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Test for descriptions of relativistic spin dynamics by using ultraintense lasers
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The relativistic spin operator cannot be uniquely defined within relativistic quantum mechanics. Searching
for relativistic equations that describe both the evolution of the spin and its influence on the motion of particles
with spin represents a problem with almost centenary history. We develop a self-consistent module for modeling
relativistic particles with spin motion into three-dimensional particle-in-cell simulations, where the expression
of the spin-induced force can be chosen by various semiclassical models, such as the Frenkel and noncovariant
Derbenev-Kondratenko models. Through simulations, we propose a potential experimental scheme for observing
and testing theoretical descriptions on relativistic spin dynamics, where ultraintense lasers are used to collide
with relativistic electron beams. The basis for the scheme is that different models predict different transverse
polarization distributions of the scattered electrons after interactions, which can be measured in experiments.
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I. INTRODUCTION

The Nobel Prize in Physics 2018 was half awarded to
Gérard Mourou and Donna Strickland for their chirped pulse
amplification (CPA) technique [1] of generating short-pulse
ultraintense lasers. One groundbreaking application of the
CPA invention is offering the possibility of a new experi-
mental window into the largely unexplored world of strong
field quantum electrodynamics (QED) by using lasers with
unprecedented intensities. In view of this, many ultrahigh-
power laser facilities are under construction such as Extreme
Light Infrastructure (ELI) [2], Vulcan [3], Exawatt Center for
Extreme Light Studies (XCELS) [4], and Shanghai Superin-
tense Ultrafast Laser Facility (SULF) [5]. One of the most
important motivations of QED experiments using ultraintense
lasers is to achieve sufficiently clear observation of various
QED effects, allowing for detailed tests and comparison with
QED theoretical predictions that generally provide only unob-
servable probabilities.

Spin, as an intrinsic property of elementary particles, oc-
cupies a crucial position in QED [6–9]. In the nonrelativistic
regime, the spin dynamics can be simply described by the
nonrelativistic quantum mechanics (QM) [10], where the
spin is defined by the 2×2 Pauli matrices σi (i = 1, 2, 3),
corresponding to the classical spin vector s, whose compo-
nents represent the expectation values of the spin along each
of the axes. Basic notions of special and general relativ-
ity have been formulated before the discovery of spin, so
they describe the properties of space and time as they are
seen by spinless particles. It is natural to ask whether these
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notions remain the same if the spinless particle is replaced
by a more realistic particle with spin. Searching for the rel-
ativistic equations that describe both the evolution of the
particle spin and its influence on the motion of a particle with
spin represents a critical issue with almost centenary history
[11–22].

In principle, spin is naturally introduced into dynamics of
relativistic electrons through the Dirac equation [9]. However,
the key issue is that there is no universally accepted spin oper-
ator in the relativistic regime [23–28], resulting in obscureness
of spin-related theories sourced from relativistic quantum me-
chanics [29–32]. Thus more intuitive semiclassical models
based on relativistic generalization of the nonrelativistic semi-
classical spin model have attracted more attention because
the problem of the nonunique relativistic spin operator is
circumvented. For the evolution of relativistic spin, the pre-
cession of spin of relativistic electrons in uniform fields is
described as the Thomas-Bargmann-Michel-Telegdi (T-BMT)
equation [8], which is commonly used in recent studies on
generation of polarized relativistic particle beams by ultrain-
tense lasers [33–41]. However, more essentially, the reverse
effect of the spin on trajectories of relativistic particles in
such laser fields is often ignored and still not understood. In
fact, based on different considerations, the spin-induced force,
namely, the Stern-Gerlach (SG) force [42], can be derived
as different forms in various models, such as the Frenkel
model [16,22], the noncovariant Derbenev-Kondratenko (DK)
model [7,15,17,43], and so on [18,44,45]. Thus it is neces-
sary to test whether various spin models are still valid in
the presence of ultraintense laser fields. Recently, the Frenkel
model and Foldy-Wouthuysen model have been numerically
benchmarked against each other and the Dirac equation for
single-particle motion in a strong laser pulse [46]; however,
more work needs to be done to investigate the validity of
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FIG. 1. (a) Schematic of the proposed scheme for testing theo-
retical predictions of different semiclassical models. Red and blue
spheres represent electrons polarized parallel and antiparallel to the
z direction, respectively. (b) and (c) Transverse spatial distributions
of the polarizations of scattered electrons in simulations with the
Frenkel and noncovariant DK models, respectively. (d) Initial polar-
ization distribution of the electron beam.

the models, especially concerning collective effects, radiation
reaction (RR), etc.

In this paper, in view of the above concerns, we de-
velop a self-consistent module for describing the motion
of a particle with spin in three-dimensional (3D) particle-
in-cell (PIC) simulations [47], where the SG force can be
chosen based on various semiclassical models, such as the
above Frenkel model and noncovariant DK model and oth-
ers given in Appendix A. Based on simulations with this
capability, we propose a potential experimental scheme for
testing theoretical predictions of different models, where a
linearly polarized (LP) ultraintense laser is used to interact
with a relativistic electron beam, as shown in the schematic
in Fig. 1(a). It is found that different models predict different
transverse polarization distributions of the scattered electrons
after interactions in the scheme, which can be measured in ex-
periments. If the Frenkel model is used, the electron beam can
be separated spatially into two parts with opposite transverse
polarizations, shown in Fig. 1(b), which, however, does not
appear once the noncovariant DK model is applied, shown in
Fig. 1(c). As mentioned above, the reason for this distinction
comes from different considerations in the establishment of
these models. On the one hand, the noncovariant DK model
stems from the Lagrangian with approximation of uniform
fields, whereas the Frenkel model does not. On the other
hand, equations in the Frenkel model are covariant and can be
reduced to those in the rest system, which is not guaranteed
in the noncovariant DK model (see Secs. II B and II C for the
establishment of the models in detail).

