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Fine and hyperfine splitting of the low-lying states of 9Be
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We perform accurate calculations of energy levels as well as fine and hyperfine splittings of the lowest 1,3PJ ,
3S1, 3Pe

J , and 1,3DJ excited states of the 9Be atom using explicitly correlated Gaussian functions, and we report
on the breakdown of the standard hyperfine structure theory. Because of the strong hyperfine mixing, which
prevents the use of common hyperfine constants, we formulate a description of the fine and hyperfine structure
that is valid for an arbitrary coupling strength and may have wide applications in many other atomic systems.
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I. INTRODUCTION

The main drawback of atomic structure methods based
on the nonrelativistic wave function represented as a linear
combination of determinants of spin-orbitals (Hartree-Fock,
configuration interaction, multiconfigurational self-consistent
field, etc.) is the difficulty in providing results with reliably
estimated uncertainties. While the accuracy of nonrelativistic
energy can be assessed by increasing the space of electronic
configurations, the irregular convergence of matrix elements,
especially involving singular operators, such as those for rela-
tivistic or quantum electrodynamics (QED) corrections, often
does not allow for presenting any uncertainties. Therefore, this
deficiency limits the use of these methods in applications that
require high accuracy, e.g., testing quantum electrodynamics
[1–3], determination of nuclear charge radii [4–7], nuclear
electromagnetic moments [8,9], or physical constants [10],
and in the search for new physics [11].

On the other hand, an alternative approach based on the
Dirac-Coulomb Hamiltonian, with the wave function repre-
sented as a determinant of four-component spin-orbitals of
positive energy, can reach reasonable convergence on rela-
tivistic energies and matrix elements [12]. But so far there is
no formulation of QED theory on the top of a Dirac-Coulomb
Hamiltonian with projection on positive one-electron ener-
gies. Therefore, numerical convergence does not say much
about uncertainties due to omitted QED effects, including
those related to negative energy orbitals. Other problems arise
when the hyperfine effects are not negligible compared to
the fine-structure splitting. In previous works on this topic
(e.g., [13,14]), it has been demonstrated that the hyperfine
mixing of fine-structure levels can be satisfactorily accounted
for by the second-order perturbation theory. However, when
the hyperfine splitting is of the same order or even larger than
the fine-structure splitting, the perturbative approach fails,
and one can no longer use the standard AJ and BJ hyperfine
parameters.

It is desirable, therefore, to develop tools that provide high
and controlled accuracy, such as those based on nonrelativistic

QED (NRQED) theory and representation of the nonrela-
tivistic wave function in terms of explicitly correlated basis
functions, e.g., exponential, Hylleraas, or Gaussian (ECG)
ones. The controlled accuracy is achieved by means of a full
variational optimization of the wave function and by transfor-
mation of singular operators to an equivalent but more regular
form. The price paid for using the explicitly correlated func-
tions is the rapid increase in the complexity of calculations
with each additional electron; therefore, application of these
functions has so far been limited to few-electron systems only.

Before proceeding to the main topic, which is the four-
electron beryllium (Be) atom, let us briefly describe recent
advances in the calculation of one-, two-, and three-electron
atomic systems. Hydrogenic systems are the only ones in
which theoretical predictions including QED effects are suf-
ficiently accurate to determine the nuclear (proton, deuteron)
charge radius from the measured transition frequencies [10].
Being apparently simple, hydrogenic systems are a corner-
stone for the implementation of QED in bound states, which
relies on the expansion of binding energy in powers of the
fine-structure constant α ∼ 1/137. Similarly, for two- and
more-electron systems, one also performs expansion in α, as
long as the nuclear charge Z is not too large. This allows for
a description of an atomic system in terms of the successively
smaller effects, i.e., nonrelativistic energy α2, relativistic cor-
rection α4, leading QED of order α5, and so on. For the
helium atom, all these expansion terms are calculated up to the
order α6 [15], with some states up to the order α7 [16]. Such
high-order calculations are feasible with explicitly correlated
exponential basis functions, for which analytic integrals are
known. Atomic systems with three electrons present greater
difficulty for the accurate calculation of their energy levels
despite obtaining very precise wave functions with explicitly
correlated Hylleraas or ECG functions. Nevertheless, several
highly accurate results have been obtained for Li and Be+,
including isotope shifts for the charge radii determination
[4,17,18], and fine [19] and hyperfine [20] splitting. The fine-
structure splitting of the lithium 2 2PJ state with the inclusion
of O(α6) QED corrections [19,21] agrees well with even more
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accurate experimental values [22,23], while current theoreti-
cal predictions for the 6/7Li ground-state hyperfine splitting
are limited by insufficient knowledge of the nuclear structure,
and not by the atomic structure theory.

