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We present a theoretical investigation of the resonant elastic scattering of twisted light, carrying angular
momentum, by partially stripped ions. Special emphasis is placed on a question of whether the scattered radiation
is also twisted. In order to investigate such an “angular momentum transfer,” we develop an approach that allows
us to find a quantum state of the final photon without projecting it onto a detector state. A general expression for
this so-called evolved state of outgoing radiation is derived, and it can be used to analyze the resonant scattering
by any ion, independently of its shell structure. Here we illustrate our approach with the strong electric dipole
nSy — n'P; — nS, transitions, which play an important role for the Gamma Factory project at CERN. For
the incident Bessel light, the scattered radiation is shown to be in a superposition of twisted modes with the
projections of the total angular momentum m; = 0, 1. The larger values of m, can be efficiently generated by
inducing transitions of higher multiplicity. This angular momentum transfer, together with a remarkable cross
section that is many orders of magnitude larger than that of the backward Compton scattering, makes the resonant
photon scattering an effective tool for the production of twisted x rays and even y rays at the Gamma Factory

facility.
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I. INTRODUCTION

The resonant elastic photon scattering by an atom or an
ion, which proceeds via formation and subsequent decay of a
particular atomic state, has been in the focus of experimental
and theoretical studies for many decades [1-5]. Recently,
this process has attracted particular attention also as a key
element for the Gamma Factory project at the CERN facility
[6-8]. In the Gamma Factory, the incident laser radiation with
the frequency a)}lab) will be collided head-to-head with fast-
moving partially stripped ions and scattered predominantly
backwards. Owing to the Lorentz transformation between the
laboratory (collider) and the ion-rest reference frames, the
frequency of the scattered photons will be boosted to

lab lab
o™~ Ayl (1)

where y is the ion’s Lorentz factor. Since ions with y =
10-2900 can be stored in the LHC collider ring, the y rays
with the energies up to 30 MeV and the intensity up to 107
photons per second can be generated from the incident laser
radiation with an energy just about 1 eV; see Refs. [7,8] for
further details.

Besides energy and emission pattern, further character-
istics of the resonantly scattered photons are also of great
interest for the Gamma Factory. For example, a number of
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theoretical works have been performed recently to investigate
the polarization of outgoing radiation [9,10]. Yet another de-
gree of freedom that also attracts particular attention is the
orbital angular momentum (OAM) of light. The generation
of photon beams, carrying a nonzero OAM projection onto
their propagation direction, is presently under discussion in
the framework of the Gamma Factory project. Having an
energy of up to tens of MeV, these so-called twisted beams can
become a valuable tool for a wide range of studies in atomic,
optical, and nuclear physics [11-14].

The generation of twisted x or even y rays at the Gamma
Factory may rely on the resonant scattering of incident twisted
light by ultrarelativistic partially stripped ions. However, in
order to decide about the feasibility of this approach, one
has to investigate first how (and whether) the projection of
the angular momentum is transferred between incident and
outgoing photons in the scattering process. Until now, the
theoretical analysis of such a “twistedness transfer” has been
based on projecting the scattered light states onto the plane-,
cylindrical- (twisted), or spherical-wave solutions [9,15]. The
outcome of this projection can be understood as a probabil-
ity to get a “click” in a detector that is sensitive only to a
particular state of light. In the present work we propose an
alternative and more general approach that allows one to per-
form a quantum tomography of the scattered radiation without
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a need to introduce detector states. This approach makes use
of the well-established S-matrix theory and provides the wave
function of the outgoing photon as it results from the scatter-
ing process itself.

