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Adiabaticity parameters for the categorization of light-matter interaction:
From weak to strong driving
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We investigate theoretically and numerically the light-matter interaction in a two-band system (TBS) as a
model system for excitation in a solid-state band structure. We identify five clearly distinct excitation regimes,
categorized with well-known adiabaticity parameters: (1) the perturbative multiphoton absorption regime for
small driving field strengths, and four light-field-driven regimes, where intraband motion becomes important
(2) the impulsive Landau-Zener (LZ) regime, (3) the nonimpulsive LZ regime, (4) the adiabatic regime, and
(5) the adiabatic-impulsive regime for large electric field strengths. This categorization is tremendously helpful
to understand the highly complex excitation dynamics in solids, in particular, when the driving field strength
varies, and this categorization naturally connects Rabi physics with Landau-Zener physics. In addition, we find
an insightful analytical expression for the photon orders connecting the perturbative multiphoton regime with
the light-field-driven regimes. Moreover, in the adiabatic-impulsive regime, adiabatic motion and impulsive LZ
transitions are equally important, leading to a broken symmetry of the TBS and a residual current when applying
few-cycle laser pulses of broken temporal symmetry. This categorization allows a deep understanding of strong-
field excitation in solids, including current and high-harmonic generation in a large variety of settings, and will
help to find optimal driving parameters for a given purpose.
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I. INTRODUCTION

The understanding of the interaction of intense optical
fields with atoms or solids has facilitated controlling elec-
trons coherently on ultrashort timescales. This gave rise
to new research areas including the efficient generation of
high-harmonics [1–4], light-field-driven ionization and elec-
tron emission [5], and light-field-driven current generation
in solids [6–8]. More recently, coherent electron dynamics
has been investigated in two-dimensional [9–15] and topo-
logically relevant [16–22] materials. In all these cases, the
underlying physics can often be simplified, categorized, and
described with a two-band system (TBS) interacting with
light. Here, we provide a clear categorization of different
excitation regimes using well-known adiabaticity parameters,
with a focus on solids.

As long as the light-field is weak, momentum exchange
between light and electrons, i.e., intraband motion, can be ne-
glected, and the occupation of the bands is well described by
resonant Rabi physics, with interband transitions only [13,23–
25]. This picture, however, becomes unsuited or at least dif-
ficult to interpret when the light field becomes so strong that
the light field changes the momentum of the electrons, caus-
ing intraband motion within their respective bands. In this
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case, the electron dynamics is better described as (repeated)
Landau-Zener transitions, between valence and conduction
bands [6–8,25–34]. A sufficient basis to describe intraband
motion and interband transitions is the Houston basis [8,31].

Whereas pure nonadiabatic interband or adiabatic intra-
band electron dynamics have been well investigated in the
context of strong-field physics, such as with high-harmonic
generation (HHG) in solids [1–3,9,16,32,35–39], intraband
motion and interband transitions acting in a combined fashion
have been investigated to a less comprehensive degree. Based
on adiabaticity parameters, we identify a regime of light-
matter interaction, where both intraband motion and interband
transitions generate an off-resonant, residual excitation. In
contrast to HHG, which is not able to probe this off-resonant
excitation directly, it can be well observed as a residual cur-
rent [7,8,10]. With this regime, we can now give a complete
and a general picture of TBS physics and can categorize it into
five clearly distinct regimes.

In his seminal paper, Keldysh introduced the adiabaticity
parameter γ ≡ ω

√
m∗�/(eE0) for electrons in a TBS [40].

