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Atomic Siegert states in a rotating electric field
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We show that the time-dependent Schrödinger equation describing in the dipole approximation the interaction
of a one-electron atom with a monochromatic circularly polarized electromagnetic field can be reduced to a
stationary Schrödinger equation in the form which allows to separate variables in the asymptotic region and
explicitly formulate outgoing-wave boundary conditions. The solutions to this equation are called atomic Siegert
states (SSs) in a rotating electric field. We develop the theory of such states and propose an efficient method
to construct them using powerful techniques of stationary scattering theory. The method yields not only the SS
eigenvalue defining the Stark-shifted energy and total ionization rate of the state, but also the SS eigenfunction
defining partial ionization amplitudes and the photoelectron momentum distribution. The theory is illustrated by
calculations for a model potential.
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I. INTRODUCTION

In strong-field physics [1], one deals with highly non-
perturbative light-matter interaction processes for which the
language of few-photon transitions becomes inadequate and
novel theoretical approaches are required. The Keldysh
theory [2] and its versions known as the strong-field ap-
proximation [3,4] suggest a general framework which has
replaced standard time-dependent perturbation theory in treat-
ing strong-field processes. The physical picture underlying
this approach is elucidated in the three-step model [5,6]. Its
further elaborations are presented in the intense-field many-
body S-matrix theory [7,8] and quantum orbit theory [9–11].
There also exist approaches based on different approxima-
tions. Thus, the time-dependent effective range theory [12,13]
treats a simplified target model which allows advanced analyt-
ical description. The adiabatic theory [14] is an asymptotics
which becomes exact in the low-frequency limit. Further-
more, there exist various Floquet approaches which were
developed outside the three-step model paradigm but treat
the same physical problem. This includes the quasistationary
quasienergy states approach [15,16], non-Hermitian Flo-
quet theory [17,18], high-frequency Floquet theory [19–21],
R-matrix Floquet theory [22–25], and generalized Floquet
formalisms [26–28]; see also Ref. [29] and references therein.
Given that the numerical solution of the time-dependent
Schrödinger equation (TDSE) even for one-electron atomic
targets is still not a “solved” problem [30], theories based on
suitable approximations remain helpful for understanding and
predicting strong-field phenomena.

Theories which aim to be quantitative usually involve new
technical elements whose implementation in practical calcu-
lations is decisive for applications. Consider, for example, the
adiabatic theory [14], which is closer to the present context.
In this theory, the solution to the TDSE and observables are

obtained as asymptotic expansions in a small parameter given
by the ratio of the electron and laser field timescales. In the
leading-order approximation, strong-field ionization is treated
as if the ionizing field were static and equal to the instan-
taneous laser field. All the results are therefore expressed
in terms of properties of a Siegert state (SS) of the target
in a static electric field, the one which originates from the
unperturbed initial state as the field is turned on. To implement
the theory, one needs to calculate the SS, which is a nontrivial
computational task. Importantly, both the SS eigenvalue defin-
ing the Stark-shifted energy and ionization rate of the state and
eigenfunction defining the transverse momentum distribution
of electrons in the outgoing flux are needed. An efficient
method to construct atomic [31] and molecular [32,33] SSs in
a static electric field was developed. Armed with this method,
the adiabatic theory quantitatively reproduces strong-field
photoelectron momentum distributions (PEMDs) obtained by
solving the TDSE [14,34–38] and in experiments [39–42],
thus providing a reliable platform for studying strong-field
processes in the adiabatic regime.

One can think of a theory in which strong-field observ-
ables are sought as asymptotic expansions in the ratio of the
field period to the duration of a laser pulse, that is, in the
inverse number of optical cycles in the pulse. Such a theory
becomes exact for purely monochromatic fields, and hence
its results should be expressed in terms of properties of the
corresponding Floquet state. As in the adiabatic theory, one
can expect that both the Floquet eigenvalue and eigenfunction
are needed to obtain observables. In particular, PEMD should
be determined by the behavior of the Floquet eigenfunction
in the asymptotic region, where the outgoing flux of electrons
released from the target by the field is formed. There exists a
vast literature on the theory and computation of Floquet states
[15–29]. However, most practical methods for solving the
Floquet eigenvalue problem employ an approach pioneered

2469-9926/2021/104(2)/023110(21) 023110-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7544-5659
https://orcid.org/0000-0001-7603-2322
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.023110&domain=pdf&date_stamp=2021-08-25
https://doi.org/10.1103/PhysRevA.104.023110


KJELLSSON LINDBLOM, TOLSTIKHIN, AND MORISHITA PHYSICAL REVIEW A 104, 023110 (2021)

in Ref. [43] which is based on the dilatation transformation
(complex coordinate method) followed by expanding the so-
lution in a square integrable basis. This approach enables one
to avoid the need of formulating outgoing-wave boundary
conditions explicitly. It is efficient for calculating the Floquet
eigenvalue, but constructing the Floquet eigenfunction in the
asymptotic region of the real coordinate axis needed to obtain
the PEMD in this approach is very difficult, if not impossible
[44]. This difficulty hinders the development and potentially
wide applications of the theory mentioned above.

To overcome this difficulty, a different approach to cal-
culating Floquet states is needed. In the general case of
a monochromatic field with arbitrary polarization, the Flo-
quet eigenvalue problem for a one-electron target can be
reduced to an infinite set of coupled time-independent three-
dimensional (3D) equations for Floquet components [29].
These equations can be solved using powerful techniques
of quantum scattering theory. Such an approach requires to
explicitly formulate the outgoing-wave boundary conditions.
Furthermore, if the original TDSE is written in the length
or velocity gauges, the equations for Floquet components
contain couplings induced by the interaction with the field
which do not decay in the asymptotic region. This does
not allow to separate variables and find an analytical solu-
tion for Floquet components in the asymptotic region which
could be matched with a numerical solution in the inner re-
gion to obtain partial ionization amplitudes, in the spirit of
scattering calculations. Thus, the scattering theory approach
encounters its own difficulties: the need to treat an infinite
set of coupled 3D equations and the problem of asymptotic
couplings.

The latter difficulty can be resolved in the general case
by transforming the TDSE to the Kramers-Henneberger (KH)
coordinate frame [45,46]. The equations for Floquet compo-
nents in the KH frame do not contain asymptotic couplings
[29] and can be solved by scattering theory methods [47–51].
However, one still has to treat an infinite number of equations.
The former difficulty can be eliminated in the special case of
circularly polarized fields. In this case, by transforming the
TDSE to a rotating coordinate frame, the Floquet eigenvalue
problem can be reduced to a single time-independent equa-
tion [52,53]. This transformation was used in early studies of
Floquet states supported by zero-range [54–56] and Coulomb
[57,58] potentials in a circularly polarized field. However,
equations considered in these studies still suffer from the
problem of asymptotic couplings.

In this paper, we resolve both difficulties for the case of
circularly polarized fields. We apply a composite coordinate
frame transformation to the TDSE, first transforming it to
the KH frame and then to a rotating frame. This enables us
to reduce the Floquet eigenvalue problem to a single time-
independent 3D equation which is free from the problem of
asymptotic couplings. The resulting equation has the form of a
stationary Schrödinger equation and is suitable for solving by
scattering theory techniques. This equation occupies a special
position in the theory of Floquet states. To emphasize this
fact, we call its solutions atomic SSs in a rotating electric
field. We develop the theory of such states and propose an
efficient method to construct them in practical calculations.
These developments pave the way to treating envelope effects

in strong-field processes induced by finite circularly polarized
pulses.

The paper is organized as follows. The theory of atomic
SSs in a rotating electric field is presented in Sec. II. In
Sec. III, we report calculations for a model potential illus-
trating the theory and the present computational method and
discuss properties of the SSs needed for predicting strong-
field observables. Section IV concludes the paper and gives
an outlook for future research. Some technical details of the
derivation in Sec. II are discussed in Appendices A and B.
The numerical procedure used in the calculations is described
in Appendix C.

II. THEORY

A. Time-dependent Schrödinger equation
in the laboratory frame

We consider an electron whose coordinate relative to the
laboratory (L) frame is denoted by rL interacting with an
atomic potential V (rL) and a homogeneous electric field F(t ).
The TDSE describing the system in the L frame reads as
(atomic units are used throughout the paper)

i
∂ψL(rL, t )

∂t
=

[
−1

2
�L + V (rL) + F(t )rL

]
ψL(rL, t ). (1)

The potential is assumed to be axially symmetric about the zL

axis, V (rL) = V (rL, θL), and satisfies

V (rL)|rL→∞ = − Z

rL
− D cos θL

r2
L

+ O
(
r−3

L

)
, (2)

where Z is the total charge of the parent ion and D = (0, 0, D)
is its dipole moment. The field remains constant in strength,
|F(t )| = F , and rotates with angular frequency ω in the
(xL, yL) plane:

F(t ) = F (cos ωt, sin ωt, 0). (3)

In the context of strong-field physics, Eq. (1) describes the
interaction of an atom (or a linear molecule) treated in the
single-active-electron approximation with a monochromatic
circularly polarized electromagnetic field (propagating along
the molecular axis) in the dipole approximation and length
gauge. The interaction causes ionization of the atom. We are
interested in the ionization observables.

We assume that in the absence of the field, F = 0, the
electron is in a bound state with energy E0 and wave function
φ0(rL) defined by[

−1

2
�L + V (rL) − E0

]
φ0(rL) = 0. (4)

The wave function has the form

φ0(rL) = φ0(rL, θL)
eim0ϕL

√
2π

, (5)

where φ0(rL, θL) is real, and is normalized by∫
|φ0(rL)|2 drL =

∫ ∞

0

∫ π

0
φ2

0 (rL, θL)r2
L sin θLdθLdrL = 1.