II. THEORETICAL ANALYSIS

A. Relativistic generalizations of classical spin vector s

As we know, the spin of a particle can be described as a
vector s with a length of |s| = h̄/2 in the rest frame, whose

components represent the probability that the electron is in
the corresponding spin state. Analogous to some dynamic
quantities, there are several generalizations of this spin vector
in the relativistic regime.

One of alternatives is to use a four-vector Sμ(S0, S) as a
covariant description of spin in the laboratory frame, whose
independent components S will reduce to the spin vector s
in the particle’s rest frame. According to the Lorentz trans-
formation, covariant constraint UμSμ = 0 can be obtained,
where Uμ = γ (c,−v) is the particle’s four-velocity; γ =
(1 − v2/c2)−1/2 is the Lorentz factor of the particle. Connec-
tions between components of Sμ and s are displayed as

S = s + γ 2

γ + 1
(β · s)β,

S0 = β · S = γβ · s, (1)

where β = v/c is the normalized velocity of the particle.
In addition, an antisymmetric tensor Sαβ = (m, d), first

proposed by Frenkel in 1926 [16], can also be considered as a
relativistic generalization of the spin vector:

Sαβ =

⎛
⎜⎝

0 −dx −dy −dz

dx 0 mz −my

dy −mz 0 mx

dz my −mx 0

⎞
⎟⎠, (2)

where m is equal to spin vector s in the particle’s rest frame
and χm and χd correspond to the magnetic moment and
electric dipole moment, respectively. Here, χ = qgs/2m0; q
and m0 are the charge and the mass of the particle, and gs is
called the spin g factor. Based on the requirements SαβUβ = 0
and 1

2 SαβSαβ = s2, the relationship between the components
of the Frenkel tensor and spin vector can be obtained as

m = γ s − γ 2

γ + 1
(β · s)β,

d = β × m = γβ × s. (3)

B. Equation of motion of the Frenkel model

The proposal of the Frenkel model is based on regarding
Sαβ = (m, d) as the relativistic generalization of the spin
vector in the rest frame. Considering the interaction between
spin and the electromagnetic (EM) field, the Lagrangian of a
particle with mass m0 and charge q can be expressed as [16]

L = MUαU α + qAαU α + T ∗ + χ

2
SαβFαβ + χaαSαβUβ,

(4)

where Aα = (φ/c,−A) and Fαβ = ∂αAβ − ∂βAα are the four-
potential and tensor of the EM field, respectively. T ∗
represents the “rotational energy” of the particle’s spin, and
the fourth term is the “spin-field interaction energy.” Here,
M = m0 + m′ and aα are introduced as Lagrangian multipliers
to ensure satisfaction of the on-shell condition U αUα = c2 and
SαβUβ = 0, which can be determined below. According to the
least action principle

∫
δLdτ = 0, the orbital motion equation
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and spin precession equation can be derived consistently as
[16,22]

MU̇α = qFαβU β + χ

2
Sγ β

(
∂

∂xα
− 1

c2
UαU β ∂

∂xβ

)
Fγ β + Rα,

(5)

Ṡαβ = χ
(
Fα

σ Sσβ − Fβ
σ Sσα

) + χaγ (U αSβγ − U βSαγ ), (6)

where the dot means taking a derivative with respect to proper
time τ and aγ = −(χFγαU α − U̇γ )/χc2. The spin-induced
effective mass M = m0 + χ

2c2 Sβγ Fβγ , which can be regarded
as the dressed mass due to the interaction between spin and
fields; there is a similar expression for it that follows from the
Dirac-Pauli equation [22,48,49]. Rα = −χ [Uα Ṡβγ Fβγ /2c2 +
ȧβSβ

α + aβ Ṡβ
α ] can be seen as a vector that has no physi-

cal meaning when considering the requirement m0v̇ = qE +
χ∇(s · B) in the particle’s rest frame [22]. Thus the Frenkel
model gives a relativistic equation in covariant form that de-
scribes the influence of spin on the particle’s motion:

MU̇α = qFαβU β + χ

2
Sγ β

(
∂

∂xα
− 1

c2
UαU β ∂

∂xβ

)
Fγ β, (7)

where the spatial components are written as[
m0 − χ

c2

(
m · B + d · E

c

)]
d (γ v)

dt

= q(E + v × B) + χ

γ

[
∇ + γ 2

c2
v

(
∂

∂t
+ v · ∇

)]

×
(

m · B + d · E
c

)
, (8)

where m · B + d · E/c = s · [γ B − γ (β×E)/c − γ 2(β · B)β/

(γ + 1)] and the spatial gradient and temporal derivative on
the right-hand side only act on EM fields (E and B). It can be
seen from the above equation that the influence of spin-field
interaction on the electron trajectory includes spatial gradient
and temporal (and spatial) variations of EM fields, in addition
to the correction of the Lorentz force caused by the spin-
induced effective mass.