Here, ω is the driving frequency of the light, E0 its peak
electric field strength, m∗ the effective electron mass, � the
band gap, and e the electron charge. Assuming monochro-
matic light and excitation around the band gap, we can express
the Keldysh parameter as

γ = �h̄ω

2h̄vFeE0
= �

2h̄�R
, (1)
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FIG. 1. Light-field-driven electron dynamics in a two-band sys-
tem. The valence (VB) and the conduction band (CB) are separated
by a band gap � and have asymptotic slopes defining the Fermi
velocity vF. When the electric field is small, intraband motion can be
neglected and the excitation oscillates resonantly between the bands
with the Rabi frequency �R. When the electric field becomes strong,
the Rabi frequency exceeds the driving frequency, and intraband
motion strongly influences interband transitions.

with �R = vFeE0/(h̄ω) being the Rabi frequency and vF the
Fermi velocity (see Fig. 1 and the Appendix for a detailed
derivation). When 2h̄�R exceeds �, γ becomes smaller than 1
and the light-matter interaction enters the well-known strong-
field regime.

In the case of resonant excitation, � = h̄ω, we obtain the
resonant adiabaticity parameter from Eq. (1) [31,41,42] as

zR = 2�R

ω
. (2)

Here, 2�R can be interpreted as the inverse of the transition
time τt [2�R = (2π )/τt ] from the valence to the conduc-
tion band. Figure 1 shows schematically the competition of
Rabi oscillations with �R (blue arrow) and intraband motion,
driven with ω (thick green arrows). When τt becomes shorter
than the driving period of the light, zR becomes larger than 1.
In that regime, colloquially speaking, the electron has enough
time to undergo a transition from one to the other band within
an optical cycle.

II. MODEL SIMULATIONS

We continue with further insightful parameters later but
now first model the light-matter interaction by solving the
time-dependent Schrödinger equation numerically [7,8]. For
the simulation we apply the following approximations: (i)
We treat the light-matter interaction semiclassically, (ii) we
utilize the electric dipole approximation, (iii) we limit our
discussion to two bands, i.e., the valence and conduction band,
(iv) we assume that the electron dynamics can be represented
by an evolution of field-free Bloch states, and (v) we assume
that the electrons can be treated independently during the
light-matter interaction. We note that these approximations
are commonly applied in the strong-field community to de-
scribe high-harmonic generation or the residual conduction
band population. These approximations allow us to obtain a
simple and intuitive classification of light-matter interaction
in solids.

We consider a TBS with a band gap of ±�/2 and a
time-dependent perturbation α(t )/2, representing an avoided
crossing [26,28,43–45]. The Hamiltonian of this system reads
as follows:

Ĥ(t ) = −α(t )

2
σ̂x − �

2
σ̂z, (3)

with σ̂x and σ̂z being the Pauli matrices. The eigenener-
gies are ε±(t ) ≡ ± 1

2ε(t ), where ε(t ) =
√

�2 + α(t )2 is the
time-dependent energy difference between the two bands.
By taking k(t ) as the time-dependent wave number of an
electron and ±vF as the slopes of the two crossing bands,
Eq. (3) with α(t ) = 2h̄vFk(t ) represents a solid-state band
structure with ε±(k) being the conduction band (+) and va-
lence band (–) energy (and � being the band gap). We assume
vF = 1 nm/fs. The change of the electron wave number due
to the electric field is described by the Bloch acceleration the-
orem k̇(t ) = −(e/h̄)E (t ) [7,8,46,47]. We note that when the
electric field is weak, the electron dynamics is well described
with a trivial two-level system of fixed energy levels ε± at each
k-value, i.e., intraband motion can be neglected. However,
when the electric field becomes large, the electrons undergo
intraband motion. For even larger electric field strengths (i.e.,
γ < 0.01), relativistic effects may become important, which
are beyond the presented categorization (see the Appendix).

In the simulations we apply a linearly polarized vector
potential,

A(t ) = −E0/ω exp [−2 ln 2(t/τp)2] sin (ωt + φCEP), (4)

associated with the electric field E (t ) = −Ȧ(t ), to model the
temporal evolution of the conduction band population. By
defining the vector potential we satisfy A(−∞) = A(∞) and
thus omit dc components in the electric field. A pulse du-
ration of τp = 5 fs is chosen with a central photon energy
of h̄ω = 1.55 eV and a carrier-envelope phase of φCEP =
π/2. For simplicity, we first consider electrons with an initial
wave number of k0 = 0. We note that while different pulse
durations, dephasing or dispersion effects may change the
population distribution, the presented categorization remains
valid (see the Appendix).

