure.

With the implementation of this freeze-and-release strat-
egy, we achieve a “black-box” procedure that almost always
results in a converged SCF solution and is employed if the
other approaches fail. For the CO molecule, this procedure re-
solves all the remaining convergence failures listed in Table I.

VI. APPLICATION TO PHENOL

For larger molecules, calculating the full graph as shown
in Fig. 1 for the CO molecule or even tabulating the rates and
cross sections for all electronic configurations is not possi-
ble, since the number of configurations becomes too large.
To solve the rate equations for the ionization dynamics, we
instead employ the Monte Carlo (MC) approach [20]; that
is, we calculate configuration-space trajectories that stochas-
tically sample the ionization dynamics of the molecule. In
these simulations the electronic configurations and associated
electronic transition rates are calculated on the fly. In this con-
text, we generalize the described scheme to not only follow
ionization steps but also Auger and fluorescence processes,
in which two (or one) electrons are removed and another is
added in the configuration. Further details on this simulation
scheme are described in Refs. [28,31].

We have tested the implementations described in Secs. IV
and V with the phenol molecule [Fig. 5(a)] exposed to an x-ray
pulse with a photon energy of 2 keV, a fluence of 5×1012

photons/μm2, and a Gaussian temporal pulse shape with a
duration of 10 fs full width at half maximum (FWHM). Such
pulse parameters are reached in the focal spot at XFELs [1].
In each electronic transition process (photoionization, flu-
orescence, or Auger), we try to directly converge orbitals
employing the orbitals of the previous electronic configura-
tion as reference orbitals. If in this first one-step approach
the SCF iterations fail to converge or they result in a low
overlap with the reference orbitals (s < 0.5), we calculate an
SCF solution for the configuration by smoothly adapting the
occupation numbers as described in Sec. IV. In case we still
do not obtain a converged solution, we invoke the freeze-
and-release strategy described in Sec. V. If this approach still
fails to yield convergence, the simulation continues with the
orbital set that has been obtained for the previous electronic
configuration; i.e., we continue the simulation without orbital
reoptimization.

Details of the resulting charge dynamics in the phenol
molecule are depicted in Figs. 5(b) and 5(c) showing the
evolution of the average Mulliken charges of each atom. Our
simulation indicates that the phenol molecule loses on average
35 electrons. As can be seen in Fig. 5(b), the final charge on
the oxygen (O) atom is roughly 6, so on average the O atom is
left behind with two electrons. The carbon (C) atoms have on
average a lower final charge ranging from 3 to 4. The lower
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FIG. 5. Average Mulliken charges in phenol exposed to an intense soft x-ray pulse (parameters are given in the text). Panel (a) shows the
geometry. Panel (b) shows the partial charges for oxygen and carbon atoms. Panel (c) shows the partial charges for hydrogen atoms. Error bars
indicate standard errors due to finite sampling. The gray area indicates the x-ray pulse envelope. Dashed lines show results without invoking
the freeze-and-release strategy described in Sec. V.

charge of the C atoms can be qualitatively understood from the
∼3 times larger photoionization cross section for ionization of
the O K shell compared to the C K shell at 2 keV. Among the
C atoms, the atom C1, which is next to the O atom, stands
out by having a considerably lower final charge compared
to the other carbon atoms. This observation is similar to the
previously reported polarization effect in iodobenzene [31],
where the electrons in the benzene ring tend to be distributed
so as to shield the larger charge of the neighboring heavy
absorbing atom (here O). The charges of the hydrogen atoms,
shown in Fig. 5(c), rapidly increase and reach a value of � 1
at the center of the pulse at t = 40 fs.

We note that the current simulations have been conducted
with a fixed molecular geometry. In reality, the molecule un-
dergoes rapid structural deformations due to the high charge
in the molecule, eventually leading to a Coulomb explosion.
From our previous simulations [28,31], we know that due to
the high ionization rate and the short pulse duration (here
10 fs FWHM) these structural deformations have very little
impact on the resulting ionization dynamics, such that the
final atomic charges are barely affected. The calculated partial
charges from a fixed-geometry calculation thus serves as a
good approximation to the resulting ion fragment charges.

Table II lists the number of convergence failures employing
the different strategies discussed in Secs. IV and V for the
MC trajectories. In total we have calculated 80 trajectories
that involve altogether 2824 electronic steps (photoionization,
fluorescence, or Auger decay). As can be seen, without apply-

ing any of the two implementations, 33% of the electronic
transition steps do not converge. The two presently imple-
mented strategies reduce the number of convergence failures
considerably. In ∼12% of the electronic steps, convergence
could be achieved via smooth variation of occupation num-
bers. In almost all of the remaining cases the SCF calculations
could be converged via the freeze-and-release strategy. For
only 2.5% of all electronic transition steps, convergence fail-
ures remained unresolved. In these cases we continued the
MC simulation with the orbitals from the previous electronic
configuration.