C. Equation of motion of the noncovariant
Derbenev-Kondratenko model

1. Source of the Derbenev-Kondratenko Hamiltonian

As we know, in uniform or slowly varying external fields,
the relativistic covariant equation that describes the evolution
of spin has been represented by the spin four-vector Sα as [50]

dSα

dτ
= q

m0

[
gs

2
FαβSβ + 1

c2

(
gs

2
− 1

)
U α (SλFλμUμ)

]
, (9)

which is the well-known T-BMT equation [8]. Note that
Eq. (6) also describes the evolution of spin in the relativistic
regime. When also considering uniform or slowly varying
external fields as in the T-BMT equation, i.e., substituting
U̇γ = qFγ βU β/m0 into aγ of Eq. (6), Eq. (6) has been proven
to be equivalent to Eq. (9) [22], by applying the dual relation-
ship between Sμ and Sαβ , Sμ = εμναβUνSαβ/2c, where εμναβ

is the Levi-Civita symbol. According to Eqs. (9) and (1), the
evolution of the spin vector s is given as

ds/dt = s × �, (10)

where �=q{(a+1/γ )B−aγ (β · B)β/(γ+1)−[a+1/(γ+1)]
β×E/c}/m0 and a = gs/2 − 1. For the nonrelativistic system,
the Hamiltonian of interaction between spin and magnetic
fields is Hint = χs · B, and the corresponding Heisenberg
equation for the evolution of spin is expressed as ds

dt =
i
h̄ [Hint, s] = χs×B. As a relativistic generalization of the
above nonrelativistic equation, the T-BMT equation can also
be regarded as being obtained from an effective Hamiltonian
[7], as follows as in the nonrelativistic regime. Evidently, this
effective Hamiltonian is

H eff
int = qs · {(a + 1/γ )B − aγ (β · B)β/(γ + 1)

− [a + 1/(γ + 1)]β × E/c}/m0. (11)

It is worth mentioning that such an effective Hamiltonian
can also be consistently obtained based on Foldy-Wouthuysen
transformation of the Dirac Hamiltonian, where only first-
order terms of spin are preserved [30].

2. Equations of motion derived by the effective Hamiltonian

According to the above effective Hamiltonian H eff
int , another

relativistic spin model can be derived by considering the La-
grangian of the interaction between the spin and EM fields as
−H eff

int . By applying the Lagrangian equation ∇L = d
dt ( ∂

∂v L),
the equation of motion of particles is given as follows [43]:

m0
d (γ v)

dt
= q(E + v × B) + FSG,

FSG = ∇(s · �) −
(

d

dt

∂�

∂v

)
· s − ∂�

∂v
· (s × �).

(12)

Here, FSG is the so-called SG force, whose first and third terms
are related to the spatial gradient of the EM fields and the
change rate of the spin, respectively. The second term consists
of temporal derivatives for fields (T ), energy (E), and velocity
(V) of particles, i.e., ( d

dt
∂�
∂v

) · s = T + E + V , which can be
expressed in detail as

T = q

m0

[
−

dB
dt · s

γ 2
− a(v · dB

dt )v · s

(γ + 1)2c2
+ (v× dE

dt ) · s

(γ + 1)2c2

]
γ 3v

c2
+ q

m0

{
− aγ

(γ + 1)c2

[
dB
dt

(v · s) +
(

v · dB
dt

)
s
]

+
(

a + 1

1 + γ

)
s× dE

dt

c2

}
,

(13a)

E = q

m0

[
B · s
γ 3

+ a(v · B)v · s
(γ + 1)3c2

− (v × E) · s
(γ + 1)3c2

]
2γ 3v

c2
γ̇ + q

m0

[
−B · s

γ 2
− a(v · B)v · s

(γ + 1)2c2
+ (v × E) · s

(γ + 1)2c2

]
3γ 2v

c2
γ̇

+ q

m0

[
− a(v · s)B

(γ + 1)2c2
− a(v · B)s

(γ + 1)2c2
− s × E

(1 + γ )2c2

]
γ̇ , (13b)
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V = q

m0

[
−a(v̇ · B)v · s

(γ + 1)2c2
− a(v · B)v̇ · s

(γ + 1)2c2
+ (v̇ × E) · s

(γ + 1)2c2

]
γ 3v

c2
+ q

m0

[
−B · s

γ 2
− a(v · B)v · s

(γ + 1)2c2
+ (v × E) · s

(γ + 1)2c2

]
γ 3

c2
v̇

+ q

m0

[
−aγ (v̇ · s)B

(γ + 1)c2
− aγ (v̇ · B)s

(γ + 1)c2

]
, (13c)

where the dot means taking a derivative with respect to
time t and γ̇ = q(v · E)/m0c2 and v̇ = q[E + v×B − (β ·
E)β]/γ m0 can be substituted. It must be emphasized that
the above-mentioned equation of motion including spin to
first order has been proposed for a long time [17] and it is
completely relativistic, but not covariant [15].