III. CATEGORIZATION OF LIGHT-MATTER
INTERACTION

Figures 2(a)–2(e) show in the lower panels the conduction
band population ρCB as a function of time for various regimes,
discussed in detail in what follows. In Fig. 2(f), we show the
residual conduction band population parametrized by γ and
the multiphoton parameter M = �/(h̄ω), measuring the band
gap in units of the photon energy. Based on γ and zR we can
now identify and categorize various regimes, which show an
entirely different temporal evolution of the conduction band
population [Figs. 2(a)–2(e)].

(1) Perturbative multiphoton absorption regime. When the
electric field is weak (γ > 1), the population is found at
M ≈ 1, reflecting resonant excitation [Figs. 2(f) and 2(g)].
Here, the population ρCB rises during the laser pulse gradually
[Fig. 2(a)]. The red lines, horizontal for γ > 1, represent
the resonance condition: M is an integer. The population
width along M reflects the spectral width of the laser pulse.
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FIG. 2. Regimes of a light-field-driven two-band system. (a)–(e) Temporal evolution of the conduction band population ρCB for a Gaussian
pulse (τP = 5 fs, φCEP = π/2) with electrons starting from k0 = 0 from our time-dependent Schrödinger equation (TDSE) model. The top
panels show the normalized vector potential A(t ) (gray lines) and PLZ (blue lines) for an LZ transition at k0. The laser and system parameters
are identified by γ and M, given in each legend. (f) Map of the residual conduction band population. The circles relate to panels (a)–(e). See
text for details. Panel (g) is the same as panel (f), with various regimes indicated: (1) Perturbative MP absorption regime, (2) impulsive LZ
regime, (3) nonimpulsive LZ regime, (4) adiabatic regime, and (5) adiabatic-impulsive regime. Whereas for γ > 1 only perturbative, resonant
one-photon (n = 1) absorption at M = 1 is found, for γ < 1 off-resonant excitation occurs. In particular, for PLZ ≈ 0.5, δLZ ≈ ln(2)/(2π ), and
zR > 1, defining the adiabatic-impulsive regime (5), most off-resonant excitation is found. The red lines represent odd (solid lines) and even
(dashed lines) resonances for the light-matter interaction, based on Eq. (6). The boxes relate to three regimes as indicated by the number. Note
the dashed lines showing the crossing areas for the various adiabaticity parameters.

Increasing the electric field strength (decreasing γ ) results
in an increase of �R ∝ E0; hence, Rabi oscillations become
visible.

Transition to the strong-field regime (2)–(5). Around γ ≈ 1,
the interaction strength 2h̄�R is of the order of the band gap
[Eq. (1)] and light-field-driven intraband motion cannot be ne-
glected anymore. Hence, intraband motion leads to a variation
of the instantaneous eigenenergies ε(t ), which in turn results
in a rotation of the features in Fig. 2(f). For γ < 1, carrier-
wave Rabi flopping occurs and the horizontal lines given by
multiples of the photon energy fail as a valid quantity to
specify resonant absorption, reflecting the ac Stark effect [25].
To extend the resonance condition to this field-driven regime,
we calculate the dynamical phase

φ = 1

h̄

∫
ε(t )dt . (5)

When a phase of φ = 2π is accumulated within an opti-
cal cycle of the laser pulse, population at the next higher
multiphoton resonance (n) is found [25]. For monochromatic
excitation, we analytically obtain the resonance condition

M = nπ

2el (−γ −2)
. (6)

Here, el denotes the complete elliptic integral of the second
kind and n is the order of the resonance (see the Appendix).
We see that when γ decreases, the photon resonances n
no longer match integer multiples of M but are shifted to-
wards smaller M. Equation (6) is plotted as red solid lines
in Fig. 2(f), for various n, perfectly matching the conduction
band population obtained from the TDSE simulation. When
γ � 1, the elliptic integral becomes π/2 and the photon res-
onances are found at integer multiples of the band gap, i.e.,
M = n, as expected for weak fields. In contrast, at γ ≈ 0.4
the intraband motion becomes so strong that n = 2M and,
thus, the two-photon resonance is found at M = 1. We note
that due to the inversion symmetry of the TBS at k0 = 0 the
population only arises for odd photon orders [see dashed lines
for even orders in Fig. 2(f)].