(6)
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As the field is adiabatically turned on, F > 0, the bound state,
being analytically continued in F , turns into a Floquet state

ψL(rL, t ) = e−iELt
(rL, t ), (7)

where 
(rL, t ) = 
(rL, t + 2π/ω) is a periodic function of
time. The Floquet eigenvalue (or the quasienergy [29,59]) EL

is complex, its imaginary part defines the ionization rate of
the state. The Floquet eigenfunction (or the dressed state [29])

(rL, t ) satisfies outgoing-wave boundary conditions and its
asymptotic form defines the PEMD. Thus, all the ionization
observables are determined by properties of the Floquet state
and can be calculated by general methods developed for
constructing such states for atoms in electromagnetic fields
[29,44]. We show below that in the case of a circularly polar-
ized field they can alternatively be calculated using powerful
techniques of stationary scattering theory.

B. Frame transformations

We seek for a transformation which would enable us
to (i) reduce Eq. (1) to a stationary Schrödinger equation
defining the Floquet state (7) and (ii) explicitly formulate
the outgoing-wave boundary conditions with the outgoing
flux decomposed into decoupled ionization channels. Both
these requirements are essential for casting the problem in
the framework of stationary scattering theory. We empha-
size the second requirement, which is the key of the present
approach. Its role can be illustrated by the following. It is
well known that one can eliminate time from the Hamilto-
nian in Eq. (1) by transforming this equation to the reference
frame rotating with the field [52,53]. Let us introduce an
operator R̂(α) which transforms the Cartesian components
of any vector r = (x, y, z) under the rotation of the refer-
ence frame by an angle α about the z axis, namely, R̂(α)r =
(x cos α + y sin α,−x sin α + y cos α, z). In particular, we
have R̂(ωt )F(t ) = F(0) = (F, 0, 0). The electron coordinate
relative to the rotating (R) frame is

rR = R̂(ωt )rL. (8)

Substituting this and

ψL(rL, t ) = ψR(rR, t ) (9)

into Eq. (1), one obtains the TDSE in the R frame,

i
∂ψR(rR, t )

∂t
=

[
−1

2
�R − ωl̂zR + V (rR) + FxR

]
ψR(rR, t ),

(10)
where l̂zR = −i∂/∂ϕR. This equation was used, e.g., in early
studies of ionization by a circularly polarized field from zero-
range [54] and Coulomb [57,58] potentials. It can be reduced
to a stationary Schrödinger equation, which complies with the
first of the above requirements. However, the second require-
ment is not fulfilled. Indeed, the operators ωl̂zR and FxR do
not commute with each other. Meanwhile, neither of them can
be neglected in the asymptotic region rR → ∞. Thus, eigen-
states of the Hamiltonian in Eq. (10), whatever coordinates
are used to construct them, cannot be expanded in decoupled
channels in the asymptotic region, which greatly complicates
the extraction of the ionization observables. The same applies
to a similar equation obtained from the original TDSE in the

velocity gauge [55,56]. This is what we call the problem of
asymptotic couplings.

The transformation we need proceeds in two steps. We first
transform Eq. (1) to the KH frame [45,46]. Let us introduce a
reference electron trajectory in the field (3) with the velocity
v(t ) and coordinate r(t ) satisfying

v̇(t ) = −F(t ), ṙ(t ) = v(t ), (11)

and given in the L frame by

v(t ) = v0(− sin ωt, cos ωt, 0), v0 = F/ω, (12a)

r(t ) = r0(cos ωt, sin ωt, 0), r0 = F/ω2. (12b)

The electron coordinate relative to the KH frame is

rKH = rL − r(t ). (13)

Substituting this and

ψL(rL, t ) = exp

[
iv(t )rKH − iv2

0t

2

]
ψKH(rKH, t ) (14)

into Eq. (1) leads to the TDSE in the KH frame,

i
ψKH(rKH, t )

∂t
=

[
−1

2
�KH + V [rKH + r(t )]

]
ψKH(rKH, t ).

(15)
This form of the TDSE in the circular polarization case was
used, e.g., in Refs. [47–51]. We now transform this equation to
a rotating KH (RKH) frame. The electron coordinate relative
to the RKH frame is

rRKH = R̂(ωt )rKH. (16)

Substituting this and

ψKH(rKH, t ) = ψRKH(rRKH, t ) (17)

into Eq. (15), we obtain the TDSE in the RKH frame,

i
ψRKH(rRKH, t )

∂t

=
[
−1

2
�RKH − ωl̂zRKH + V (rRKH + r0)

]
ψRKH(rRKH, t ),

(18)

where l̂zRKH = −i∂/∂ϕRKH and r0 = (r0, 0, 0). The Hamilto-
nian in this equation does not depend on time. Furthermore,
taking into account Eq. (2), it allows separation of variables in
spherical coordinates at rRKH → ∞. Thus, both of the above
requirements are fulfilled.

C. Siegert states

In this section we work in the RKH frame and, for brevity,
omit the subscript of the electron coordinate. Equation (18)
has solutions of the form

ψRKH(r, t ) = e−iEtφ(r). (19)

Substituting this into Eq. (18), we obtain the stationary
Schrödinger equation we sought[

−1

2
� − ωl̂z + V (r + r0) − E

]
φ(r) = 0. (20)
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We are interested in the solutions to this equation satisfying
regularity and outgoing-wave boundary conditions formulated
below. Such solutions are called atomic SSs in a rotating
electric field.

To solve Eq. (20), we employ an approach which is
inspired by the Born-Oppenheimer treatment of diatomic
molecules [60] and was used in studies of bound states,
resonances, and scattering processes in few-body Coulomb
systems [61–68], vibrational spectra and chemical reactions
in few-atomic systems [69–75], universalities in few-body
physics [76], atomic [31] and molecular [32,33] SSs in a
static electric field, etc. The Hamiltonian in Eq. (20) allows
adiabatic separation of the radial r and angular � = (θ, ϕ)
variables in spherical coordinates. Let us rewrite Eq. (20) as[

−1

2

∂2

∂r2
+ Û (r) − E

]
rφ(r) = 0, (21)

where

Û (r) = l̂2

2r2
− ωl̂z + V (r + r0). (22)

This operator called the adiabatic Hamiltonian acts on the
angular variables � and depends on r as a parameter. It is
Hermitian and has a purely discrete spectrum of eigenstates
defined by

Û (r)
ν (�; r) = Uν (r)
ν (�; r), (23)

where ν enumerates the solutions. The eigenstates also depend
on r as a parameter. The eigenvalues Uν (r) called the adiabatic
potentials are real. The eigenfunctions called the adiabatic
channel functions are normalized by

〈
ν (�; r)|
μ(�; r)〉 ≡
∫


∗
ν (�; r)
μ(�; r) d� = δνμ,

(24)
where d� = sin θ dθ dϕ, and form the adiabatic basis. The
solution to Eq. (21) as a function of � can be expanded in this
basis:

φ(r) = r−1
∑

ν

fν (r)
ν (�; r). (25)

Substituting this expansion into Eq. (21), one obtains a set
of coupled ordinary differential equations defining the radial
functions fν (r),[

−1

2

d2

dr2
+ Uν (r) − E

]
fν (r)

−
∑

μ

[
Pνμ(r)

d

dr
+ 1

2
Qνμ(r)

]
fμ(η) = 0, (26)

where

Pνμ(r) =
〈

ν (�; r)

∣∣∣∣∂
μ(�; r)

∂r

〉
, (27a)

Qνμ(r) =
〈

ν (�; r)

∣∣∣∣∂
2
μ(�; r)

∂r2

〉
(27b)

are matrices of nonadiabatic couplings. In this approach,
many aspects of the dynamics of the system can be qualita-
tively understood already from the behavior of the adiabatic
potentials [33,61–64,66,67,70,71,76]. At the same time, this

approach can be very efficiently implemented in scattering
calculations [71] by means of the slow variable discretization
method [65] in combination with the R-matrix propagation
technique [77].

Let us discuss the boundary conditions for Eqs. (26). At
r → 0, the potential in Eq. (22) can be expanded as

V (r + r0)|r→0 = V (r0) + r∇V (r0) + O(r2). (28)

We have assumed here that the potential is not singular at the
origin in the RKH frame, which is the case for F > 0 even if
it has a Coulomb singularity at the origin in the L frame. The
second term in Eq. (28) can be treated as a perturbation. The
adiabatic potentials and channel functions have the form

Uν (r)|r→0 = l (l + 1)

2r2
− mω + V (r0) + O(r2), (29a)


ν (�; r)|r→0 = Ylm(�) + O(r1), (29b)

and are thus enumerated by ν = (l, m). It can be shown that
Eqs. (26) become decoupled at r → 0 and the regular solu-
tions satisfy

fν (r)|r→0 ∝ rl+1. (30)

In the opposite limit, at r → ∞, we obtain from Eq. (2)

V (r+r0)|r→∞= − Z

r
+ Zr0 sin θ cos ϕ − D cos θ

r2
+O(r−3).

(31)
The second term here can be treated as a perturbation. The
adiabatic potentials and channel functions are given by

Uν (r)|r→∞ = −mω − Z

r
+ l (l + 1)

2r2
+ O(r−3), (32a)


ν (�; r)|r→∞ = Ylm(�) + O(r−2), (32b)

and are also enumerated by ν = (l, m). We assume that this
enumeration applies continuously at sufficiently large r (this
implies a diabatization of the adiabatic basis discussed in
Sec. III A). Then, Eqs. (26) become decoupled at r → ∞ and
the outgoing-wave solutions satisfy

fν (r)|r→∞ = flmelm(kmr), (33)

where flm is a constant coefficient, the function elm(z) defined
by [

d2

dz2
− l (l + 1)

z2
+ 2Z/km

z
+ 1

]
elm(z) = 0, (34a)

elm(z → ∞) = k−1/2
m ziZ/km eiz, (34b)

gives the asymptotic form of the outgoing wave in channel
(l, m), and

km =
√

2(E + mω). (35)

The branch of the square-root function meant here is defined
by a branch cut made along the negative imaginary semiaxis,
thus,

Rekm > 0 if ReE + mω > 0, (36a)

Imkm > 0 if ReE + mω < 0. (36b)

Conditions (36a) correspond to open channels. In this case, the
function elm(kmr) in Eq. (33) indeed represents an outgoing
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wave and the coefficient in Eq. (34b) is chosen such that
for real E the flux in this wave is equal to unity. Conditions
(36b) correspond to closed channels. In this case, the func-
tion elm(kmr) exponentially decays as r grows. Substituting
Eqs. (32b), (33), and Ylm(�) = eimϕ�lm(θ ) into Eq. (25) gives

φ(r)|r→∞ = r−1
∑
lm

flmYlm(�)elm(kmr) (37a)

= r−1
∞∑

m=−∞
eimϕ fm(θ )elm(kmr), (37b)

where

fm(θ ) =
∞∑

l=|m|
flm�lm(θ ). (38)

This is the form of the outgoing-wave boundary conditions for
Eq. (20) we wished to obtain. The outgoing flux in Eq. (37a)
is explicitly decomposed into decoupled ionization channels
labeled by (l, m).