D. Comparisons of the spin-induced trajectory
for ultrarelativistic electrons dominated by different

models in an ultraintense laser field

Consider a LP plane-wave laser which propagates
along the x axis, with Ey = E0 sin(k0x − ω0t ) and Bz =
B0 sin(k0x − ω0t ), where ω0 is the frequency and k =
(k0, 0, 0) is the wave vector. Thus the normalized amplitude of
the laser is a0 = eE0/mω0c, where e and m are the charge and
mass of electrons. Then an electron with spin s = (0, 0, sz )
and initial velocity v = (−vx, 0, 0) collides with the laser. It
is worth mentioning that, for the circumstance we considered,
different SG forces in the two semiclassical models will make
the motion of the electron different in the laser polarization
direction, i.e., the y direction. Henceforth, we focus on the SG
force in this direction. Under the Frenkel model, according
to Eq. (8), the spin-induced force in the y direction can be
deduced as

F Frenkel
SG-y = −Aesz(B0 + vxE0/c2)(E0 + vxB0) cos(2ωLt )

m − Asz(B0 + vxE0/c2) sin(ωLt )

+ egsh̄[sz∇y(B0 + vxE0/c2)]/4

m − Asz(B0 + vxE0/c2) sin(ωLt )
, (14)

with the help of relations dEy/dt = ωLE0 cos(ωLt ), dBz/dt =
ωLB0 cos(ωLt ), and γ vy = −e(E0 + vxB0) cos(ωLt )/mωL,
where A = γ gsh̄e/4mc2 and where ωL = −(1 + vx/c)ω0 can
be understood as the frequency of the laser in electronic
coordinates. It can be seen from Eq. (14) that when
a0, γ � 1, the first term is approximately proportional to
γ a2

0szh̄mc/2Mλ2, which is significantly larger than the
second term (∼a0 h̄szmc/2Mλ2) and shows asymmetric
oscillations over time, where λ is the wavelength of the
laser and M = m − Asz(B0 + vxE0/c2) sin(ωLt ) represents
the spin-induced effective mass. Thus a net increment in the
y component of the electron momentum will be obtained
by integration over time. Consequently, the SG force in
the Frenkel model will make electrons with opposite spins
gradually acquire the opposite momentum in the y direction.

On the other hand, when the noncovariant DK model is
adopted, similarly, after theoretical derivations in Sec. II C,
from Eq. (12), we obtain the SG force in the y direction as

F DK
SG-y = eh̄sz

2m
∇y

[(
a + 1

γ

)
B0 +

(
a + 1

γ + 1

)
vxE0

c2

]

× sin(ωLt ) − e2

m2

h̄

2

γ 2

c2
sz

[
B0

γ 2
+ vxE0

(γ + 1)2c2

]

× (E0 + vxB0) cos(2ωLt )

+ e4

m4

h̄

2

1

c6

vxsz

2(1 + γ )3ω2
L

E2
0 (E0 + vxB0)2 sin2(2ωLt ).

(15)

In Eq. (15), when a0, γ � 1, the first and third terms are ap-
proximately proportional to a0szh̄c/2γ λ2 and a4

0cszh̄/2λ2γ 3,
respectively, while the second term is approximately propor-
tional to a2

0cszh̄/2λ2, which is far larger than the other two
terms, so its contribution is dominant. Hence we can see that
the SG force caused by the noncovariant DK model is almost
a simple harmonic oscillation ∼ cos(2ωLt ). After integration
over time, the SG force will not lead to any change in mo-
mentum in the y direction. It should be noted that the term
related to the spin precession in the motion equation of the
noncovariant DK model is neglected here. This is because
the direction of electron spin is parallel or antiparallel to the
z axis and � ∼ q{(a + 1/γ )B − [a + 1/(γ + 1)]v×E/c2}/m
is also approximately along the z axis; hence the effects due
to electron spin precession on its motion can be safely ignored
according to Eq. (10).

According to Eqs. (14) and (15), with ωL = −2ω0, tem-
poral evolutions of the SG forces on electrons with opposite
spins for different energies γ and laser amplitudes a0 are
plotted in Figs. 2(a) and 2(b) for the Frenkel model and
Figs. 2(e) and 2(f) for the noncovariant DK model. It is worth
mentioning that terms related to the spatial gradient of fields
in Eqs. (14) and (15) are ignored here, since it can be proved
that they are much smaller than the other terms. Firstly, it can
be seen that electrons with opposite spin states (red curves
for spin up, black curves for spin down) are subjected to the
opposite transverse SG force under both models. However,
the SG force presents an asymmetric oscillation over time for
the Frenkel model, while it shows a simple harmonic oscil-
lation pattern for the noncovariant DK model. By comparing
the cases of γ = 800 (solid curves) and γ = 1000 (dashed
curves) in Fig. 2(a) for the Frenkel model, where a0 = 80 is
fixed, we can see that by increasing γ , a larger SG force is ob-
tained. Correspondingly, when γ = 800 is fixed, the cases of
a0 = 80 (solid curves) and a0 = 100 (dashed curves) shown
in Fig. 2(b) reveal that the larger laser intensity also increases
the SG force. These results are consistent with the analysis
that the first term of Eq. (14) is approximately proportional
to γ a2

0szh̄mc/2Mλ2. In contrast, for the noncovariant DK
model, the oscillation term (the second term) in Eq. (15) is
approximately proportional to a2

0 and is significantly larger
than the accumulation one (the third term), leading to the SG
force being almost unaffected by γ while increasing with the
growth of a0, as shown in Figs. 2(e) and 2(f).