In the field-driven regime, i.e., γ < 1, it is helpful to de-
scribe the electron dynamics within the Landau-Zener (LZ)
formalism (see the Appendix and Refs. [26,28,29,48,49]).
When the electron reaches the minimal separation of valence
and conduction bands, the transition from one to the other
band takes the form of an LZ transition. The transition proba-
bility is approximated by the famous Landau-Zener formula

PLZ = exp (−2πδLZ), (7)
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with

δLZ = �2

8h̄2�Rω
= 1

4
γ

(
h̄ω

�

)−1

(8)

being the Landau-Zener adiabaticity parameter (see the Ap-
pendix for derivation) [8,28,43,44].

Within the field-driven regime we now find four categories
of electron dynamics.

(2) Impulsive Landau-Zener regime. When δLZ 	 1 and
zR > 1 the electron undergoes a sequence of fast LZ transi-
tions with probability PLZ close to unity [Fig. 2(b)]. Within
one optical cycle the electron experiences a transition from the
valence band to the conduction band and back to the valence
band. After the laser pulse, the electron ends up in the initial
band; hence, no excitation is found [Figs. 2(f) and 2(g)].

(3) Nonimpulsive Landau-Zener regime. When the transi-
tion time τt is longer than the optical period (i.e., zR < 1),
the LZ transition can no longer be considered impulsive. Fig-
ure 2(c) shows that even when the LZ probability is large (blue
lines in top panel) there is not enough time for an efficient
electron excitation. Also, here, the conduction band is not
populated after the laser pulse is gone, albeit for very different
reasons than in the impulsive LZ regime [Fig. 2(f)].

(4) Adiabatic regime. When δLZ � 1, the probability for
an electron to undergo an LZ transition approaches zero and,
thus, the electron undergoes pure intraband motion [Fig. 2(d)].
Yet, we note that the intraband motion during the laser pulse
is a well-investigated source of intraband HHG [36,50].

(5) Adiabatic-impulsive Landau-Zener-Stückelberg regime.
When δLZ ≈ ln(2)/(2π ), PLZ ≈ 0.5. Hence after one LZ tran-
sition event, the electron wave function is equally split into
the valence and the conduction band, so a part of the electron
wave function undergoes an LZ transition, while the remain-
der stays adiabatically in the valence band [Fig. 2(e)]. Due to
the oscillatory nature of the driving, this happens periodically
with every half cycle of the laser pulse. Interference of the
electronic wave-function components, each with a different
accumulated phase φ [Eq. (5)], determines the conduction
band excitation probability. We observe that, intriguingly,
the net excitation probability is highest in this regime. We
note that repeated coherent LZ transitions are called Landau-
Zener-Stückelberg interference [26,28,43–45].