Equations (26) supplemented by the regularity (30) and
outgoing-wave (33) boundary conditions constitute an eigen-
value problem. The SSs are the solutions to this problem.
For F = 0, the Hamiltonian in Eq. (20) reduces to that in
Eq. (4) plus an additional term −ωl̂z. Since bound states of
the field-free atom are eigenfunctions of this term, each bound
state turns into an SS as the field is turned on. Note that the
opposite is not true: the set of SSs is infinite and may contain
states which do not have counterparts in the absence of the
field, as is the case for atomic SSs in a static electric field
[78]. We are interested in the SS satisfying

E |F→0 = E0 − m0ω, φ(r)|F→0 = φ0(r), (39)

where E0, m0, and φ0(r) characterize the unperturbed bound
state defined by Eqs. (4)–(6). This bound state can also be
constructed using the approach discussed above. For F > 0,
the SS eigenvalue E becomes complex. Presented in the form

E = E − i
2� (40)

it defines the energy E and ionization rate � of the state. The
SS eigenfunction φ(r) is normalized by∫

φ(r, θ,−ϕ)φ(r, θ, ϕ) dr = 1. (41)

This normalization condition is derived in Appendix A. The
potential in Eq. (22) is even with respect to the reflection y →
−y, so the phase of the adiabatic channel functions can be
chosen in such a way that


∗
ν (θ, ϕ; r) = 
ν (θ,−ϕ; r). (42)

We adopt this phase convention. For consistency of Eqs. (29b)
and (32b) with Eq. (42), we adopt the Condon-Shortley phase
convention for spherical harmonics Y ∗

lm(θ, ϕ) = Ylm(θ,−ϕ)
[79]. Then, substituting expansion (25) into Eq. (41) and using
Eq. (24), we can rewrite the normalization condition as

∑
ν

∫ ∞

0
f 2
ν (r) dr = 1. (43)

For F = 0, the radial functions fν (r) are real and Eqs. (41)
and (43) comply with Eq. (6). For F > 0, they become com-

plex; note, however, that there is no complex conjugation in
Eq. (43).

From Eqs. (20) and (40), acting as in the derivation of the
continuity equation, we obtain

�|φ(r)|2 = ∇j(r), (44)

where

j(r) = −i

2
[φ∗(r)∇φ(r) − φ(r)∇φ∗(r)] − ωr sin θ |φ(r)|2eϕ

(45)
is the probability flux density in the state φ(r) in the RKH
frame and eϕ = − sin ϕ ex + cos ϕ ey is a unit vector in the
direction of increasing ϕ. Note that Eq. (45) differs from the
usual expression for flux in the L frame by the second term
which originates from the term −ωl̂z in Eq. (20). This term
describes rotation of the probability density |φ(r)|2 as a solid
body about the z axis in the RKH frame clockwise in its (x, y)
plane, which compensates the counterclockwise rotation of
the RKH frame. For F → 0, the imaginary part of fν (r) is
small and can be neglected on the left-hand side of Eq. (44)
(but not on its right-hand side). Integrating both sides of the
equation and using Eqs. (42) and (41), we obtain

�|F→0 =
∫

S
nj(r) dS

∣∣∣∣
r→∞

, (46)

where n = r/r, S is a sphere of radius r, and dS = r2d�.
Substituting here Eq. (37a) gives

�|F→0 =
∞∑

m=mmin

∞∑
l=|m|

�lm =
∞∑

m=mmin

�m, (47)

where

�lm = | flm|2, �m =
∞∑

l=|m|
�lm, (48)

and mmin is the lowest m satisfying the condition (36a). These
equations clarify the physical meaning of the coefficient flm as
the partial ionization amplitude in channel (l, m). Equations
(48) should be considered as the definitions of partial ioniza-
tion rates �lm and �m in channel (l, m) and all channels with
the same m, respectively, while the first equality in Eq. (47)
holds only in the weak-field limit and signifies that in this limit
the sum of all partial rates coincides with the total ionization
rate � defined by Eq. (40).

The eigenvalue E and the ionization amplitudes flm ex-
tracted from the eigenfunction φ(r) are the main properties
of the SS needed for applications. These properties for given
potential V (r), frequency ω, and field strength F should be
found by solving Eq. (20).

D. Observables

Having defined the SS satisfying Eqs. (39), we now show
that the ionization observables in the problem formulated in
Sec. II A can be expressed in terms of the properties of this
state. To find the observables, we need to return to the L frame.
The state which in the RKH frame has the form (19) in the
KH frame is given by (we restore subscripts of the electron
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coordinate)

ψKH(rKH, t ) = e−iEtφ(R̂(ωt )rKH) (49)

and in the L frame by

ψL(rL, t ) = exp

[
iv(t )rL − iv2

0t

2
− iEt

]
φ(R̂(ωt )rL − r0).

(50)
Comparing this with Eq. (7), we find

EL = E + Up + Mω, Up = v2
0

2
, (51a)


(rL, t ) = eiv(t )rL+iMωtφ(R̂(ωt )rL − r0), (51b)

where M = 0,±1, . . . . The terms involving M in Eqs. (51)
reflect the well-known nonuniqueness [80] of the eigenvalue
and eigenfunction characterizing the same Floquet state (7).
Note that there is no such an ambiguity for the SS (19).
By setting M = m0, we select the particular EL and 
(rL, t )
which converge to E0 and φ0(rL) at F → 0, respectively [see
Eq. (39)]. In this case, the difference between ReEL and E0

for F > 0 gives the Stark shift in the L frame. Note that
the difference is a sum of the Stark shift in the RKH frame
ReE − E0 + m0ω and the ponderomotive energy Up which
compensates the Stark shift of the continuum threshold [56]
in the RKH frame. Since ImEL = ImE , the total ionization
rate in the L frame coincides with that in the RKH frame and
is equal to �.

We now turn to the PEMD. It should be noted that Floquet
states in a purely monochromatic field are not observable in
the exact sense of the word, and the same applies to the SSs
introduced in the preceding section. However, under a certain
approximation, these states define an observable PEMD. Let
us consider a finite circularly polarized pulse in which the
field amplitude is adiabatically turned on during the time
interval −�T < t < 0, stays constant at 0 < t < T , and then
is adiabatically turned off at T < t < �T . We assume that
the pulse duration T tends to infinity, which is specified by
the first of the conditions

T 
 max(�T, 2π/ω), �T � 1, (52)

and, at the same time, the second condition holds. These
conditions can be satisfied simultaneously only for sufficiently
weak fields F , and hence small ionization rates �, which is the
approximation mentioned above. The same approximation is
meant in the first equality in Eq. (47). Under these conditions,
we can introduce the probability of ionization per unit time
p(k)dk into states with photoelectron momentum k in the
interval dk, where the differential ionization rate p(k) referred
to in the following as the PEMD is defined by

p(k) = 1

T
|I (k)|2

∣∣∣∣
T →∞

. (53)

Here I (k) is the ionization amplitude for the pulse described
above given by

I (k) = −i
∫ ∞

−∞
dt

∫
e−iS(rL,t ;k)V (rL)ψL(rL, t )drL, (54)

where

S (rL, t ; k) = [k + v(t )][rL − r(t )] − 1
2

(
k2 + v2

0

)
t (55)

and ψL(rL, t ) is the corresponding solution to Eq. (1) which at
t = −�T coincides with the initial bound state (5). Equation
(54) was derived for finite-range potentials in Ref. [14]; we
show in Appendix B that it remains applicable for finding
the PEMD for potentials with a Coulomb tail. We use this
equation to express p(k) in terms of the properties of the SS
satisfying Eqs. (39). Let us first transform the spatial integral
in Eq. (54) to the KH frame

I (k) = −i
∫ ∞

−∞
dt

∫
e−ikrKH+ik2t/2

× V [rKH + r(t )]ψKH(rKH, t )drKH. (56)

Using Eq. (15) and integrating by parts, we obtain

I (k) = −i

2

∫ ∞

−∞
dt

∫
SKH

e−ikrKH+ik2t/2nKH

× [∇KH + ik]ψKH(rKH, t )dSKH|rKH→∞. (57)

Here nKH = rKH/rKH, SKH is a sphere of radius rKH, and
dSKH = r2

KHd�KH. Taking into account Eq. (53), we are in-
terested only in the part of the ionization amplitude which
diverges as T → ∞. To find this part, the integration over
time in Eq. (57) can be restricted to the interval 0 < t < T .
Then the function ψKH(rKH, t ) in the integrand can be substi-
tuted from Eq. (49). Using Eq. (37b) and ϕRKH = ϕKH − ωt ,
we find

ψKH(rKH, t )|rKH→∞

= e−iEt
∞∑

m=−∞
eim(ϕKH−ωt ) fm(θKH)elm(kmrKH). (58)

The integration over SKH in Eq. (57) is performed using the
relation∫

e−ikrA(n)d�|r→∞ = 2iπ

kr
[e−ikrA(nk ) − eikrA(−nk )],

(59)
where n = r/r, nk = k/k, and A(n) is a smooth function of n.
Substituting the result into Eq. (53) and integrating over time
using

1

T

∫ T

0
eiEt dt

∫ T

0
e−iE ′t ′

dt ′|T →∞ = 2πδ(E ), E = E ′

(60a)

= 0, E = E ′ (60b)

we finally obtain

p(k) = (2π )3

k2

∞∑
m=mmin

δ(k − km)pm(θk ), (61)

where

pm(θk ) = | fm(θk )|2, (62)

and �k = (θk, ϕk ) are spherical angles defining the direction
of k in the L frame. Note that the PEMD (61) does not
depend on ϕk , i.e., is axially symmetric about the kz axis.
Let us emphasize that Eq. (61) holds only in the limit F → 0
implied in the derivation. On the other hand, Eq. (62) should
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be considered as the definition of pm(θk ) for any F , similar to
Eqs. (48). Using Eqs. (38) and (48), we find∫

pm(θk )d�k = �m. (63)

Taking into account the δ function in Eq. (61), this relation
indicates that in the weak-field limit �m has the meaning of
the rate of m-photon ionization. Using Eq. (47), we find∫

p(k)
dk

(2π )3
= �|F→0, (64)

that is, in the same approximation, integrating the PEMD over
the photoelectron momentum yields the total ionization rate,
as expected. Thus, all the observables are expressed in terms
of the SS eigenvalue E and partial ionization amplitudes flm.