Furthermore, the momentum accumulated in the y direc-
tion derived by integrating the SG force from t = 0 to t = T0

under various a0 and γ for electrons with sz = ±1 is displayed
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FIG. 2. (a) According to the first term of Eq. (14) in the Frenkel model, time evolution of the SG force in the y direction on electrons with
opposite spin (red curves for sz = +1 and black curves for sz = −1) and different γ , where the laser amplitude is fixed as a0 = 80. (b) The
corresponding time evolutions for different a0, where the Lorentz factor of the electron is fixed as γ = 800. (c) The momentum accumulated
in the y direction derived by integrating Eq. (14) from t = 0 to t = T0 under various laser intensities a0 and various electron energies γ for
an electron with spin sz = +1. (d) The corresponding momenta for an electron with spin sz = −1. (e)–(h) Same as (a)–(d), respectively, but
according to the second and third terms of Eq. (15) in the noncovariant DK model [(e) and (f) have the same curve colors as in (a) and (b)].

in Figs. 2(c) and 2(d) for the Frenkel model and Figs. 2(g)
and 2(h) for the noncovariant DK model, respectively. On the
one hand, it shows that SG forces will cause electrons with
opposite spin states to accumulate opposite momenta in both
models; on the other hand, the magnitude of the accumulated
momentum in the Frenkel model increases with increases in
a0 and γ and reaches up to the order of 10mec; nevertheless,
in the noncovariant DK model, the magnitude is five orders
smaller than that in the Frenkel model and decreases with the
growth of γ .

III. SIMULATION RESULTS

In order to confirm the theoretical analysis, simulations
of the scheme shown in Fig. 1(a) were carried out using
the 3D PIC code EPOCH [51] with the module for tak-
ing SG forces and the T-BMT equation into account. The
accuracy of our spin-related module is confirmed by re-
producing single-particle results of the Frenkel model (see
Appendix B). The probe Gaussian laser with peak intensity
I0 = 1.38×1022 W/cm2 (a0 = 80), wavelength λ = 0.8 μm,
sin2 temporal profile with duration τ = 30T0 (T0 = 2.67 fs),
and focal radius r0 = 2λ is incident from the left boundary
into a 30λ×24λ×24λ simulation box, whose mesh size is
λ/20. After a time delay of 15T0, an electron beam with den-
sity ne = 1.7×10−19 cm−3, length le = 0.2λ, diameter de =
0.1λ, and Gaussian energy distribution with a central Lorentz
factor γ0 = 800 and spread �γ = 50 enters the simulation
box and collides with the probe laser, which is modeled by
160 000 quasiparticles. The spin of the electrons is described
by a vector s = (sin θ cos φ, sin θ sin φ, cos θ ), and the beam
is initially unpolarized, which means that spins of electrons
are isotropically distributed on the “spin sphere,” as shown
in Fig. 1(d); it is natural to set θ = arccos(2R1 − 1) and φ =
2πR2, where R1, R2 ∈ [0, 1] are random numbers.

The main results of the simulations are shown in Fig. 3.
As mentioned earlier, we mainly focus on the SG force and

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Three-dimensional PIC simulation results: (a) The aver-
aged spin s̄z (red solid curve) and density (blue dashed curve) of
electrons that distributed various intervals of θy under the Frenkel
model, where θy = arctan (py/px ). (c) Time evolution of averaged
SG force in the y direction for electrons with opposite spins dom-
inated by the Frenkel model. (e) Forty typical electron trajectories
in real space (x, y, z), where the colors of the trajectories denote
the spin state of electrons, red for spin up (sz > 0) and blue for
spin down (sz < 0); isosurface distributions for polarization of the
electron beam at t = 30, 32, 34, 36, 38T0, where the color bar dis-
plays the polarization of the isosurface distributions. The projection
diagram shows the time evolution of the accumulated momentum
in the y direction by the SG force for electrons with opposite spins
dominated by the Frenkel model. (b), (d), and (f) Same as (a), (c),
and (e), respectively, but for the noncovariant DK model.
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momentum in the y direction, as well as the sz, which marks
the polarization states of electrons. When the initial unpo-
larized electron beam collides with the laser, electrons with
opposite spins get opposite deflection angles in the y direction
due to the effect of the SG force in the Frenkel model and then
separate, as shown by the transverse angular distribution of
polarization of the electron beam (red solid curve) in Fig. 3(a).
If the noncovariant DK model is used, this phenomenon does
not appear [see the red solid curve in Fig. 3(b)]. At this
time, the motion of electrons in the polarization direction of
the laser is mainly dominated by the ponderomotive force
rather than the SG force, which induces an overall shift of
the electron density distribution towards θy < 0, as shown by
the blue dashed curve in Fig. 3(b). For the Frenkel model,
the effect of the ponderomotive force is overwhelmed, and
the SG force broadens the density distribution with respect
to θy; see the blue dashed curve in Fig. 3(a). (Detailed discus-
sions of the influence of the ponderomotive force are given in
Appendix C.)

To further understand the underlying physical causes of
these phenomena, the time evolutions of the averaged SG
forces in the y direction are traced in different cases, as shown
in Figs. 3(c) and 3(d). It can be seen that both models predict
that at any given time, electrons with opposite spins (red
dashed curve for sz > 0 and gray solid curve for sz < 0) are
subjected to SG forces in opposite directions. However, the
magnitudes and time evolution patterns of SG forces predicted
by different models vary greatly. When using the Frenkel
model [see Fig. 3(c)], the asymmetric oscillation of the SG
force with time causes the cumulative effect that electrons
with different spins get opposite momenta in the y direction.
This can be directly seen from the time evolution of the accu-
mulated momentum by the SG force in the projection diagram
in Fig. 3(e), which shows that, when the electrons move in the
laser field for about 10T0, they can obtain momenta in the y
direction with magnitude up to ±4mec. As a result, after inter-
acting with the laser, there is significant spatial separation in
the y direction for electrons with opposite spins, as shown by
the trajectories of typical electrons in Fig. 3(e). In contrast, for
the noncovariant DK model [see Fig. 3(d)], the approximately
harmonic oscillation of the SG force makes the integral of the
SG force in time be close to zero, leading to the disappearance
of the phenomenon of separation [see Fig. 3(f)]. Meanwhile,
Figs. 3(e) and 3(f) also display the isosurface distribution
of the polarization of the electron beam at different times,
which clearly shows the discrepancy between the Frenkel and
noncovariant DK models. These results are in good agreement
with the theoretical analysis in Sec. II D.