To investigate the impact of the freeze-and-release strategy
on the resulting charge dynamics, we include in Figs. 5(b)
and 5(c) Mulliken charges from calculations where the freeze-
and-release strategy was bypassed, and we have continued the
simulations with orbitals from the previous electronic step in
case no convergence of the SCF calculation could be obtained
through smoothly adapting the orbital occupation numbers in
fractional steps. As can be seen, within the statistical fluctua-
tion indicated by the error bars, the two simulations show the
same charge evolution. These results indicate that there are no
significant effects on the partial charges whether convergence
is facilitated by the freeze-and-release strategy or whether the
simulation continues with orbitals obtained for the preced-
ing electron configuration. We point out, however, that it is
desirable to aim for a converged solution since the apparent
insensitivity to orbital reoptimization observed here for the
phenol cannot be guaranteed to be a universal phenomenon.
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TABLE II. Number of SCF failures at electronic transition steps for phenol exposed to an intense (5×1012 photons/μm2) x-ray pulse with
a Gaussian pulse envelope (10 fs FWHM) and a photon energy of 2 keV.

Steps Ratio (%)

Total number 2824 100
With convergence failure 929 33
Cured with smooth varying of occupation number 326 12
Cured with freeze-and-release strategy 533 19
Remaining convergence failures 70 2.5

VII. SUMMARY AND DISCUSSION

The multiphoton multiple-ionization dynamics induced by
intense x-ray pulses involve many highly excited and ionized
electronic molecular configurations that are, in general, not
easy to model. The challenges lie specifically in the efficient
and reliable computation of a huge number of ionized and
excited electronic states. It is, therefore, imperative that the
electronic structure model works as a “black box”, i.e., does
not involve any tuning of parameters such as selection of
active orbitals or configuration spaces. To investigate these
demands, we have analyzed here the graph connecting all
electronic configurations that can be populated by sequen-
tially stripping off electrons from all the orbitals of the CO
molecule.

Within our electronic structure model, which involves a
combination of HFS and MOM, we describe the implemen-
tation of techniques that yield a solution for all possible
multiply ionized configurations of the CO molecule, employ-
ing two different strategies to overcome convergence failures.
In essence, we split an ionization or electron attachment step
into several fractional steps, thus making it possible to adi-
abatically approach the targeted SCF solution as a function
of occupation number. We show that this approach does not
always work, because stationary points of the total energy may
disappear as a function of the occupation number. In these
cases, we solve the SCF equation by partially releasing the
restrictions imposed by the MOM. Applying the presented
techniques to MC simulations of the ionization dynamics of
phenol reveals a promising reduction of convergence failures.

Our results for the ionization dynamics in phenol illustrate
that the x-ray-induced ionization leads to an almost immediate
charging of all the hydrogen atoms. The O atom acquires a
charge considerably higher than that of the C atoms, and the
C atom that connects the phenyl group with the O stands out
as eventually having a somewhat lower charge. These results
may serve as an illustrative example for the radiation damage

induced by high-intensity x-ray pulses in a biologically rele-
vant molecule.

For the modeling of the dynamics induced by sequential
x-ray multiphoton absorption, several questions remain: In
most cases the response of the electronic structure to the
ionization involves only a gradual change of the orbitals, sug-
gesting a continued approximate validity of the independent-
particle picture of ionization. Within the electronic mean-field
picture, how to deal with ionization processes that result in an
SCF solution with strongly different orbitals that cannot even
be adiabatically connected remains a challenging question.
For the phenol molecule we have shown that different strate-
gies (either keeping orbitals from a previous step or following
an SCF solution that has low overlap) lead to similar results
for the time evolution of the charge distribution.

Further research on this is required. In particular, such
questions could in the future be resolved by combining the
presented SCF strategies with efficient post-SCF methods.
Additional challenges arise when attempting to capture dy-
namical changes of the molecular geometry. The question
remains as to what degree similar SCF strategies as presented
here avoid convergence failures when following a continuous
potential energy surface for an arbitrary excited and ionized
electronic configuration.

The strategies we have demonstrated can be seen as a prag-
matic recipe under the premise that the mean-field electronic
structure picture may be maintained. The employed graph for
CO may serve as a benchmark for the development of alter-
native approaches involving more refined electronic structure
models.
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