IV. RESIDUAL CURRENT IN A TWO-BAND SYSTEM

So far, we have discussed electrons starting from k0 = 0
only and described the light-field-driven electron dynamics.
To capture the full excitation in the TBS and finally de-
fine a residual current, various initial k0 values throughout
the two bands need to be taken into account. For linearly
polarized light, we can focus on a one-dimensional band
structure. Electrons with k0 > 0 and k0 < 0 can experience
different dynamics, in particular, when a pulse with a bro-
ken time inversion symmetry [E (−t ) 
= E (t )] is applied, e.g.,
one with φCEP = ±π/2 [8,14,15,33,51,52]. Figure 3(a) shows
schematically the electron trajectory in reciprocal space for
an electron starting at k0 > 0 (green line) and k0 < 0 (blue
line). For φCEP = ±π/2, the number of LZ transitions and
their temporal spacing between an electron starting at initially
positive or negative wave number may differ, resulting in
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FIG. 3. (a) Temporal evolution of the electron trajectory for
an electron with initially positive (green line) and negative (blue
line) wave number. The orange line indicates the region of high
LZ transition probability. For a field wave form with broken time
inversion symmetry, the two electron trajectories can experience a
different number of LZ transitions and/or a different total quantum-
mechanical phase evolution, in particular, when the length of the
trajectory (green and blue lines) is different. (b) Residual electric
current as function of γ and M calculated with the TDSE model. The
maximal residual current is found in the adiabatic-impulsive LZS
regime. The black lines indicate iso-lines for constant E0. (c) In-
tegrated current along lines with constant E0, as a function of E0.
The oscillatory nature of jres(E0) is a result of the wave-number-
dependent quantum-mechanical phase evolution.

asymmetric residual population. As a consequence, a nonzero
residual ballistic current,

jres = gse
∑

m=CB,VB

∫ ∞

−∞
v(m)[k(t )]ρ (m)(k0, t )

dk

2π
, (9)

with v(m)(k) = h̄−1 ∂ε±(k)
∂k , is generated. The factor gs = 2 ac-

counts for two kinds of spins.
In Fig. 3(b) we show the map of the residual cur-

rent density, taking all initial k0 values into account. With
the help of the above, we can now understand the intri-
cate pattern of the current map. Residual current is mainly
found in the adiabatic-impulsive LZS regime. Increasing
the electric field strength, i.e., decreasing γ , starting at
γ ≈ 1, results in an increase of the accumulated dynam-
ical phase, causing more and more current reversals as a
function of E0. Iso-lines for constant electric field strengths
E0 = 1, . . . , 20 V/nm are drawn as solid black lines.
Around E0 = 1 V/nm almost no residual current is
obtained. Increasing the electric field strength towards
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2 V/nm results in nonzero jres, at around 2 V/nm.
This is shown and continued in the integrated current,
along constant field strength in Fig. 3(c). The oscilla-
tory nature of the current as a function of the electric
field strength reflects Landau-Zener-Stückelberg interfer-
ence with varying accumulated phase, as also discussed
above. We note that the simulation results presented were ob-
tained for a photon energy of 1.55 eV (ω = 2π · 0.375 PHz).
A smaller driving frequency ω decreases the field strength re-
quired to enter the light-field controlled regimes, see Eqs. (1)
and (2) and thus, the Landau-Zener-Stückelberg interferences
are expected to appear at smaller field strengths.

V. ANALOGY TO ATOMIC AND WIDE BAND-GAP
SYSTEMS

In many light-matter interactions, the transition from
the weak-field regime to the strong-field regime has been
observed. This transition is typically identified by γ and
zR, i.e., the ratio between the interaction strength and the
band gap or the photon energy, respectively. For example,
for atomic systems, the magnitude of the interaction strength
is well described by the ponderomotive energy [40], while
for wide band-gap solids, it is rather described by the Bloch
frequency [31,53]. In the case of resonant and near-resonant
excitation in a semiconductor, we find that the interaction
strength can be well described in the form of an effective Rabi
frequency. Based on our extensive analysis, we find that here
�R exceeds the photon energy at around 1.8 V/nm (zR > 1).
This also matches an important previous result: In Ref. [8] it
was shown that the CEP-dependent photocurrent in graphene
(vF = 1 V/nm) switches sign at a field strength of 1.8 V/nm,
perfectly coinciding with the first current reversal shown in
Fig. 3(c). Hence, the adiabatic-impulsive LZS regime has
been entered in that experiment.