In order to discuss how the “quantum tomography” method
helps to analyze the state of a photon, produced in the resonant
scattering of incident twisted radiation, we have to remem-
ber first how to describe such (twisted) solutions. In Sec. II,
therefore, we briefly review the Bessel electromagnetic waves,
which are characterized by a well-defined projection of their
total angular momentum (TAM) onto a propagation direction
and can be written as a coherent superposition of the standard
plane waves. The most general description of scattering of the
Bessel photons is given in Sec. III within the framework of the
S-matrix theory. In particular, it is shown that the evolved state
of the outgoing light, obtained irrespectively of the detector
setup, can be written as a sum of the plane waves, weighted
with the scattering matrix elements. In Sec. IV we evaluate
these matrix elements and, hence, the vector potential of the
final (evolved) photon state for the electric dipole nSy —
n' Py — nSy resonant transition, which is of special interest for
the Gamma Factory program. Based on the performed analy-
sis, we argue that the resonant E1 scattering of the incident
twisted light leads to the emission of secondary radiation in
a superposition of Bessel states with the TAM projections
my =0, £1. The larger values of m; can be obtained by
inducing quadrupole and even higher-order ionic transitions.
Moreover, as shown in Sec. V, the cross section of the reso-
nant scattering is many orders of magnitude larger than that of
the Compton scattering by free electrons; the process which is
discussed as an alternative source of the high-energy twisted
radiation [16,17]. Together with our predictions for the TAM
transfer, this cross-section argument suggests that the resonant
scattering by fast-moving partially stripped ions provides an
efficient tool for generating x- and even y -ray twisted photon
beams at the Gamma Factory facility. The summary of these
results is given finally in Sec. VL.

Relativistic units (A =1, ¢ = 1) are used throughout the

paper.

II. PLANE-WAVE AND TWISTED STATES

Before starting theoretical investigation of the resonant-
scattering process, we have to remind first how to describe
the states of incident and outgoing photons. In this section we
focus on two such states: (i) the “standard” plane-wave and (ii)
the cylindrical-wave Bessel solutions. Since both the solutions
and their relations are well discussed in the literature [12,16—
18], here we restrict ourselves just to a brief compilation of
basic formulas, needed for the further analysis.

A. Plane-wave photons
The vector potential of a freely propagating electromag-
netic plane wave reads
A (r) = €. €™, 2

where k is the wave vector, which defines not only the di-
rection of propagation, k = k/k = (6, ¢), but also the energy
w = |k| of light. In Eq. (2), moreover, €, is the circular

polarization vector with A = =1 being the photon’s helicity,
i.e., projection of its spin onto the k direction. Within the
Coulomb gauge for the light-matter coupling, this polarization
vector is orthogonal to the wave vector, k - €, = 0, and it can
be written as

=y €d,)0)e. 3)

o=0,%1

Here, dml\(é) are the small Wigner functions:

d}(0) = %(1 + A) cos6), (4a)
A

d;((0) = —d,) (0) = -7 sin @, (4b)

dyh(0) = cos b, (40)

and the basis unit vectors:

1
o =(0,0,1) and es, = :F—z(l,:lzi, 0) )

%

are the eigenvectors of the operator S. of the spin projection
onto z axis:

A

S.ec =0 e, (6)

with the eigenvalues o = 0, £1.

B. Twisted Bessel photons

Besides the plane waves (2), we also briefly discuss the
cylindrical-wave solutions of the free Maxwell equations as
can be described, for example, by the so-called Bessel state.
The Bessel beam, propagating along the quantization z axis,
is characterized by its longitudinal momentum k, > 0, an ab-
solute value of the transverse momentum k, , as well as by
an energy @ = v sz_ + k?. The vector potential of this Bessel
photon state can be written as

2
Aomin(F) = i f e eervime 49 ™
; 0 21

as a coherent superposition of plane waves with the helicity A
and the wave vectors k = (k cos ¢, k, sin ¢, k;). This expres-
sion implies, moreover, that the Bessel photon beam carries a
well-defined z projection,

m=0,+1,42, .., (8)

of its total angular momentum. This can be easily obtained
from Eq. (3), and the fact that €; "¢ is an eigenvector,