III. ILLUSTRATIVE CALCULATIONS AND DISCUSSION

To illustrate the theory, we present calculations for a spher-
ically symmetric finite-range potential

V (rL) = −V0e−r2
L . (65)

More realistic potentials with a Coulomb tail will be treated
elsewhere. This potential satisfies Eq. (2) with Z = D = 0.
We set V0 = 3.339 223 921 5, then it supports only one bound
state with zero angular momentum and energy E0 = −0.5.
This state has the form (5) with φ0(rL, θL) independent of
θL and m0 = 0. We consider the SS originating from this
state as the field F is turned on. To construct the SS, we
solve Eq. (20) using the adiabatic expansion (25) implemented
in a numerical procedure described in Appendix C. In this
procedure, the solution to Eq. (20) for a given frequency ω is
obtained starting from the unperturbed bound state for F = 0
and incrementing the field strength by small steps in such a
way that at each step the solution changes very little, which
is a numerical implementation of the analytic continuation
in F . We present illustrative results for two frequencies, ω =
0.1 and 0.3, both being smaller than the field-free ionization
potential |E0|, so that one-photon ionization is not possible.
For each of the frequencies, we consider three representative
values of F , namely, F = 0.01, 0.03, and 0.1 for ω = 0.1
and F = 0.03, 0.1, and 0.3 for ω = 0.3. In both cases, the
Keldysh parameter γ = κω/F decreases from 10 to 1 as F
grows, where κ = √

2|E0|. At least for the lower frequency,
this signifies a transition from perturbative (multiphoton) to
the onset of adiabatic (tunneling) ionization regime. Below
we discuss basic quantities of the theory defining the SS and
the ionization observables. As in Sec. II C, in this section we
omit the subscript of the electron coordinate rRKH in the RKH
frame.

A. Adiabatic potentials

We begin with the adiabatic potentials defined by Eq. (23).
In the present model the potential in Eq. (22) is even with
respect to the reflection z → −z, and hence the adiabatic
states are either even or odd functions of z. The SS originating
from the ground state in the potential (65) is an even function
of z. For this SS, only even adiabatic states are present in the

expansion (25). We therefore discuss adiabatic potentials only
for even states.

The behavior of these potentials as functions of r is illus-
trated in Figs. 1 and 2. At r → 0, all potentials diverge ∝r−2

[see Eq. (29a)], except the lowest one (shown by the blue line)
for which l = 0. The adiabatic potential curves cannot cross;
the degeneracy of the eigenvalues of the adiabatic Hamil-
tonian (22) would mean that it possesses some continuous
symmetry, which is generally not the case for F > 0. As r
grows, each potential passes through an infinite number of
avoided crossings. Some of the avoided crossings are suffi-
ciently broad and can be resolved in the figures, however,
most of them are very sharp and look like real crossings.
Being smoothly continued through such “crossings,” adia-
batic potentials turn into diabatic potentials. To highlight this
behavior, the three lowest adiabatic potentials are shown by
colored (blue, green, and orange) lines. The nonadiabatic cou-
plings (27) are localized near avoided crossings. The motion
in r described by Eqs. (26) through broad avoided cross-
ings proceeds adiabatically, that is, without a change of the
adiabatic state. Through sharp avoided crossings it proceeds
diabatically, that is, a nonadiabatic transition between the
two adiabatic states avoiding crossing occurs with probability
close to unity. All these features are well known from the
theory of nonadiabatic transitions (see, e.g., Refs. [81,82])
and are common to other physical systems studied by
the method of adiabatic expansion in different coordinates
[31–33,60–64,66,67,69–71].

At r → ∞, the nonspherical part of the potential in
Eq. (22) vanishes [see Eq. (31)]. As a result, all avoided
crossings become very sharp and the diabatic states become
decoupled. The diabatic potentials and channel functions in
this limit are given by Eqs. (32a) and (32b), respectively.
These states define the ionization channels in which the outgo-
ing flux in Eq. (37a) is decomposed. They are labeled by ν =
(l, m). Note that these quantum numbers are conserved along
diabatic potentials, but change abruptly at avoided crossings
along adiabatic potentials, which explains the need of switch-
ing from the adiabatic to the diabatic basis. As r grows, each
diabatic potential converges to a constant −mω giving the
threshold energy for the corresponding channel [see Eq. (35)].
The threshold energies depend only on m = 0,±1, . . . and
are degenerate in l = |m|, |m| + 1, . . . . Thus, from the view-
point of scattering theory, there are infinitely many equidistant
infinitely degenerate thresholds in the present problem.

As can be seen from Figs. 1 and 2, at large r the density
of adiabatic states peaks along a family of smooth lines in the
(r,U ) plane. This feature can be understood using Eq. (32a).
Consider a subset of diabatic potentials with l and m related
by l + m = n, where n = 0, 1, 2, . . . is fixed. Substituting
m = −l + n into Eq. (32a) and differentiating in l , we find
a minimum at l = ωr2 − 1/2 given by

U env
n (r) = −ω2r2

2
+

(
n + 1

2

)
ω − 1

8r2
. (66)

This envelope function bounds the subset of potentials from
below. Each potential curve from the subset touches the cor-
responding envelope before converging to its threshold at
r → ∞. For channel functions which are even in z the sum

023110-7



KJELLSSON LINDBLOM, TOLSTIKHIN, AND MORISHITA PHYSICAL REVIEW A 104, 023110 (2021)

FIG. 1. Adiabatic potentials defined by Eq. (23) for ω = 0.1 at three representative field strengths indicated in the figure. r0 = 1, 3, and
10 for the three values of F , respectively. The three lowest potentials are shown by solid colored (blue, green, and orange) lines, the higher
potentials are shown by solid gray lines. The dashed (red) line shows the lowest envelope function defined by Eq. (66) with n = 0. The
horizontal dashed (black) line shows the real part E of the SS eigenvalue (40).

l + m is even, so there are only subsets with n = 0, 2, 4, . . . .
The envelopes for these subsets are seen as the lines along
which the density of adiabatic states peaks. The lowest of
them with n = 0 is shown by the thick dashed (red) line.

The origin of the L frame, where the potential (65) is cen-
tered, in the RKH frame is located at r = −r0 = −(r0, 0, 0)
[see Eq. (20)], where r0 = F/ω2. The presence of the potential
well is reflected in the behavior of the adiabatic potentials near
r = r0. In particular, the lowest adiabatic potential forms a
well in this region. At F = 0, this well is centered at r = 0.
As the field F grows for a fixed ω, r0 grows, and the well
moves to the right. This potential well supports the bound
part of the SS we are interested in. The real part of the SS
eigenvalue (40) is shown by the horizontal dashed (black)
line superimposed on the potential. Note that the well slides
down along the lowest envelope (66) as F grows, remaining

below the envelope. Thus, the variation of E with F can be
approximately described by two effects: a shift of the well
and a shift of the energy level in the well. The former shift
can be estimated by substituting r = r0 into the first term in
Eq. (66), which gives −Up. This shift is compensated by the
ponderomotive term in Eq. (51a). The latter shift amounts to
the Stark shift in the L frame. The decay of the SS proceeds
in two steps involving different mechanisms. At the first step,
tunneling to the right through a barrier in the lowest adiabatic
potential occurs. As F grows, the potential barrier becomes
lower and eventually disappears; in this case over-the-barrier
ionization occurs at the first step. At the second step, the
outgoing flux is distributed among the different open channels
as it propagates to the asymptotic region, and the final distri-
bution is determined by nonadiabatic couplings at numerous
avoided crossings encountered on the way. Thus, the behavior

FIG. 2. Similar to Fig. 1, but for ω = 0.3. In this case r0 ≈ 0.333, 1.11, and 3.33 for the three values of F , respectively.
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FIG. 3. Trajectory traced by the energy eigenvalue E of the dom-
inant SS as F grows from 0 to 0.1 at ω = 0.1. Some selected values
of F are indicated by the circles. The vertical dashed lines show
branch cuts beginning at the threshold energies −mω. The color of
the line showing the trajectory changes to a lighter nuance each time
the trajectory jumps to another branch of E crossing a branch cut.
The inset shows a comparison of EL obtained from Eq. (51a) (solid
black line) with the energy eigenvalue of the corresponding SS in a
static electric field [31] (dashed red line) in the same interval of F .

of the adiabatic potentials indeed suggests a qualitative picture
explaining the very existence of the SS and the dynamics of
its decay.