VI. SUMMARY

In summary, we have presented five different regimes of
light-matter interaction in a two-band system, categorized
by adiabaticity parameters. This way, we can understand
the intricate dynamics of each regime by delimiting it
from but also connecting it to its neighboring regimes. Al-
though we have focused on electrons in a solid-state band
structure, the here-discussed dynamics and categorization
into different regimes may be applicable to a large vari-
ety of two-band systems, which may include or give rise
to nonadiabatic multielectron dynamics [49,54], conical in-
tersections [55,56], Wannier-Stark localization [6,57], cavity
QED [58,59], and the Kibble-Zurek mechanism [60] based on
an effective TBS, for which the time-dependent perturbation
α(t ) needs to be adapted appropriately. Specifically, two-
dimensional materials can be well approximated as two-band
systems [8,34,61,62]. We expect that the presented catego-
rization will help us to understand fundamental yet complex
light-matter interaction results on a new level across a large
variety of solid-state systems.

FIG. 4. Two-level system. Energy ε versus time-dependent en-
ergy bias α. The blue and red solid lines represent the adiabatic
energy basis of the two-level system with two instantaneous eigen-
states ε+ and ε−. For α = 0, the energy difference ε(t ) between the
two eigenstates is given by �.
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APPENDIX

1. General form of a two-level system

We consider a two-level system with two constant en-
ergy levels, ±�/2, and a time-dependent energy perturbation,
α(t )/2, acting on them, i.e., time-dependent coupling between
energy levels. Such a system is described by the Hamiltonian

Ĥ(t ) = Ĥ0 + Ĥint(t ) = −1

2

(
� α(t )

α(t ) −�

)
. (A1)

Here, Ĥ0 = −�
2 σ̂z represents the bare two-level system with

the two eigenvalues ±�/2 and Ĥint(t ) = −α(t )
2 σ̂x (the interac-

tion Hamiltonian), describing how the system evolves under a
time-dependent perturbation. σ̂x and σ̂z are Pauli matrices. By
diagonalizing Ĥ(t ), one obtains the instantaneous eigenvalues

ε±(t ) ≡ ± 1
2

√
�2 + α(t )2 = ± 1

2ε(t ). (A2)

Hereby,

ε(t ) =
√

�2 + α(t )2 (A3)

is the time-dependent energy difference between the two en-
ergy states ε+ and ε−, as depicted in Fig. 4.
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2. Solid-state two-band model

One example of a TBS system can be found in the dynam-
ics of an electron driven in a solid by an external field. By
taking the Bloch acceleration theorem

k(t ) = k0 − e

h̄

∫
E (t )dt, (A4)

as the time-dependent electron wave number, where A(t ) is
the vector potential and k0 the initial electron wave number,
and

α(t ) = 2h̄vFk(t ) (A5)

as the time-dependent energy bias, with vF being the Fermi
velocity, we can rewrite Eq. (A1) as

Ĥ(t ) =
(

−�
2 h̄vFk(t )

h̄vFk(t ) �
2

)
. (A6)

For k0 = 0 and the periodic oscillating electric field E (t ) =
E0 sin(ωt ), Eq. (A6) has the form of that of a driven two-band
Rabi system with

�R = vFeE0

h̄ω
(A7)

being the Rabi frequency. ω is the angular frequency and E0

the peak electric field strength.
To obtain the temporal evolution of an electron in the two-

band model, we assume that the electron dynamics is coherent
and can thus be described by the time-dependent Schrödinger
equation

ih̄
∂�(k0, t )

∂t
= Ĥ(t )�(k0, t ), (A8)

with �(k0, t ) = ∑
m=CB,VB β (m)(k0, t )�(k0) being the elec-

tron wave function, where � is the Bloch states of the
field-free system and β (m) is the expansion coefficients of
Eq. (A8) [62].

3. Keldysh adiabaticity parameter

The general form of the Keldysh parameter for a two-band
model reads

γ = ω
√

m∗�
eE0

, (A9)

where m∗ is the effective electron mass [40]. Using Eqs. (A3)
and (A5) we obtain

m∗ = h̄2

[
∂2ε(k)

∂k2

∣∣∣∣
k0=0

]−1

= �

4v2
F

. (A10)

Applying the Rabi frequency [Eq. (A7)], we rewrite the
Keldysh adiabaticity parameter for an oscillating electric field
as

γ = ω�

2vFeE0
= �

2h̄�R
. (A11)

Here, the Keldysh adiabaticity parameter is given as the char-
acteristic interaction strength 2h̄�R and the band gap �. Note
that in the case of resonant excitation h̄ω = � and ω 	 �R,
this regime is known as carrier-wave Rabi flopping.