J. €5, €™ = m ey, €™, &)
of the corresponding operator J., which can be written as

. 9 .
Jo=—i—+38,, (10)
d¢p

where S’zek,\ = —i € X €y, and e is given by Eq. (5).
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One can further evaluate the vector potential (7) by per-
forming integration over the azimuthal angle:

Akj_mk:)\(r)zeikzz Z [i70 al)\(e)

o=0;%1
X Jyo(kiry) ™% e, ], (11)

where J,,_,(k r1) is the Bessel function. As seen from this
expression, the potential A . ,(r) depends on an opening
angle,

0 = arctan(k, /k,), (12)

which is usually employed to characterize the ratio of the
transverse to longitudinal momenta of twisted light. In the
present-day experiments, this ratio and hence the opening
angle are usually rather small, § <« 1, leading to the so-called
paraxial regime. In this regime, the sum in Eq. (11) is domi-
nated by a single term with o = A, and the vector potential of
the Bessel light can be written as

Ak i (r) X i €05%(0/2) Ty (k171 )" ¢ €2
(13)

It implies for a paraxial twisted beam that the z projection
of the total angular momentum m unambiguously splits into
the (projections of) spin A and the orbital m — A angular
momenta. If, moreover, m — A # 0, the energy density of
the electromagnetic field vanishes in the center of such a
beam, whereas the first maximum appears at the distance
ri & |m— A|/(ksin@).

In the limit of the vanishing transverse momentum and
the opening angle, k; — 0 and 6 — 0, the vector potential
A, mk.2.(r) can be further simplified to

Akumiea (Do 0 8 i7" €5 €™, (14)
where we used the well-known asymptotic formulas for the
Wigner, dglk(O) = 8,4,., and the Bessel, J,,_,(0) = §,,,, func-
tions. One can see from this expression that for m = A the
vector potential of the Bessel photons restores, up to an in-
significant phase factor i ~*, the “standard” solution for a plane
wave propagating along the z axis.

Until now we have discussed the basic expressions to de-
scribe the twisted Bessel photons in the coordinate space. For
the further analysis, however, it is useful to rewrite the vector
potential Ay, » also in the momentum representation:

Aklmk:)\(p) = /AkLmkz)L(r) e~ P 3y

—m ime 47T2
=i"e ])Eepka(pl_kl)g(pz_kz)- (15)

This expression again suggests a “visualization” of the Bessel
state as a superposition of plane waves, the wave vectors of
which lay on the surface of a cone with the opening angle 6,
see also Eq. (7).

III. S-MATRIX APPROACH

A. General formalism

Our further analysis is based on the standard S-matrix
approach, which allows one to relate the states of a physical

system long before and after the scattering. In the operator
form, this relation can be written as follows,

le) = i), (16)

where the explicit form of the evolution operator § depends,
of course, on a particular process. By defining such a process
and by choosing the initial state |i) of a system, one can use
Eq. (16) to obtain the so-called evolved state |e).

It is important to distinguish a detected state of the final
photon |f), which is defined by the properties of a detec-
tor, and the evolved state |e) in which the photon goes as
a result of the scattering, irrespectively of the postselection
process. In this paper, we concentrate on the properties of the
final photon itself, without a reference to how this photon is
detected, which allows us to explicitly retrieve the phase of
the evolved state and show that the latter might have a phase
vortex. In other words, we perform quantum tomography of
the final photon state, while in order to judge whether the
final photon is twisted or not it is usually enough to employ
just two representations, the momentum and the coordinate
one, corresponding to two marginal values of the quadrature
operator X,,,

Xo=% andX,, =k. (17)

Other intermediate values of the quadrature angle « are not
needed for our purposes.

It is usually practical to rewrite Eq. (16) in terms of wave
functions instead of state vectors. In order to achieve this one
needs to agree first about the representation in which the wave
functions are written. For example, the initial- and final-state
wave functions of a system in the coordinate representation
are related to each other as

Ve(r) = (rle) = (rI8li) = Y (rl ) (£1810)
f

> i) Spi. (18)
7

Here we introduced the notation Sy; = (f |817) for the S-matrix
element and assumed that the detected states | f) form a com-
plete basis set so that ¢ 1FY{fI = I is the identity operator.