B. Energy eigenvalue

We next discuss the SS energy eigenvalue E . We consider
it at a fixed frequency ω as a function of the field strength
F . Equation (20) supplemented by regularity and outgoing-
wave boundary conditions defines E as a multivalued analytic
function of F . In view of Eq. (51a), the structure of the
Riemann surface of this function coincides with that of the
Floquet eigenvalue in a circularly polarized field [83,84]. We
are interested in the branch of this function satisfying the first
of Eqs. (39). As F varies, E moves along a trajectory in the
complex energy plane. This trajectory is illustrated in Figs. 3
and 4. Let us follow it starting from E = E0 at F = 0. As F
begins to grow, the eigenvalue shifts to the left (the energy
E of the SS shown by the horizontal dashed line in Figs. 1
and 2 shifts downwards) and acquires a negative imaginary
part defining the ionization rate � of the state [see Eq. (40)].
The vertical dashed lines show the branch cuts beginning
at the threshold energies −mω and made according to the
rule formulated below Eq. (35). At a certain value of F the
trajectory encounters the first branch cut. To the left of this
cut the corresponding channel becomes closed. The analytic
continuation of E further in F along the same sheet of the Rie-
mann surface gives km for this channel with the sign of Imkm

opposite to that required in Eq. (36b). The SS analytically
continued through a branch cut is said to become a shadow
state [85,86]. To fulfill the conditions (36), the trajectory must
jump at the cut to another branch of E represented by another
sheet of the Riemann surface. This situation is repeated as

FIG. 4. Similar to Fig. 3, but for F growing from 0 to 0.3 at
ω = 0.3. The inset is a closeup of a tiny region shown by the red
square near the point where the trajectory crosses the branch cut
beginning at E = −0.9.

the trajectory encounters the second branch cut, etc. The SS
which is analytically continued in F between the branch cuts,
but discontinuously jumps to another sheet at the cuts in such
a way that the conditions (36) remain fulfilled is called the
dominant state [18]. The trajectory traced by the eigenvalue of
the dominant state is shown in the figures. For both frequen-
cies considered, this trajectory looks like a smooth continuous
line, but it is not. To emphasize the fact that it is discon-
tinuous at the branch cuts, the color of the line showing the
trajectory is changed to a lighter nuance each time it crosses
a cut.

The jumps of the eigenvalue E of the dominant SS at the
branch cuts depend on ω and become smaller as ω decreases.
Thus, for ω = 0.1 and 0.3 the jumps occur in the seventh and
fourth significant digit of E , respectively. The behavior of E
discussed above, including a jump, is illustrated in more detail
in the inset of Fig. 4. Here, a tiny region near the point where
the trajectory crosses the second (counting to the left from
E = E0) branch cut indicated by the red square is zoomed in.
The darker solid line shows the eigenvalue of the dominant SS
approaching the cut as F grows. Being analytically continued
in F to the left of the cut, this SS becomes a shadow state; its
eigenvalue is shown by the darker dashed line. The eigenvalue
of the dominant SS to the left of the cut is shown by the lighter
solid line. Being analytically continued in F to the right of
the cut, this SS turns into another shadow state; its eigenvalue
is shown by the lighter dashed line. The dashed lines start
to deviate more and more from the solid lines as they are
continued further. The trajectory of the dominant eigenvalue
jumps from the darker to the lighter solid line as it crosses the
cut. A similar discontinuity of the trajectory occurs at each
branch cut.

In the limit ω → 0, the jumps disappear and the trajectory
becomes continuous. In this case, the Floquet eigenvalue EL

given by Eq. (51a) with M = 0 coincides with the energy
eigenvalue of the corresponding SS in a static electric field
[31]. The trajectories of the two eigenvalues are compared
in the inset of Fig. 3. Note that the ponderomotive energy in
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FIG. 5. Maps of the flux (45) in the (x, y) plane of the RKH frame for ω = 0.1 at three field strengths F indicated in the figure. Color
shows (on a base 10 logarithmic scale) the magnitude of j(r) while arrows indicate its local direction. The white line shows a classical trajectory
defined by Eq. (67) which describes the motion of an electron after tunneling in the adiabatic regime.

Eq. (51a) compensates the major part of the variation of ReE
with F , so that ReEL varies in a much narrower interval. The
results for ω = 0.1 are seen to be not very far from the results
for a static field. Note that the ionization rate at the same field
in the static case is smaller.

C. Flux

We next discuss the structure of the probability flux density
(45) defined by the SS eigenfunction. The map of the flux j(r)
in the (x, y) plane is illustrated in Figs. 5 and 6. The distribu-
tion of its magnitude is shown by color, the arrows indicate
its local direction. At weak fields, the distribution of |j(r)|
is localized in the region of localization of the unperturbed
bound state seen as the bright (red) spot at the center of the
left panels in the figures. This region is centered at r = −r0,
and hence is slightly shifted to the left from the origin. Its
radius can be estimated as r ∼ rt , where rt ≈ 1.38 is the
radial turning point for the unperturbed bound state defined by
V (rt ) = E0. Outside this region, the flux isotropically decays
as r grows in the plane. At stronger fields, the relative weight
of the central maximum in the distribution of |j(r)| becomes
smaller and there appears a ridge at larger r having the shape
of an unwinding spiral. The arrows show that, independently
of the value of F , the flux outside the central region circulates
about the origin clockwise and has only a small outgoing

component directed radially from the origin. Let us discuss
these features in more detail.

Some of them can be understood using Eq. (45) and the
asymptotic form (37a) of the SS eigenfunction. Regarding
Eq. (37a), it should be noted that this equation applies at
r > r0 + a, where a ∼ 1 is the radius of the potential (65);
this condition is satisfied outside the central bright spot in
the figures. Furthermore, the asymptotic momenta (35) for
open channels have negative imaginary parts since ImE < 0
[see Eq. (40)]. Thus, the radial functions elm(kmr) for open
channels in Eq. (37a) exponentially grow at r → ∞. How-
ever, for the present values of ω and F the imaginary parts of
km are rather small, so this growth does not reveal itself in the
region shown in the figures and we do not take it into account
in the discussion.

We first analyze what follows from Eqs. (45) and (37a) for
the distribution of the direction of the flux. Consider the two
terms in Eq. (45) separately. The first term has both radial and
circular components parallel to the local unit vectors er = r/r
and eϕ and originating from the differentiation of Eq. (37a)
in r and ϕ, respectively. The radial component is directed
outwards and decays ∝r−2 as r grows; it defines the outgoing
flux. The circular component is directed counterclockwise
since m > 0 for open channels in Eq. (37a), and decays ∝r−3.
The second term has only a circular component, and hence
does not contribute to the outgoing flux. This term circulates

FIG. 6. Similar to Fig. 5, but for ω = 0.3.
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clockwise and decays ∝r−1. Thus, the second term in Eq. (45)
dominates at sufficiently large r, which explains the almost
circular clockwise direction of the arrows in Figs. 5 and 6.

Let us turn to the distribution of |j(r)|. At weak fields,
the ionization amplitudes flm in Eq. (37a) rapidly decay as
m � mmin and l � m grow, where mmin > 0 is the smallest
m satisfying the condition (36a). In this case, the dominant
contribution to the flux comes from one open channel with
l = m = mmin. If only this channel is retained in Eq. (37a),
then the radial component of the first term in Eq. (45) and
the second term giving the dominant contribution to the circu-
lar component of the total flux do not depend on ϕ, which
explains the isotropy of the distributions shown in the left
panels of the figures. As F grows, | flm| as a function of l
and m attains its maximum still at l = m, but this maximum
is shifted to larger m = mad > mmin (see below and the next
subsection). In this case, many open channels with l and m
near the maximum give comparable contributions to the flux,
and Eqs. (45) and (37a) become less transparent, unless the
dependence of flm on l and m is known analytically.

To understand the origin of the spiral ridge emerging in
the distribution of |j(r)| at stronger fields, let us discuss this
distribution in the adiabatic regime, that is, for ω → 0 and
F = O(ω0) [14]. We temporarily return to the L frame at
time t = 0, when the x and y axes of the RKH frame are
parallel to the corresponding axes of the L frame. In the
adiabatic regime, the release of an electron from the parent
atom at t = 0 occurs by tunneling in a static electric field F(0)
equal to the instantaneous value of the rotating field (3). The
exact quantum dynamics of the electron after tunneling can
be described in terms of its classical motion in the field (3)
[87]. The characteristic spatial extent and velocity of classical
trajectories in the adiabatic regime are much larger than the
size of the atom and the velocity the electron may have after
tunneling [14]. Thus, only trajectories close to the one which
starts at the origin with zero initial velocity are involved in the
description. For the present field (3), this trajectory in the L
frame is given by r(t ) − r(0) − v(0)t , where v(t ) and r(t ) are
the velocity and coordinate for the reference trajectory defined
by Eqs. (12). In the RKH frame, this trajectory lies in the (x, y)
plane and is described by

x(t ) = −r0 cos ωt − v0t sin ωt, (67a)

y(t ) = −v0t cos ωt + r0 sin ωt . (67b)

This trajectory is shown by the white spiral line in Figs. 5 and
6. It does not correlate with any feature in the distributions
of |j(r)| at weak fields shown in the left panels of the fig-
ures. However, it follows the spiral ridge in the right panels.
This indicates that the situation at stronger fields becomes
closer to the adiabatic regime and explains the origin of the
ridge. Without going into further details, we mention that
the distribution of |j(r)| across the ridge is determined by
the transverse momentum distribution of tunneled electrons
[31]. This distribution does not depend on time in the mo-
mentum domain, but spreads with time in the spatial domain.
Because of the spreading, at sufficiently large t along the tra-
jectory (67) adjacent turns of the spiral ridge begin to overlap,
which results in an interference substructure seen in the right
panels of the figures.

Having confirmed that in the adiabatic regime the ridge is
described by the trajectory (67), we can evaluate the value of
m = mad where | fmm| attains its maximum. Indeed, at large r,
retaining in Eq. (37a) only one term with l = m = mad and
substituting it into Eqs. (45), we obtain erj(r)/|φ(r)|2 ≈ kmad .
On the other hand, at large t the radial velocity for the trajec-
tory (67) is ṙ(t ) ≈ v0, where r(t ) =

√
x2(t ) + y2(t ). Thus, we

should have kmad ≈ v0. In the adiabatic regime EL = O(ω0),
v0 = O(ω−1), and Up = O(ω−2), hence, E = −Up + O(ω0).
From this we obtain mad ≈ 2Up/ω = O(ω−3). Note that in
this case mmin ≈ Up/ω ≈ mad/2. Let us recall that these es-
timates hold asymptotically in the limit ω → 0, when, in
particular, Up 
 EL ∼ E0, which is not quite the case for the
present field parameters.