IV. IMPACT OF QUANTUM RADIATION EFFECTS

As we know, a relativistic electron emits photons randomly
in the ultraintense laser, which inevitably affects its motion
and spin. Only the Frenkel model is discussed here; we apply
the quantum synchrotron radiation model [33,52], where the
correction to the radiation probability induced by spin, the
Sokolov-Ternov (ST) effect [53], and RR are taken into ac-
count in simulations. Figure 4(a) shows the isosurface distri-
bution of polarization of scattered electrons. It can be seen that
scattered electrons are still divided into two parts with oppo-

(d)(c)

)b()a(

(e) (f)

(h)(g)

FIG. 4. Three-dimensional PIC simulation results with consider-
ation of radiation under the Frenkel model: (a) Isosurface distribution
for polarization sz of the electron beam after interactions. (b) The
averaged spin s̄z (red solid curve) and density (blue dashed curve)
of electrons that distributed various intervals of θy. (c) and (d) Time
evolution of |P̄x|/me/c and P̄y/me/c, respectively, for electrons with
opposite spins. (e) and (f) Time evolution of the averaged SG force
in the y direction and accumulated momentum by it, respectively, in
the y direction for electrons with opposite spins. (g) Time evolution
of γ of typical electrons, where the color of curves represents the
evolutions of sz of the electrons. (h) Same as (g), but for the case
without taking radiation into account.

site polarizations, although the degree of polarization has de-
creased compared with the case without consideration of the
radiation effect, as shown by the red solid curve in Fig. 4(b).
Such results are attributed to both RR and the ST effect.

We know that the RR force is much larger than the SG force
[54], but for the parameters currently considered (γ � a0),
the former is basically longitudinal, as reflected by time evo-
lutions of longitudinal and transverse momenta in Figs. 4(c)
and 4(d). Thus the separation of polarized electrons caused
by the SG force is not significantly changed by the RR force.
Nevertheless, due to emissions of photons, electrons do lose
energy gradually, resulting in reductions in the transverse
SG force and the accumulated transverse momentum for the
proportional relation between SG forces and γ of electrons,
as shown by comparing Figs. 4(e) and 4(f) with Fig. 3(c)
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FIG. 5. Impacts of the (a) laser amplitude a0, (b) initial energy of the electron beam γ , and (c) laser duration τ on the transverse angular
distribution for density (black curves) and polarization (red curves) of the electron beam after interacting with the probe laser. In (a), the solid,
dashed, and dash-dotted curves represent the cases a0 = 60, a0 = 80, and a0 = 100, respectively. In (b), the solid, dashed, and dash-dotted
curves represent the cases γ = 600, γ = 800, and γ = 1000, respectively. In (c), the solid, dashed, and dash-dotted curves represent the cases
τ = 10T0, τ = 20T0, and τ = 30T0, respectively. Other parameters of the probe laser and electron beam are the same as those in Fig. 3.

and the projection diagram of Fig. 3(e). Figures 4(g) and
4(h) plot the evolution of the Lorentz factor γ and spin sz

of typical electrons with and without consideration of radia-
tion effects, respectively. We see that the evolution of spin is
dominated by the ST effect rather than the T-BMT equation in
Fig. 4(g). According to the quantum radiation model applied
here [33], once the electron emits a photon, its spin flips into
the direction of β×â, where â means the acceleration of the
electron. In our scheme, this direction is almost kept in the z
direction. Thus, after interacting with the laser, electrons with
randomly distributed spin polarization direction collapse into
states of sz = ±1, which actually favors electrons to obtain
greater transverse SG force compared with that for |sz| < 1
[see Eq. (14)]. However, it is necessary to control the number
of emitted photons Nph ∼ a0ατ/T0 [33,55], where α is the
fine-structure constant, so as to ensure that the transverse
momentum induced by the SG force is accumulated in the
same direction during interactions.

V. IMPACT OF PARAMETERS OF THE LASER
AND ELECTRON BEAM

It is also worth having a discussion about how parameters
of the probe laser and the electron beam influence the final
polarization and density distribution for the Frenkel model,
where the radiation effect is taken into account. Here, we
focus on laser amplitude a0, initial energy γ of the electron
beam, and laser duration τ .

Firstly, cases of different amplitudes a0 are shown in
Fig. 5(a). It can be seen that there is a larger angular dispersion
for the density distribution of the electron beam by increasing
a0 [see black curves in Fig. 5(a)]. However, the maximum
polarization is almost unchanged although the SG force be-
comes larger with the growth of a0 according to the theoretical
analysis [see Fig. 2(b)], which results from the fact that the
transverse RR force comes significantly into play so that the
influence of the SG force is submerged [see red curves in
Fig. 5(a)]. In addition, the increase in a0 leads to enhancement
of the number of emitted photons (Nph ∼ a0ατ/T0), causing
the spin state of the electrons to flip multiple times between
sz = ±1 and the polarization of the electron beam to decrease.

Figure 5(b) plots the results of cases in which the electron
beam has various initial energies. It clearly shows that the
maximum value of polarization becomes higher while the

angular distribution of density is nearly unaffected when γ

increases from 600 to 1000. This can be understood from the
fact that the increased electron energy makes the ponderomo-
tive force and the transverse RR force less important, while
the influence of the SG force becomes prominent.