B. Evolved photonic states

Having briefly discussed the general formulas of the S-
matrix approach, we are ready to apply them to the photon
scattering process. As seen from Eqgs. (16) and (18), this would
require a definition of an initial photon state. By assuming, for
example, the incident plane wave with the wave vector k; and
the helicity A;, one can derive

AP =l f) S
!

‘ 4’k
iksr o(pl) f

= 2 /ekf,\j.e s - (19)
1 2m)

i.e., the vector potential of the evolved state of a scattered
photon in the coordinate representation. The second line of
this expression is obtained in the lowest order of the per-
turbation theory and by using a complete basis set of the
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plane-wave solutions, (r|f) = €, e*r” In Eq. (19), more-
over, the plane-wave scattering matrix element is given by

S}’?D = (kA sISlkir:)

= iN87%8(w; — wp) MP, (20)

where the normalization factor N = 1/,/Qw;V)(2wV) cor-

responds to a single photon in a volume V), and M;El) is a
transition amplitude. This amplitude depends, of course, on
a specific resonant transition in a “target” ion and is directly
related to the differential cross section of the resonant scatter-
ing:

(pl)
do i (o) 2

= . 21
dQy fi D

While the explicit form of the plane-wave scattering ampli-
tude M(I-;I) will be discussed in the next section, here we
discuss scattering of the incident Bessel light.

Owing to the complex internal structure of twisted light
[12,18], its scattering demands more attention, compared to
the plane-wave case. One has to agree first about the geometry
of the scattering process. In the present work we will consider
a scenario of the head-to-head collisions of the incident Bessel
and ion beams, which is planned to be realized at the Gamma
Factory [7]. In this scenario, the twisted light counterprop-
agates the quantization z axis, chosen along the ion-beam
direction, and is described by the following vector potential:

de

2
m ik-r—im
T
0 27

Z(_l)meikzz Z [ia Ul)\(e)

o=0;%1
X Jpo(kory) e " g, ], (22)

where the longitudinal momentum is negative, k, < 0, and the
opening angle lies in the interval 7 /2 < 6 < m. One can note
that this expression is trivially obtained from Egs. (7) and (11)
by changing the sign of m.

With the help of Eq. (22) one can derive the vector potential
of the scattered photon for the incident Bessel light. Indeed,
by applying the S-matrix approach we easily find it in the
coordinate representation:

AN =l Sy
f
A d*k
ikpr o(tw) f
= Z / ekf)»f e/ Sfl 30 (23)
Ap==£1 (2m)

where we again perform “summation” over the complete set
of the plane-wave solutions (r|f) = €, e*77 in the first line
and use the lowest-order perturbation theory in the second
line. Moreover, the vector potential in the momentum repre-
sentation

A" (k) = f A () e T &y

_ (tw)
= Z €ksis Sy

Ap=1

, (24)

kp=k,

immediately follows from Eq. (23) and has even simpler form.

As seen from Egs. (23) and (24), the analysis of the scatter-
ing of initially Bessel radiation is traced back to the S-matrix
element,

SO = (ephplSlkLimi ki 1), (25)

which describes the “transition” between the twisted
|ky ;m;k,;A;) and the plane-wave |k) ;) photon states. This
matrix element can be again expressed in terms of the follow-
ing transition amplitude:

SE = iN™ 8728 (w; — wp) MY (B) (26)
which, in turn, is directly related to its plane-wave counterpart,

2 d(p
W) = sl
./\/lfl ) /0 o

Here we have introduced an impact parameter

im,-e*im,vw,-+ib~kl,,M;gl)((pi). (27)

b = b(cos ¢y, sin g, 0)

to describe the displacement of the axis of the incident Bessel
beam from a “target” ion. In Eq. (26), moreover, the normal-
ization factor N™) = | /k; /4w;/RL2w;V corresponds to a
single photon in the cylindrical volume V = nR>L..