D. Partial ionization rates

We next discuss partial ionization rates defined by
Eqs. (48). The distribution of the values of �lm in the (m, l )
plane is illustrated by colored circles in the bottom panels of
Figs. 7 and 8, while black circles in the top panels show the
dependence of �m on m. In the present model, flm and hence
�lm have nonzero values only for even l − m, therefore, for
a given m in the bottom panels l takes values m, m + 2, . . . .
The rates �lm decay as l � m grows for a given m. At weaker
fields they decay faster, so that the dominant contribution to
�m comes from �mm. At stronger fields they decay slower,
so that several �lm with l close to m contribute comparably
to �m. At weaker fields, the rate �m monotonically decays
as m grows starting from mmin. But at stronger fields it has a
maximum at some m > mmin; the position of this maximum in
the adiabatic regime was estimated in the end of the preceding
subsection.

According to Eq. (47), in the weak-field limit the sum
of �m should coincide with the total ionization rate �. We
have confirmed this limiting behavior. In fact, the ratio of
the sum of �m to � even for the strongest fields considered
here differs from unity only in the sixth and third decimal
places for ω = 0.1 and 0.3, respectively, so the first equality in
Eq. (47) holds rather well. We note that the total rate � is ob-
tained from the SS eigenvalue (40), while partial rates �lm and
�m are obtained from the ionization amplitudes flm defined
by the asymptotic behavior of the SS eigenfunction (37a).
Equation (40) defines � in terms of the imaginary part of a
complex number, and hence does not allow one to compute
sufficiently small total rates because of the finite precision
of numerical arithmetics. In particular, we could not obtain
converged value of � ∼ 10−14 for ω = 0.1 at F = 0.01. This
is a common problem of calculating small ionization rates by
methods relying on Eq. (40) [88]. Meanwhile, flm is obtained
by matching the inner and outer solutions (see Appendix C),
which enables one to compute almost arbitrarily small partial
rates �lm limited only by the smallest number that a computer
can treat. Thus, we have accurately calculated partial rates in a
huge range of their values, as shown in the figures. Using these
rates and Eq. (47) we obtain � ≈ 1.876×10−14 for ω = 0.1
at F = 0.01, which overcomes the numerical limitation of
Eq. (40). The results shown in Figs. 7 and 8 demonstrate the
computational power of the present approach.

023110-11



KJELLSSON LINDBLOM, TOLSTIKHIN, AND MORISHITA PHYSICAL REVIEW A 104, 023110 (2021)

FIG. 7. Partial ionization rates �m as a function of m (top panels) and �lm as a function of m and l (bottom panels) for ω = 0.1 at three
field strengths indicated in the figure. Color of the circles in the bottom panels shows (on a logarithmic scale) the value of �lm. mmin = 6, 6,
and 11 for the three values of F , respectively.

E. Photoelectron momentum distribution

We finally discuss the PEMD defined by Eq. (61). Because
of the δ functions in Eq. (61), it is more convenient to consider
the angular distributions pm(θk ) of photoelectrons which have
absorbed m photons defined by Eqs. (38) and (62). These
distributions are illustrated in Figs. 9 and 10. The values
of pm(θk ) as a function of m and θk are shown by color
along arcs of radius k = Rekm = Re

√
mω + E , where E is

the corresponding SS eigenvalue, in the plane with coordi-
nates kρ =

√
k2

x + k2
y = k sin θk and kz = k cos θk . Functions

pm(θk ) do not change under the transformation θk → π − θk

because only terms with even l − m are present in Eq. (38),
so we show only the kz > 0 half-plane. For a given m, the
distributions pm(θk ) monotonically decay as θk decreases
from π/2 (kz = 0) to 0 (kρ = 0). Their dependence on m
at θk = π/2 resembles that of �m shown in the top panels
of Figs. 7 and 8, which is expectable taking into account
Eq. (63).

It can be seen that the set of the distributions pm(θk ) con-
sidered as functions of kρ and kz has a smooth envelope. The
maximum of the envelope lies on the kρ axis and shifts to
larger kρ as F grows. Simultaneously, the envelope becomes
symmetric about its maximum and takes a bell-like shape (if
the kz < 0 half-plane is included). To understand these fea-
tures, we again consider the situation in the adiabatic regime.
In the limit ω → 0 and F = O(ω0), at sufficiently weak fields,
the PEMD (61) properly averaged over k (see below) is given
by [14,89,90]

p(k) = const × exp

[
− (kρ − kmax)2 + k2

z

σ 2

]
, (68)

where kmax = v0, σ = √
F/κ, and the coefficient does not

depend on kρ and kz. The distribution (68) is localized in the
photoelectron momentum space in a narrow pipe along a cir-
cle of radius kmax = O(ω−1) lying in the (kx, ky) plane and has
a Gaussian shape in a section across the circle with the width

FIG. 8. Similar to Fig. 7, but for ω = 0.3. In this case, mmin = 2, 2, and 4 for the three values of F , respectively.
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FIG. 9. Angular distributions pm(θk ) of photoelectrons which have absorbed m photons for ω = 0.1 at three field strengths indicated in the
figure. The values of pm(θk ) as a function of m and θk are shown by color (on a logarithmic scale) along arcs of radius k = Rekm in the plane
with coordinates kρ = k sin θk and kz = k cos θk . The numbers indicate several lowest values of m for open channels.

σ = O(ω0). The continuous distribution (68) is obtained by
averaging Eq. (61) over intervals of k larger than km+1 − km ≈
ω/v2

0 = O(ω2) but smaller than σ in the leading order of the
asymptotic expansion in ω. It was shown that in the first-order
approximation this distribution preserves its shape, but the
radius of the circle becomes kmax = v0 + κ

2ω/6F , where the
second term represents a nonadiabatic correction [34]. This
prediction of the adiabatic theory was validated numerically
by solving the TDSE [34] and confirmed experimentally [91].
Let us compare it with the results of the present station-
ary calculations. To this end, we replace each δ(k − km) in
Eq. (61) in the corresponding interval (km−1 + km)/2 < k <

(km + km+1)/2 by 2/(km+1 − km−1), so that the integral over
the interval remains equal to unity. The resulting stepwise
distribution as a function of kρ and kz is fitted by Eq. (68),
where the coefficient and kmax are treated as fitting parame-
ter. The thus-obtained values of kmax are shown in Fig. 11.
The upper panel shows the results for ω = 0.1 and varying
F , while the lower panel shows the results for F = 0.1 and
varying ω. The error bars represent 95% confidence levels
obtained by multiplying the estimated variances from the fit
with corresponding Student’s t values [92]. Some of the data
points at larger ω in the lower panel have larger error bars
because the maximum of the distribution in this case is close
to kρ = 0. The solid (black) and dashed (red) lines show
the predictions of the adiabatic theory in the leading-order

and first-order approximations, respectively. The first-order
theory better describes the numerical results, especially for
decreasing ω at a fixed F (in the bottom panel), where the
adiabatic approximation holds. Thus, Eq. (68) describing the
PEMD in the adiabatic regime qualitatively explains the shape
of the distributions shown in Figs. 9 and 10.

IV. CONCLUSION AND OUTLOOK

We have introduced and investigated atomic SSs in a ro-
tating electric field. These states are defined by Eq. (20)
subject to regularity and outgoing-wave boundary conditions.
They are related to Floquet states in a monochromatic circu-
larly polarized field. The circular polarization case occupies
a special position in the theory of Floquet states: as far as
we know, only in this case the Floquet eigenvalue problem
can be reduced to a single time-independent 3D equation
which is free from asymptotic couplings and hence allows
to explicitly formulate the outgoing-wave boundary condi-
tions. This justifies introducing a new name for the solutions
to Eq. (20). All the observables characterizing strong-field
ionization in a monochromatic circularly polarized field are
expressed in terms of properties of the SSs. We have pro-
posed and demonstrated an efficient method to calculate them
using powerful techniques of stationary scattering theory.
The method yields not only the SS eigenvalue defining the

FIG. 10. Similar to Fig. 9, but for ω = 0.3.
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FIG. 11. The radius kmax of the circle in the (kx, ky ) plane along
which the PEMD (61) is localized in the adiabatic regime as a
function of F at ω = 0.1 (top panel) and as a function of ω at F = 0.1
(bottom panel). Small solid circles with error bars show the values
obtained by fitting the present results for the PEMD by Eq. (68).
Solid (black) and dashed (red) lines show the predictions of the
adiabatic theory in the leading-order [14,89,90] and first-order (for
the present system κ = 1) [34] approximations, respectively.

Stark-shifted energy and total ionization rate of the state,
but also the properly normalized SS eigenfunction defining
partial ionization amplitudes and rates and the photoelectron
momentum distribution. These developments turn the SSs into
a useful tool for strong-field studies.

Let us mention two possible extensions of this work which
are of interest for applications. First, it would be instructive to
obtain the asymptotic solution to Eq. (20) in the weak-field
limit. The weak-field asymptotic theory of SSs in a static
electric field [90] works quantitatively for field strengths up
to F � 0.1 [93,94], which covers many of current strong-
field experiments, and was shown to be very helpful for the
analysis of experiments [40,41,95–97]. Second, as mentioned
in the Introduction, the SSs introduced in this work provide
an essential technical element needed for developing a theory
for finite circularly polarized pulses based on the asymptotic
expansion in the inverse number of optical cycles in the

pulse. Such a theory is needed, e.g., for investigating pulse
envelope effects in strong-field observables. Its development
is in progress.
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APPENDIX A: NORMALIZATION CONDITION
FOR THE SIEGERT STATES

SSs are generally defined as eigenstates of a Hamiltonian
Ĥ which are regular at any finite point and satisfy outgoing-
wave boundary conditions in the asymptotic region. In the
original paper [98], Siegert introduced such states for mo-
tion with zero angular momentum in spherically symmetric
potentials. Later, the concept was extended to states with
nonzero angular momentum in spherically symmetric poten-
tials [99,100], potentials without any symmetry [101], atoms
[31], and molecules [32,33] in a static electric field, and in this
paper we further extend it to atoms in a rotating electric field.
The complete set of SSs includes ordinary bound states of
the system, if they exist. For bound states, the eigenvalues are
real, the eigenfunctions exponentially decay in the asymptotic
region, and the normalization condition is usually presented
in the form ∫

φ∗(r)φ(r) dr = 1, (A1)

where the asterisk denotes complex conjugation. At the same
time, there exist infinitely many SSs whose eigenvalues are
complex and eigenfunctions exponentially grow in the asymp-
totic region. The normalization condition (A1) is not suitable
for such SSs because the integral diverges. How to properly
generalize Eq. (A1) to states with growing eigenfunctions is
one of the central issues in the theory of SSs.