Finally, the influence of the laser duration is shown in
Fig. 5(c). Apparently, the longer interaction time between the
electron beam and the probe laser leads to greater transverse
momentum accumulated by the electrons. Therefore the trans-
verse angular distribution of density becomes wider with the
growth of τ [see black curves in Fig. 5(c)]. On the other hand,
when τ decreases, the electron beam can be divided into two
parts with higher polarization [see red curves in Fig. 5(c)],
because the number of photons radiated Nph ∝ τ is reduced
and the ST effect is suppressed.

VI. CONCLUSION

In summary, the influence of spin-induced force on
dynamics of relativistic electrons based on two different semi-
classical models, the Frenkel model and the noncovariant DK
model, has been studied. We found that the description of the
influence of the spin-induced force on the trajectory of the
electron is widely divergent under various models, which stem
from different considerations or approximations applied in
their establishment. Using 3D PIC simulations with a module
for modeling the relativistic particle with spin motion, we
have shown that it is possible to use ultraintense lasers to test
currently existing theories on relativistic spin dynamics, so as
to find the proper relativistic equations that describe both the
evolution of spin and its influence on the motion of a particle
with spin.
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APPENDIX A: OTHER RELATIVISTIC SPIN MODELS
BASED ON RELATIVISTIC GENERALIZATION

OF THE NONRELATIVISTIC SPIN MODEL

In general, there are two avenues for establishing a rel-
ativistic semiclassical model that describes the evolution of
spin and its influence on the motion of a particle. On the
one hand, some semiclassical models can be derived based on
relativistic generalization of the nonrelativistic semiclassical
spin model that stems from the classical correspondence of
QM [16–18]. On the other hand, one can proceed from the
relativistic QM and obtain the equation of momentum or spin
by employing the semiclassical approximation and correspon-
dence principle to the Heisenberg equations [30,32].

Nevertheless, there is no universally accepted spin operator
in the relativistic regime, resulting in obscureness of those
spin-related theories starting from relativistic QM. Therefore
we prefer to pay more attention to more intuitive semiclas-
sical models derived from relativistic generalizations of the
nonrelativistic semiclassical spin model, because the problem
of the nonunique relativistic spin operator is circumvented.
Furthermore, since there are explicit connections between
the classical spin vector in the rest frame and its relativis-
tic generalizations (four-vector Sμ and four-tensor Sμν), it
is more convenient for these models to be further imple-
mented into many-particle simulations, e.g., PIC code, so that
we can demonstrate realistically the potential experimental
scheme while considering the collective effect of charged
particles, quantum RR, the ST effect, and so on. In fact,
there are lots of semiclassical models that give different forms
of relativistic equations describing the effect of spin on the
motion of particles, and these differences actually result from
different considerations when these models are established.
Of necessity, they can be consistent with each other when
the same considerations are applied. Here, several commonly
used models are recalled, and their differences and relations to
the Frenkel model and noncovariant DK model are illustrated.

1. Covariant Derbenev-Kondratenko model stemming
from changing the notion of the particle coordinate

Just as in the noncovariant DK model in Sec. II C, H eff
int in

Eq. (11) is considered as the Hamiltonian of the interaction
between spin and the EM fields in the relativistic regime. If
it is assumed that the relativistic spin-induced force is only
related to the gradient of the EM fields, as in the nonrelativis-
tic case, the equation of motion is given by the Lagrangian
equation as [45]

m0
d (γ v)

dt
= q(E + v × B) + ∇(s · �). (A1)

By changing the notion of the coordinate of the particle r →
r + 1

m0

γ

γ+1 (s×v), one has proved that the above equation can
be represented as a covariant form [45]:

m0U̇α = qFαβU β + qgs

4m0
Sγ β

(
∂α − 1

c2
UαU σ ∂σ

)
Fγ β

− gsq

4m0c2
Sσγ Fσγ FαβU β − q2(gs − 2)2

4m2
0c2

SαωFω
β FβαUα

+ q(gs − 2)

2m0c2
Sλ

α (Uσ ∂σ )FλαU α

+ q2gs(gs − 2)

4m2
0c2

FαωSω
β FβλUλ, (A2)

where the condition UαU̇ α = 0 is satisfied, according to
SαβU α = 0, UαU α = c2, and U γ FγαSαβFβσU σ = 0 [22].

Apparently, compared with the covariant equation of mo-
tion [Eq. (5)] in the Frenkel model in Sec. II B, the covariant
DK model contains only the effect of the first order of spin.
When applying the same approximation, it can be proved that
Eq. (5) of the Frenkel model is identical to Eq. (A2) of the
covariant DK model, i.e., substituting U̇γ = q

m0
FγαU α into aγ

and the term related to spin-induced effective mass in Eq. (5):

aγ = −gs − 2

2c2
FγαU α, (A3)

ȧγ = −gs − 2

2c2

[
(Uλ∂

λ)FγαU α + q

m0
FγαFαβUβ

]
, (A4)

MU̇α = m0U̇α + χq

2c2m0
Sβγ Fβγ FαλU λ. (A5)

Meanwhile, −χUα Ṡβγ Fβγ /2c2 in Rα is neglected in order to
satisfy the condition UαU̇ α = 0.