We conclude from the analysis above that in order to re-
trieve the final photon state, both for the incident plane-wave
and twisted radiation, the knowledge of the (plane-wave) am-
plitude M;‘;D is required. The explicit form of this amplitude
depends, of course, on details of the electronic structure of
a “target” ion as well as on a particular resonant transition.
In the next section, for example, we will discuss the electric
dipole (E 1) scattering channel nSy — n'P; — nSy, for which
the amplitude Mﬁgl) has a simple analytic form.

IV. RESONANT E1 SCATTERING

In order to illustrate the application of the general expres-
sions (19) and (23)—(24) for the vector potentials of scattered
photons, we focus here on the photon scattering off an ion,
being initially in a positive-parity state with the total angu-
lar momentum J; = 0, and which proceeds via intermediate
ionic state with J? = 17. The examples of this E1 scattering
channel are the 1s — 2p — 1s transition in nonrelativistic
one-electron ions and nSy — n'P; — nSy transitions in var-
ious many-electron systems. We will assume, moreover, the
scattering geometry as will be observed in the Gamma Factory
experiments [7], where the incident photon beam counter-
propagates the ion-beam direction, and where the latter is
chosen as a quantization z axis.

A. Scattering of plane-wave photons

We start our analysis from the well-known case of the
nSy — n'P; — nSy resonant scattering of incident plane-
wave light. The amplitude for this transition has been
discussed in the literature, see [3,9], and can be written as

M(]j'l) — R(w;) (GZ,C)L[ - €)s (28)
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where €5, and €,;, are polarization vectors of initial- and
final-state photons, and the radial function

Rew) 3 r,/2
W)= >— = 5>
2a),- Ew-—a),-—sz/Z

(29)
which depends only on the energies of the incident photon w;
and of the transition E,; = E, — E; as well as on the width of
the excited ionic state.

By inserting the amplitude (28) into Egs. (19) and (20), we
obtain the vector potential of evolved (scattered) photons in
the coordinate representation:

AP (r) = iN 87% R(w;)
d’k;

_(271 5 (30)

X / X, () e 8(w; — w,)

Here we used the fact that for the head-on collisions €, =
e_,,, as follows from Eq. (3) for 6, =7 and ¢; =0, and
introduced the vector

Xo(ky) = Zekf)hf (GZf)»f “€—o (0; = 77))
Af
= Zekf)‘f (G;f)tf ’ e”)
Ay

=7 Y e, d); (6)), 3D
Ar

witho =0, £1 and A, = £1.
By making use of Eq. (30) one can easily derive the vector
potential in the momentum representation:

A,(;pl)(ke) = 27N i 8(w; — we)R(w;) X, (ke). (32)

Apart from its simple analytical form, this expression allows
one to analyze the properties of the scattered photon. Indeed,
by employing the definition (31) and Egs. (9) and (10) we
trivially obtain

ke AP (ko) =0, (33a)
FAP (k) = —1A% (k,), (33b)
FAP k) = 247" k), (33¢)

which implies that the vector potential Aipl)(ke) represents a
spherical wave with the energy w, = w; and a definite value
of the total angular momentum, J; = 1. This dipole wave
possesses, moreover, a well-defined projection J, onto the
quantization axis:

M, = —A;, (34)

as can be expected from the angular momentum conservation
rule.