4. Landau-Zener transition

Following the framework of Landau-Zener (LZ) transi-
tions, it is useful to work with a Hamiltonian Ĥ′(t ) with
time-dependent diagonal components, which can be achieved
by applying the unitary transformation

Û = exp
(

i
π

4
σ̂y

)
. (A12)

We obtain

Ĥ′(t ) = ÛĤ(t )Û −1

= −�

2
σ̂x − α

2
σ̂z. (A13)

In the vicinity of an LZ transition we linearize α(t ), i.e.,
cos(ωt )

ω
≈ t and obtain α(t ) ≈ α0t , with α0 = 2vFeE0. Now,

Ĥ′(t ) reads

Ĥ′(t ) = −1

2

(
α0t �

� −α0t

)
. (A14)

This Hamiltonian has the form of a Hamiltonian for an
avoided crossing model with the Landau-Zener transition
probability

PLZ = exp (−2πδLZ), (A15)

with δLZ = �2/(4h̄α0) being the Landau-Zener adiabaticity
parameter [28]. For δLZ 	 1, PLZ → 1 and an interband tran-
sition becomes likely:

δLZ = 1

4
γ

(
h̄ω

�

)−1

= �2

8h̄2�Rω
. (A16)

5. Analytic resonance condition

When an electric field is applied to solids, the wave number
k(t ) of an electron changes according to Eq. (A4). Within
one optical cycle, the resulting intraband motion leads to the
accumulation of a dynamical phase,

φ = 1

h̄

∫ T0

0
ε(t )dt, (A17)

with T0 = 2π/ω. We assume a periodically oscillating elec-
tric field to obtain an analytic expression for the resonance
condition under the presence of intraband motion. Using the
Keldysh parameter, we rewrite Eq. (A3) as

ε(t ) =
√

�2 +
(

2vFe
E0

ω
cos(ωt )

)2

= �

√
1 +

(
cos(ωt )

γ

)2

. (A18)

Taking ωt = t ′ and t ′′ = t ′ − π
2 , we write

φ = 2�

h̄ω

∫ π

0

√
1 + γ −2 cos(t ′)2dt ′

= 4�

h̄ω

∫ π
2

0

√
1 + γ −2 sin(t ′′)2dt ′′. (A19)
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FIG. 5. Different pulse durations and dispersion. Map of the residual conduction band population for three different bandwidth-limited
pulse durations [5 fs (a), 10 fs (c), 20 fs (d)] and for a 5-fs pulse with dispersion of 5 mm SiO2 (b). Whereas for γ > 1 only perturbative, resonant
one-photon (n = 1) absorption at M = 1 is found, for γ < 1 off-resonant excitation occurs. In particular, for PLZ ≈ 0.5, δLZ ≈ ln(2)/(2π ),
and zR > 1, defining the adiabatic-impulsive regime, most off-resonant excitation is found. The red lines represent odd resonances for the
light-matter interaction. The dashed green line represents zR = 1 and the dashed blue line represents PLZ ≈ 0.5. See main text for detailed
discussion.

Now we apply the complete elliptic integral of the second
kind [63]:

φ = 4�

h̄ω
el (−γ −2). (A20)

When a phase of φ = 2π is accumulated, the population at the
next higher multiphoton resonance (n) is found. Thus,

4�

h̄ω
el (−γ −2)

!= 2πn (A21)

needs to be fulfilled and the condition for analytical resonance
under the presence of intraband motion reads

M = πn

2el (−γ −2)
. (A22)

For γ � 1, the elliptic integral becomes π
2 and the photon

resonances are found at multiples of the band gap (M = n).