A general approach to the derivation of the normaliza-
tion condition for SSs was proposed in Ref. [102]. Let
G(r, r′; E ) = 〈r|(Ĥ − E − i0)−1|r′〉 be the outgoing-wave
Green’s function for the Hamiltonian Ĥ . The approach of
Ref. [102] is based on the following two statements. First,

(E − λ)G(r, r′; λ)|λ→E = φ(r)φ̄(r′), (A2)

where φ(r) is the eigenfunction of Ĥ corresponding to the
eigenvalue E and φ̄(r) is an adjoint function. Note that
Eq. (A2) implies a certain normalization of φ(r). Second,
using the Hilbert identity and Eq. (A2) it can be shown that∫

φ̄(r)φ(r) dr = 1. (A3)

In view of this relation, the function φ(r) is said to be
normalized to unity. To specify the normalization condition
(A3) one needs to find the adjoint function φ̄(r). This can
be done by establishing a relation between G(r, r′; E ) and
G(r′, r; E ). For example, for all Hamiltonians considered in
Refs. [31–33,98–101] the Green’s function is symmetric
with respect to permutation of its arguments, G(r, r′; E ) =
G(r′, r; E ), and hence φ̄(r) = φ(r), as follows from Eq. (A2).
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Thus, for such Hamiltonians SSs should be normalized
by Eq. (A3) without the bar. Note that in this case the
asterisk in Eq. (A1) can be omitted because eigenfunctions
of bound states can be chosen to be real, so Eq. (A1)
reduces to Eq. (A3). For SSs with growing eigenfunctions
the integral in Eq. (A3) also diverges. However, it can be
regularized. Indeed, many different techniques to regularize
the normalization integral yielding the same final result were
proposed [31,102–107].

Let us apply the same argumentation to the Hamiltonian
in Eq. (20). The potential energy term does not modify the
permutation properties of the Green’s function, so let us omit
this term and consider the Green’s function defined by[

−1

2
� − ωl̂z − E

]
Gω(r, r′; E ) = δ(r − r′). (A4)

The outgoing-wave solution to this equation is given by

Gω(r, r′; E ) = e−iπ/4

(2π )3/2

∫ ∞

0
exp

[
i(r2 + r′2 − 2zz′)

2t

− iρρ ′

t
cos(ϕ − ϕ′ + ωt ) + iEt

]
dt

t3/2
, (A5)

where ρ = r sin θ . This function satisfies Gω(r′, r; E ) =
G−ω(r, r′; E ), and hence so does the Green’s function for the
Hamiltonian in Eq. (20). Let Eω and φω(r) denote an eigen-
value and the corresponding eigenfunction of Eq. (20) for a
given ω. On the one hand, taking into account the axial sym-
metry of the potential in the L frame, we have E−ω = Eω and
φ−ω(r) = φω(r, θ,−ϕ). On the other hand, using Eq. (A2), we
obtain φ̄ω(r) = φ−ω(r). Thus, φ̄ω(r) = φω(r, θ,−ϕ), which
leads to the normalization condition (41). We mention that,
taking into account Eq. (51b), this complies with the normal-
ization condition for Floquet states in a circularly polarized
laser field [18,108].

APPENDIX B: ON THE DEFINITION
OF THE IONIZATION AMPLITUDE

In this Appendix we work in the laboratory frame and
omit the subscript L. Consider Eq. (1) for a finite pulse
of arbitrary polarization. We assume that F(t < tin) = F(t >

tfin) = 0. Let ψ (r, t ) be the solution to Eq. (1) satisfying the
initial condition ψ (r, t < tin) = e−iE0tφ0(r). Let ψ

(±)
k (r) =

〈r|k±〉 denote in (+) and out (−) scattering states of the
field-free atom with asymptotic momentum k normalized by
〈k ± |k′±〉 = (2π )3δ(k − k′). Then the ionization amplitude
is defined by

A(k) =
∫ [

ψ
(−)
k (r)e−ik2t/2]∗

ψ (r, t )dr

∣∣∣∣
t>tfin

. (B1)

Meanwhile, in Ref. [14], the ionization amplitude was defined
by

I (k) =
∫

[eikr−ik2t/2]∗χ (r, t )dr

∣∣∣∣
t→∞

, (B2)

where χ (r, t ) = (1 − P̂b)ψ (r, t ) and P̂b is the projector onto
the subspace of bound states of the field-free atom. In partic-
ular, the latter definition was used as the starting point in the
derivation of Eq. (54). Since I (k) is obtained by projecting on

a plane wave eikr = 〈r|k〉 instead of an exact scattering state
ψ

(−)
k (r), it is not clear how it is related to A(k), especially for

potentials with a Coulomb tail. Let us discuss this issue.
Let Ĥ = Ĥ0 + V̂ denote the Hamiltonian in Eq. (4),

where Ĥ0 = p̂2/2. We can rewrite Eq. (B1) as A(k)=〈k−|
eiĤt |χ (t )〉|t>tfin . Thus,

|χ (t )〉|t>tfin = e−iĤt
∫

A(k)|k−〉 dk
(2π )3

. (B3)

Møller’s wave operators are defined by [109]

�̂± = lim
t→∓∞ exp(iĤt ) exp[−iĤ0t − is(t, (2Ĥ0)1/2)], (B4)

where the term with

s(t, k) = −sgn(t )
Z

k
ln(2k2|t |) (B5)

is a modification introduced by Dollard [110] accounting for
the Coulomb tail of the potential [see Eq. (2)]. These operators
transform plane waves into scattering states |k±〉 = �̂±|k〉.
Rewriting Eq. (B2) as I (k) = 〈k|eiĤ0t |χ (t )〉|t→∞, substituting
Eq. (B3), and using Eq. (B4), we obtain

I (k) = e−is(t,k)A(k). (B6)

Thus, for finite-range potentials with Z = 0 the amplitudes
I (k) and A(k) coincide with each other, while for Coulomb-
tail potentials with Z = 0 they differ by a time-dependent
phase factor. In both cases |I (k)|2 = |A(k)|2, so the two am-
plitudes yield the same PEMD. We mention that the last
equality was verified by numerical calculations [111].

APPENDIX C: NUMERICAL PROCEDURE

To find the SS eigenvalue E and eigenfunction φ(r)
defining the ionization amplitudes flm for given potential,
frequency, and field strength we need to solve Eq. (20) sub-
ject to the regularity and outgoing-wave boundary conditions
formulated in Sec. II C. Our approach is based on the adiabatic
expansion (25). However, Eqs. (26) are not convenient for im-
plementing this expansion in numerical calculations because
of the many very narrow peaks of nonadiabatic couplings (27)
at avoided crossings of the adiabatic potentials (see Figs. 1
and 2). To overcome this difficulty, we implement Eq. (25)
by means of the slow variable discretization (SVD) method
[65] in combination with the R-matrix propagation technique
[77]. This approach has proven to be very efficient in treating
various scattering processes [31,32,68,71,112–117]. Here, we
outline basic steps of the present numerical procedure.

Adiabatic basis. The adiabatic potentials Uν (r) and channel
functions 
ν (�; r) are obtained by solving Eq. (23) using an
expansion in spherical harmonics Ylm(�). The first two terms
in Eq. (22) are diagonal in this basis. The matrix of the poten-
tial is calculated numerically using Gaussian quadratures in
θ and ϕ. For potentials invariant under the reflection z → −z
the solutions to Eq. (23) are either even or odd with respect to
θ → π − θ . In this case, only harmonics with either even or
odd l − m should be retained in the expansion, respectively,
which reduces the size of the resulting algebraic eigenvalue
problem by half. The channel functions are normalized using
Eq. (24); their phase is chosen to satisfy Eq. (42).
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Inner region 0 � r � rc. In this region, Eq. (20) is treated
without any approximations. The radial axis is divided into
Nsec equal sectors with boundaries at

0 = r̄0 < r̄1 < · · · < r̄Nsec = rc. (C1)

All sectors are treated similarly. Consider the kth sector

r̄− ≡ r̄k−1 � r � r̄k ≡ r̄+. (C2)

The R-matrix basis in the sector is defined by[
−1

2

∂

∂r
r2 ∂

∂r
+ L̂ + r2(Û (r) − Ē )

]
φ̄(r) = 0, (C3)

where

L̂ = r2

2
[δ(r − r̄+) − δ(r − r̄−)]

∂

∂r
(C4)

is the Bloch operator [118]. To construct this basis, we intro-
duce a new variable x,

r(x) = s(xc + x), −1 � x � 1, (C5a)

s = r̄+ − r̄−
2

, xc = r̄+ + r̄−
r̄+ − r̄−

. (C5b)

Let xi and πi(x), i = 1, . . . , NDVR, be the Gauss-Legendre
quadrature points and discrete variable representation (DVR)
basis functions [119–122]. The solutions to Eq. (C3) are
sought in the form of the SVD expansion [65]

φ̄(r) =
NDVR∑
i=1

Nch∑
ν=1

ciνπi(x)
ν (�; ri), (C6)

where ri = r(xi ) and Nch is the number of adiabatic channels
included in the calculations. Substituting this into Eq. (C3)
leads to the algebraic eigenvalue problem

NDVR∑
j=1

Nch∑
μ=1

Ki jOiν, jμc jμ + r2
i [Uν (ri) − Ē ]ciν = 0, (C7)

where

Ki j = 1

2

∫ 1

−1

dπi

dx
(xc + x)2 dπ j

dx
dx, (C8a)

Oiν, jμ = 〈
ν (�; ri )|
μ(�; r j )〉. (C8b)

The matrix (C8a) representing the kinetic energy for the mo-
tion in r is known analytically [122]. The overlap matrix (C8b)
between adiabatic channels at different quadrature points is
calculated in the same way as the normalization integral in
Eq. (24). Let Ēn and cn

iν denote the eigenvalues and eigenvec-
tors of Eq. (C7) and φ̄n(r) denote the corresponding solution
to Eq. (C3), where n = 1, . . . , NSVD = NDVRNch. The solu-
tions are normalized by∫ r̄+

r̄−
r2dr

∫
φ̄n(r, θ,−ϕ)φ̄m(r, θ, ϕ)d�

= s
NDVR∑
i=1

Nch∑
ν=1

r2
i cn

iνcm
iν = δnm, (C9)

in accordance with Eq. (41).