Finally, by projecting the vector potential (32) onto the
plane-wave solution and using Eq. (31), one can again restore

FIG. 1. Resonant E1 scattering of a twisted photon by an atom
or an ion, which proceeds via transition nS, — n'P; — nSy (s and
p orbitals are schematically shown). The ion’s center is located on
the z axis, while b is an impact parameter between this axis and
the 7’ axis of the initial twisted photon. The final photon itself is
in a superposition of states with the projection of the total angular
momenta my = 0, +1, —1, according to Eq. (39) or (41).

the well-known angular distribution,
) | % (phy 2 2
Wby, 9p) = (AL, 14,7)] :

o | (€, - €rn)|s (35)
of the photons, emitted in the nSy — n'P; — nSy resonant
transition, see Ref. [9].

B. Scattering of twisted photons

As the second example, we investigate the vector potential
of light, emitted in the nSy — n'P; — nS, resonant transition
for the incident Bessel photons (see Fig. 1). As has already
been mentioned, special attention has to be paid for this case
to the geometry of the process and, in particular, to the choice
of the quantization (z) axis. Below we consider two particular
choices of the z axis, which can be employed for the the-
oretical description of the same evolved photon state. First,
we study the resonant scattering for the geometry in which a
“target” ion is located on the quantization z axis, while the axis
of the incident twisted beam is antiparallel to z and is shifted
from it by the impact parameter b. In the second scenario,
we choose the z axis to pass through the center of the Bessel
beam in the direction opposite to its propagation and displace
instead the ion by b. Of course, both the choices coincide
for the vanishing impact parameter b = 0, and this special
case will be discussed in Sec. IV B 3. Finally, a scenario of
collision of the finite-size Bessel photon and ion beams is
recalled briefly in the end of this section.

1. Ion is located on the 7 axis

We start our analysis from the transition amplitude

M(tw) b) = R(w; Zﬂ _d(pl -m; ,—imi@i+ib-k ; (%
() = R(wr) S e (€, - €xn)}s
0 T :
(36)

which is obtained from Eq. (27) and the plane-wave counter-
part (28). By expanding the scalar product of the polarization
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vectors in terms of the small Wigner functions,
(s, €)= D0 W0 @) dy) 0. (T)
o=0;%1

and by performing integration over ¢; we can further evaluate
this amplitude as

M) = Ri@p) (=1)" e 37 [17 7 vren)

X Jmto (ki ib)d (0 d), )] (38)

Here ¢ and ¢, are azimuthal angles of the photon momentum
ky and of the impact parameter vector b, respectively.

With the help of the matrix element (38) and Eq. (23) we
obtain, after simple algebra, the vector potential of the evolved
photon state:

A my) = (=1 5= wf N R(wp) e
2

« Z Z /(; C)Lfmf(b)Akl,fmka./}‘f(r)

)\.f=j:1 Wlf=0,:|:1
x sin6;do;, (39)

where the potential Ay, , ;. 2, (r) is defined in Eq. (7), and
the coefficient Cy, g reads as follows:

C)Lfmf b)) = (1" e—imf(p”Jm,erf (ki.ib)
xd, ;0 d,; (). (40)

Similar to the plane-wave case, the vector potential can also
be derived in the momentum space:

rAr

A ey mi) = 20 (1" N §(w; — w,) R()
< o~ imivs Z [ Xon, )

my=0,%1
X dy 5 0 Jmym, (k1 D) e ™7 ], (41)

with the vector x,, defined in Eq. 31).

Equations (39) and (41) allow one to analyze the properties
of the scattered photons without a need for projecting the
evolved photon state onto any detector state. For example, we
conclude that the outgoing radiation can be seen as a coherent
superposition of the Bessel states with the TAM projections:

msp =0, +1 (42)

for any initial m;.