6. Genericity under pulse distortion and dephasing

The categorization of excitation regimes in a strongly
driven two-band model is general and remains valid for dif-
ferent pulse durations, dispersion, and dephasing; i.e., zR,
δLZ, and γ depend on the driving frequency, the peak electric

field strength, and the energy spacing between the two bands.
To prove this, we show in Fig. 5 the residual conduction
band population for three different bandwidth-limited pulse
durations [Fig. 5(a), 5 fs; Fig. 5(b), 10 fs; Fig. 5(c), 20 fs]
centered at a photon energy of h̄ω = 1.55 eV. Increasing the
pulse duration results in a decrease in the spectral width of the
photon orders and an increase of Rabi cycles as a function of
γ , i.e., more Rabi cycles can be performed during the laser
pulse. In the field-driven regimes, increasing the number of
optical cycles results in more subsequent LZ transitions and
a different accumulated dynamical phase. In the adiabatic-
impulsive LZS regime, both lead to strong mixing of states,
resulting in finer features in the residual conduction band pop-
ulation. Whereas the exact value of ρCB depends on the pulse
shape, the categorization into different excitation regimes is
determined by peak electric field strength.

Similarly, introducing dispersion does not affect the cat-
egorization. In Fig. 5(b) we show the residual conduction
band population of the same pulse applied in Fig. 5(a),
but stretched by 5 mm SiO2 (Group delay dispersion:,
180.8 fs2; Third-order dispersion, 137.3 fs3). The visibil-
ity of the Rabi oscillations is decreased since the spectral
components are delayed with respect to each other. In
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FIG. 6. Dephasing of the population. Map of the residual con-
duction band population assuming a dephasing time constant of
T2 = 3 fs and a pulse duration of 5 fs. The red lines represent odd
resonances for the light-matter interaction. The dashed green line
represents zR = 1 and the dashed blue line represents PLZ ≈ 0.5. See
main text for detailed discussion.

the field-driven regimes, all features are preserved while,
again, the exact value of the conduction band population
is changed due to different accumulation of dynamical
phase.

Figure 6 shows the residual conduction band population for
a pulse duration of 5 fs including a dephasing time constant
of T2 = 3 fs [25]. Decreasing the dephasing time results in
an increase of ρCB in the adiabatic regime; i.e., transiently
populated carriers remain after the laser pulse and the residual
population in the adiabatic-impulsive LZS regime becomes
smeared out. LZS interference becomes less important due
to decoherence and the visibility of features decreases con-
sequently. We note that the dephasing time constant T2 can
be understood as decay of quantum coherence in a coherently
driven system.

7. Relativistic regime

The classical equation of motion of a free electron in an
optical field is given by

dp
dt

= −e[E(x, t ) + v × B(x, t )], (A23)

with peak magnetic field |B0| = E0/c (c, speed of light; e,
electron charge; p, electron momentum; v, electron velocity).

FIG. 7. Relativistic regime in the strongly driven TBS. The gray
box represents the regimes discussed in this paper. Relativistic effects
become important when the normalized vector potential a0 becomes
smaller than 1. In the TBS system considered here, a Keldysh param-
eter smaller than 0.007 is required to enter the relativistic regime.

In classical Newtonian mechanics we assume that v 	 c. This
implies that the contribution of the second term in Eq. (A23) is
negligible. Assuming an oscillating electric field, the maximal
velocity is vmax = eE0/(ωme). When vmax becomes compara-
ble to c, the normalized vector potential

a0 = eE0

ωmec
(A24)

reaches unity and relativistic effects become important [64].
In the case of a TBS, we replace the electron rest mass me

with the effective mass [Eq. (A10)] and obtain

a0,TBS = vF

γ c
. (A25)

The relativistic regime (a0 > 1) is entered for γ < vF
c . Hence,

in the TBS considered here with vF = 1 nm/fs, the magnetic
component of the optical field can be neglected for γ > 0.007.
Figure 7 shows the full γ -M map including the relativistic
regime.
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