Within the sector (C2), the solution to Eq. (20) can be
expanded in the R-matrix basis,

φ(r) =
NSVD∑
n=1

Cnφ̄n(r), (C10)

where

Cn = 1

2(Ēn − E )

Nch∑
ν=1

[
f̄ +
nνdν (r̄+) − f̄ −

nνdν (r̄−)
]
. (C11)

Here

f̄ ±
nν = r〈
ν (�; r)|φ̄n(r)〉|r=r̄± = r̄±

NDVR∑
j=1

Nch∑
μ=1

cn
jμπ j (±1)O±

ν, jμ

(C12)
are the coefficients in the adiabatic expansion of φ̄n(r) at the
boundaries of the sector [compare with Eq. (25)], where

O±
ν, jμ = 〈
ν (�; r̄±)|
μ(�; r j )〉 (C13)

are the overlap matrices between adiabatic channels at the
boundaries of the sector and quadrature points inside it, and

dν (r) = r

〈

ν (�; r)

∣∣∣∣∂φ(r)

∂r

〉
. (C14)

The surface amplitudes (C12) can be calculated using the
adiabatic and R-matrix bases, which have already been con-
structed. The coefficients (C11) additionally involve dν (r̄±)
defined by Eq. (C14) in terms of the solution (C10) itself; the
way of calculating these quantities is described below. Using
Eqs. (C9) and (C10), we obtain the norm of φ(r) within the
sector

Nk =
∫ r̄+

r̄−
r2dr

∫
φ(r, θ,−ϕ)φ(r, θ, ϕ)d� =

NSVD∑
n=1

C2
n .

(C15)
Note that there is no complex conjugation in the last expres-
sion, so Nk is generally complex.

Outer region rc � r. In this region, couplings between
adiabatic channels are neglected and the solution to Eq. (20)
is assumed to be given by Eqs. (37). The radial functions in
these expansions are defined by Eq. (34),

elm(z) = k−1/2
m (−2i)l+1−iZ/km zl+1eiz

× U (l + 1 − iZ/km, 2l + 2,−2iz), (C16)

where U (a, b, z) is a confluent hypergeometric function [123].
For potentials satisfying Eq. (2) with Z = 0 these functions
take the form

elm(z) =
√

πz

2km
il+1H (1)

l+1/2(z), (C17)

where H (1)
ν (z) is the Hankel function of the first kind [123].

Eigenvalue. The SS eigenvalue E is determined by the
requirement that the solution to Eq. (20) must satisfy the
regularity (30) and outgoing-wave (33) boundary conditions.
This requirement can be imposed, and hence the eigenvalue
found, without constructing the solution explicitly. Following
Ref. [124], we introduce the R matrix R(r; E ) defined by

f (r) = R(r; E )d(r), (C18)
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where f (r) and d(r) are vectors with components fν (r) and
dν (r), ν = 1, . . . Nch, defined by Eqs. (25) and (C14), respec-
tively. Using Eq. (C10), we obtain

R(r̄±; E )= ± R(±,±)−R(±,∓)[R(r̄∓; E ) ± R(∓,∓)]−1R(∓,±),

(C19)
where R(±,±) are matrices with elements

R(±,±)
νμ = 1

2

NSVD∑
n=1

f̄ ±
nν f̄ ±

nμ

Ēn − E
. (C20)

These equations implement the R-matrix propagation tech-
nique [77] for the present problem. Using them, we can
propagate the R matrix between the boundaries r̄± of a sector,
and hence through any sector in any direction. From Eq. (30)
we have

Rνμ(0; E ) = 0. (C21)

On the other hand, from Eq. (33) we find

Rνμ(rc; E ) = Rνδνμ,

Rlm = elm(z)

km[delm(z)/dz − elm(z)/z]

∣∣∣∣
z=kmrc

, (C22)

where ν = (l, m). Let r̄K be a boundary between sectors
somewhere inside the interval (C1). Starting from Eq. (C21)
and propagating the R matrix outwards to r̄K , we obtain
Rleft(r̄K ; E ) characterizing solutions to Eq. (20) satisfying
Eq. (30). Starting from Eq. (C22) and propagating the R
matrix inwards to r̄K , we obtain Rright(r̄K ; E ) characterizing
solutions to Eq. (20) satisfying Eq. (33). The solution we
seek must satisfy both boundary conditions. Furthermore, this
solution as well as its derivative in r must be continuous at
r = r̄K , which leads to the matching condition

det[Rleft(r̄K ; E ) − Rright(r̄K ; E )] = 0. (C23)

This equation defines the eigenvalue E . Having an initial
guess for E for given potential and field parameters (see
below), it can be solved iteratively using the Newton method
[125].

Eigenfunction and ionization amplitudes. The eigenvector
of the difference of the R matrices in Eq. (C23) corresponding
to the zero eigenvalue is proportional to d(r̄K ). The coeffi-
cient of proportionality is determined by the normalization
procedure discussed below. Let us temporarily disregard the
coefficient and assume that a properly normalized d(r̄K ) is
found from Eq. (C23). The vector d(r) can be propagated
between boundaries of a sector similar to Eq. (C19),

d(r̄±) = ∓[R(r̄±; E ) ∓ R(±,±)]−1R(±,∓)d(r̄∓). (C24)

Starting from d(r̄K ) and using Eq. (C24), we obtain d(r̄k ) for
all k = 0, 1, . . . , Nsec. These vectors complete the information
needed to construct the solution to Eq. (20) in the inner region
using Eq. (C10). The last of them, d(rc), defines the coeffi-
cients in Eqs. (37) giving the solution in the outer region,

flm = Rlmdlm(rc)

elm(kmrc)
. (C25)

Thus, the SS eigenfunction φ(r) is globally defined and the
ionization amplitudes flm found.

We now recall that the normalization condition (41) has
not been imposed yet. Using Eq. (C15), we obtain the norm
of φ(r) in the inner region:

Nin =
Nsec∑
k=1

Nk . (C26)

The norm in the outer region is obtained from Eq. (37a):

Nout =
Nch∑
lm

f 2
lm

∫ ∞

rc

e2
lm(kmr)dr. (C27)

For Z = 0, the integral here can be calculated analytically. For
Z = 0, it is calculated numerically by rotating the integration
path into the complex r plane, so that the integrand decays
as |r| grows [31]. The total norm is N = Nin + Nout. Thus,
the SS eigenfunction and ionization amplitudes found above
should be renormalized as φ(r) → N−1/2φ(r) and flm →
N−1/2 flm.

Numerical analytic continuation. The procedure described
above requires as an input information an initial guess for
the eigenvalue E . We adopt an approach in which the field
frequency ω is fixed and the field strength F is incremented by
small steps. We start from F = 0, in which case the solution
to Eq. (20) is given by Eqs. (39). At each step in F , the initial
guess is provided by the value of E found at the previous step.
The initial set of km is defined by Eqs. (35) and (36) with
E = E0 − m0ω. At each Newton iteration in E , whether for
the same F or after incrementing it, we choose the branch
of the square-root function in Eq. (35) closest to the value
of km at the previous iteration. If steps in F are sufficiently
small, this procedure realizes a numerical implementation of
the analytic continuation in F . Note that at any step in F the
procedure can change the variable and continue by increment-
ing ω at a fixed F . Thus, the SS can be constructed as an
analytic function of both F and ω.

The procedure begins at F = 0 with km satisfying Eqs. (36)
and, hence, at the initial stage, analytically continues the
dominant state [18]. As the eigenvalue crosses the first branch
cut it encounters in the complex E plane (see Figs. 3 and 4),
the corresponding channel becomes closed. However, further
analytic continuation yields a wrong sign for this channel
in Eq. (36b) because E has a negative imaginary part. In
other words, being analytically continued across the cut, the
dominant state turns into a shadow state [86]. To return to the
dominant state, the procedure jumps at the cut to another sheet
of the Riemann surface of E by finding a solution to Eq. (C23)
in the vicinity of the current one satisfying Eqs. (36). After the
jump, the solution is analytically continued until encountering
the next branch cut, etc.

Practical details. We finally discuss some details regarding
numerical parameters used to produce the present results.
The potential (65) satisfies |V (r > 7)| < 10−20. We set rc =
r0 + 7, which ensures that Eqs. (37) hold at r > rc with
high accuracy. The number of sectors Nsec in the inner re-
gion is set equal to the integer part of rc, so that the sector
length is close to 1. We use NDVR = 10 quadrature points
per sector. The matching condition (C23) is applied at a
sector boundary closest to r0 + 2. The number of adiabatic
channels Nch needed for convergence strongly depends on the
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field parameters. To accurately calculate adiabatic channels,
the basis must include all spherical harmonics with l � lmax,
|m| � l , and even l − m. The largest demand in this paper
is for ω = 0.08 and F = 0.1, which required Nch ≈ 2400
and lmax = 190. To prevent the loss of numerical accuracy
for such large values of l in Eqs. (C17) and (C27), we use

a multiple precision package MPFUN2015 [126]. The linear
algebra part of the calculations is implemented using routines
from LAPACK [127]. The overall accuracy of the calculations
is rather high, the relative errors of the resulting SS eigen-
value E and ionization amplitudes flm are ∼10−10 and ∼10−5,
respectively.
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