2. Ion is displaced from the z axis

For the analysis of the scattering process under realistic ex-
perimental conditions it might be more convenient to choose
the coordinate system in a different way than is done in Set.
IV B 1. Namely, we can let the z axis pass through the center
of the Bessel beam in the direction opposite to its propaga-
tion and displace instead the ion by the impact parameter b.
For this choice of the quantization axis, one can still apply
Eq. (39), in the right-hand side of which we have to expand the
basis wave vectors Ay, sk, (1) in terms of their “on-axis”

COunterpartS,
AkL'f mf k:’,f )\.f (r)
00
. —i(m',—my ), . (b)
= 3 e e gy DAL i, 5, (0], (43)
my=—00

see Appendix C in Ref. [19] for further details. We note
that this expansion can be obtained by multiplying the vector
potential in the momentum representation (15) by a “transla-
tion” factor exp(ib - k.) and by expanding the exponent into
a series over the Bessel functions. It should be stressed that
for the small values of b < 1/k, ; the distribution over m} is
concentrated near the values m;y.

3. Zero impact parameter, b = 0

Of course, for b = 0 both the coordinate systems coin-
cide and the evolved wave function is simplified. Indeed, in
this case Jy, 4m,(0) = 8yp,—m, and Jm; —my 0) = Smjm}, and the
initial- and final-state TAM projections are related to each
other as

my = —mj, (44)

as can be expected from the conservation rules. This relation,
together with Eq. (42), suggests that only the incident Bessel
photons with m; = 0, £1 can induce nSy — n'P; (E1) exci-
tations of an ion, placed at b = 0. Again, it fully meets our
expectations based on the electric—dipole selection rules.

Despite the fact that for b = 0 the scattered photon wave
carries a well-defined projection of the total angular momen-
tum onto the z axis, see Eq. (44), it cannot be described by
a single pure Bessel state. This immediately follows from
Eq. (39), which simplifies, for the vanishing impact parameter,
to

AP m) = 3= SN R@)d_,, ,, (0)

m;

X Z‘/O‘ def {Akl‘f —m,»k;.f)\f(r)
Ay

xd_,, ;. (0f) sinfr}, (45)

and suggests that outgoing photons acquire some momen-
tum distribution. One may note that a similar momentum
distribution can be expected also for scattering of the
Laguerre-Gaussian beams or the normalized wave packets,
similar to those discussed in Ref. [20].

Besides the limit of the vanishing impact parameter b, we
also briefly recall the case §; — m and hence, k, ; — 0. Most
easily, this regime can be analyzed in the momentum space, in
which

dyy:fA’ (91) Jmi+an (kJ_zb) ~ 8—}’}’1,‘}\,,‘ S—mim/ ) (46)
and the vector potential of the scattered photons (24) coincides

with the standard plane-wave result (32) up to an inessential
factor i,

4. Collisions of beams of final width

Until now we have discussed the resonant scattering of
twisted light by a well-localized single atom. However, the
derived expressions can be extended to analyze collisions of
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the Bessel photon and ion beams, having finite cross-sectional
areas of 1/k, ; and ojo,, respectively. Of special interest here
is, again, the TAM projections of the outgoing photons. Owing
to the finite (transverse) size of an ion beam, some of its ions
will be displaced from the center of the Bessel beam, b # 0,
thus resulting in a breakdown of relation (44) and hence in
a distribution of the TAM values. Of course, the shape and
width of this distribution depend on a particular experimental
setup. If, for example, the transverse size of an ion beam ooy
is smaller than the transverse coherence length 1/k, ; of the
incident Bessel light, and the centers of the colliding beams
(almost) coincide, the TAM distribution of scattered photons
will be peaked at around my = —m; with the following width:

Smy = \J{J2), = (J)2 ~ Gionk1i = Oion ke tan 6. (47)
This estimate follows from the fact that the wave function
(39) or (43) is proportional to J;;, 4 m, (k1b), where for a beam,
treated as an incoherent mixture of ions, the maximum value
of the impact parameter is of the order of the beam width,
b ~ ojon. For the Gamma Factory project, if the width of the
ion beam o;,, is much smaller than the transverse coherence
length of the incoming photons, the width §my is vanishing.
Say, for Pb ions it is ojon & 16 um [7] and a paraxial optical
photon beam satisfies this condition.