2. The covariant generalization of the equation of motion
of a particle with spin in the rest frame

In the rest frame, the equation of motion of a particle
with spin is determined by the well-known expression m0

dv
dt =

qE + χ∇s · B. By taking the covariant generalization, another
relativistic equation of motion of a particle with spin can be
obtained as [22]

m0U̇α = qFαβU β + χ

2
Sγ β

(
∂

∂xα
− 1

c2
UαU β ∂

∂xβ

)
Fγ β,

(A6)

where the introduction of ∂
∂xα − 1

c2 UαU β ∂
∂xβ is to satisfy

U αU̇α = 0. Such an equation is commonly used in the deriva-
tion of the equation describing the evolution of spin [18–21].
It can be clearly seen that, in contrast with Eq. (7) of the
Frenkel model, the influence of the effective mass is not taken
into account in the above equation, i.e., M = m0.

APPENDIX B: SIMULATIONS OF MOTION
OF ELECTRONS WITH SPIN IN AN ULTRAINTENSE

LASER AND HOMOGENEOUS MAGNETIC FIELD
BASED ON THE FRENKEL MODEL

To confirm the accuracy of our PIC module for modeling
the motion of relativistic particles with spin, by considering
the Frenkel model, we reproduce the motion of electrons with
spin in an ultraintense laser or homogeneous magnetic field,
which was achieved by single-particle simulations in previous
literature [46,56].

Firstly, simulations of the collision between a LP laser with
amplitude Ey = 2.57×1015 V/m, wavelength λ = 1.06 nm,
and sin2 temporal profile with τ = 6T0 and electrons with
opposite spins and different initial momenta are carried out,
where the parameters of the electrons and laser are the same
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(a)

(b)

(c)

(d)

FIG. 6. Three-dimensional simulation results as a benchmark
against which the results of previous publications (Refs. [46,56]) can
be compared. (a) and (b) Difference of the SG force components
in the direction of laser propagation (x) subjected by two electrons
with opposite spin (sz = ±1) and initial momentum of (a) p0 =
(−mec, 0, 0) and (b) p0 = (−2mec, 0, 0) during the interaction with
a LP laser pulse. (c) Trajectories of electrons with opposite spins in
a LP focused laser. (d) Trajectories of electrons with initial momen-
tum of 3.56mec in a homogeneous magnetic field with strength of
4.7×108 T, with (blue curve for a spin-up electron and orange curve
for a spin-down electron) and without (green curve) consideration of
the SG force.

as those in Ref. [46]. Figures 6(a) and 6(b) show the differ-
ence of the SG force components in the direction of laser
propagation (x) for two electrons with opposite spin (sz = ±1)
when their initial momenta are p0 = (−mec, 0, 0) and p0 =
(−2mec, 0, 0), respectively. It can be seen that electrons with
opposite spins are subjected to opposite SG forces and the
difference becomes larger with the increase in the initial mo-
mentum of the electron. These results match the results in
Figs. 1(c) and 1(d) in Ref. [46].

Secondly, two electrons with opposite spins are used to
collide with a focused LP laser, where the Lorentz factor of
the electrons is γ = 100 and the amplitude, wavelength, dura-
tion, and focus radius are Ey = 8.03×1014 V/m, λ = 0.8 μm,
τ = 20T0, and w0 = 2λ, respectively. The trajectories of these

two electrons are plotted in Fig. 6(c), which clearly shows
that there is a divergence angle (aberration angle) between
electrons with opposite spins after interacting with the focused
laser. This is consistent with Fig. 3 in Ref. [46].

Finally, we also consider the motion of electrons in a ho-
mogeneous magnetic field, where the gradient force of the
Frenkel model vanishes and only the effect of spin-induced
effective mass is retained. The momentum of the electrons and
the strength of the homogeneous magnetic field are chosen as
px = 3.56mec and Bz = 4.7×108 T, respectively, which are
the same values as those in Ref. [56]. When the SG force is
not taken into account, the electrons have cyclotron motion,
as shown by the green curve in Fig. 6(d). Meanwhile, the
trajectories of electrons with sz = 1 and sz = −1 are plotted
by a blue curve and an orange curve in Fig. 6(d), respectively,
where changes in the radius of the trajectories associated with
SG forces are identical to those shown in Fig. 1 in Ref. [56].

APPENDIX C: INFLUENCE OF
PONDEROMOTIVE FORCE

Due to the utilization of a focused probe laser in our
scheme, it is necessary to discuss the influence of transverse
ponderomotive force in different models. At first, as we know,
the ponderomotive force in the noncovariant DK model can
be expressed as Fp ∼ a2

0mc2/λγ , which is much larger than
the accumulation term (∼a4

0 h̄szc/2γ 3λ2) of Eq. (15) when
a2

0/γ
2 
 105, where λ ∼ 10−6 m. Such a condition is always

satisfied in our scheme because a0 
 γ ; this limit ensures
that electrons cannot be accelerated backward by the ultrain-
tense laser and makes the radiation reaction force be mainly
in the longitudinal direction. Thus it is inevitable that the
influence of the SG force on the trajectories of the electrons
is overridden by that of the ponderomotive force in the non-
covariant DK model. However, under the Frenkel model, the
ponderomotive force is corrected by the spin-related effective
mass as Fp ∼ a2

0m2c2/Mλγ , which is comparable to the SG
force when γ 2 ∼ 105. Consequently, combined with the the-
oretical analysis in Sec. II, the SG force under the Frenkel
model can force electrons with opposite spins to gradually
acquire opposite transverse momentum and, in addition, is
large enough to realize spatial separation of electrons with
opposite polarization.
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