V. COMPTON SCATTERING

It follows from the analysis above that the resonant light
scattering by fast-moving, partially stripped ions may lead
to the emission of high-energy twisted photon beams in the
laboratory (collider) frame. Yet another possibility for the pro-
duction of such beams was discussed recently in the literature,
Refs. [16,17], and it relies on the inverse Compton scattering
off free electrons:

v (ki) +e(p;) — y(ky) +e(py). (48)

If the energy of the incident photon is much smaller than
the electron mass, the “plane-wave” matrix element of this
process,

/\/lf) = ”e(E;:,)\f €k (49)
has the same structure as the resonant-scattering one (28), and
where r, is the classical electron radius. By making use of
this matrix element one can investigate the properties of the
Compton-scattered photons when incident light is prepared in
the Bessel states, see Refs. [16,17] for further details. It was
shown, in particular, that almost complete “TAM transfer”
between incoming and outgoing photons, m, ~ —m;, can be
observed for small scattering angles, typical for ultrarelativis-
tic electrons. Moreover, in contrast to the resonant photon
scattering, there is no selection rule similar to (42) for the
Compton case, which implies that high-energy photons with
any TAM projection can potentially be generated in the pro-
cess (49).

A great advantage of the resonant scattering by partially
stripped ions, however, is that its cross section is about 6—12
orders of magnitude larger than that of the Compton scat-
tering [9]. This can be easily seen from Egs. (28) and (49),
and from the fact that the cross sections of the scattered

processes are determined by the squares of their transition
amplitudes. Indeed, while the Compton cross section is pro-
portional to the square of the classical electron radius, o©) o
r2 ~ 7.8 x 1072° cm?, its resonant-scattering counterpart is
o o |R(w;)|?, with the radial function R(w;) given by
Eq. (29). For vanishing detuning, E,; — w; = 0, this function
is maximal and it gives
_ > 9 9
|R(w; = Evi)|” = W = mki
~ (8.6 x 1072°—1.6 x 107"*)em?,  (50)

where A; = 27 /w is the wavelength of the incident light, and
the values in the second line are obtained for the typical exper-
imental scenarios of the future Gamma Factory, see Ref. [9]
for details. We can conclude, therefore, that the resonant scat-
tering might become a powerful tool for the production of
high-intensity (twisted) y beams with moderate values of the
TAM projection.

VI. SUMMARY

In summary, we have carried out a theoretical investigation
of the resonant photon scattering by partially stripped ions.
Special attention has been paid to the question of whether
scattered photons are twisted if the incident radiation is
twisted itself. In order to analyze this “twistedness transfer,”
we have applied the well-established S-matrix theory, which
allows one to find the vector potential of scattered radiation
without projecting it onto the detector states. The expressions
for this so-called evolved state of the outgoing light have been
derived for both an incident plane wave and the twisted Bessel
radiation. While the obtained expressions are general and can
be used to any resonant transition, we have illustrated their
application for the simplest electric dipole nSy — n'P; — nS
channel. It has been shown, in particular, that the photons are
scattered in the superposition of Bessel states with the TAM
projections my = 0, £1, if the incident radiation is twisted.
Moreover, this my distribution can be controlled by varying
the position of a “target” ion with respect to the incoming light
beam or by reducing the cross-sectional area of ion bunches
in realistic “beam-to-beam” collision scenarios.

Our theoretical analysis of the resonant scattering has been
performed in the ion-rest frame, where the energies of the
incident and outgoing photons are the same, w; = ;. How-
ever, in the laboratory frame, in which ions move with a high
Lorentz factor y >> 1, and for the head-on collision scenario,
the scattered photons will be emitted predominantly along
the ion-beam axis with the Doppler-boosted energy wﬁ}ab) ~

4y2wglab). Along with the results reported in the present work,
it implies that the resonant photon scattering by fast-moving
ions can provide an effective tool for the generation of hard
x rays and even y rays carrying orbital angular momentum.
Such experiments are planned, for example, at the Gamma
Factory in CERN.
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