The experience gained from the above-mentioned systems
can be exploited to a large extent in four-electron systems, but
these are much more demanding in calculations. The attempts
employing Hylleraas wave functions [24–26] are limited to
nonrelativistic energy because of the lack of effective methods
of evaluation of “relativistic” four-electron integrals. There-
fore, our choice is the use of the ECG method, which performs
very well for both nonrelativistic and relativistic contributions
[24–46]. Nonetheless, we note that because Gaussian-type
wave functions do not satisfy the Kato cusp condition, the
complete calculation of the α6 correction is still unfeasible.
This unsolved problem limits the current capabilities of the
ECG method in the application to three- and more-electron
systems. After all, the ECG functions are so far the best suited
for four-electron systems, and such an application to the Be
atom will be presented here.

In our previous works on Be, we obtained accurate energies
for the ground 2s2 1S0 and the excited 2s2p 1P1 states [42], the
difference of which at 42 565.441(11) cm−1 agrees well with
the experimental value of 42 565.450 1(13) cm−1 obtained by
Cook et al. [47] and with later calculations [48]. Last year,
two more transitions were measured to a high accuracy—
the wave number of the 2s2 1S0 −2s3d 1D2 line, equal to
64 428.403 21(55) cm−1, and that of the 2s2p 1P1 −2s3d 1D2

line, equal to 21 862.952 9(14) cm−1, were reported by Cook
et al. [49]. In this case, no theoretical results at an adequate
level of accuracy have been calculated yet. Moreover, in the
beryllium atom, of particular theoretical interest is the low-
est 2s2p 3P excited state, because it is metastable. So far,
however, its energy has not been measured and calculated to
such a high accuracy as for the 2s2p 1P state. An old but the
most accurate experimental excitation energy from the ground
to the 2s2p 3P1 level equal to 21 978.92(1) cm−1 [50] is in
agreement with the less accurate recent theoretical value of
21 978.2(11) cm−1 by Kedziorski et al. [46]. Quite recently,
the hyperfine splitting of the 2s2p 3P state has been accurately
calculated and, with the help of the 50-year-old measurements
by Blachman [51], it has been employed to determine the
most accurate value of the electric quadrupole moment of 9Be
[9], but it is in disagreement with all previous determinations.
Moreover, all the other Be energy levels lying below the ion-
ization threshold of 75 192.64 cm−1 have large uncertainties,
being in the range 0.01−0.2 cm−1 [52], and there are no
corresponding accurate theoretical results to compare with.

The purpose of the present work is therefore to sig-
nificantly advance the theoretical description of the lowest
excited states with different internal symmetries. Namely, we
focus on states with nonvanishing spin or orbital angular
momentum and verify the previous literature results, which
were obtained using either the ECG method or methods based
on one-electron approximation. More precisely, we report on
ECG calculations for the six lowest excited states of the 9Be
atom: 1,3PJ , 3S1, 3Pe

J , and 1,3DJ , including their fine and hy-
perfine splittings (see Fig. 1). Due to a significant hyperfine
mixing, the standard hyperfine structure formulation in terms
of AJ and BJ coefficients is not adequate in some cases. For

FIG. 1. The lowest energy levels of the Be atom. The levels for
which the energy is evaluated in this work are drawn as solid lines
and the remaining ones as dashed lines. The fine structure of the
triplet states of our interest is also shown, �J = �L + �S, �K = �I + �S.

this reason, we have introduced a combined fine–hyperfine-
structure formalism that naturally accounts for an arbitrary
mixing between fine and hyperfine levels. Moreover, in order
to unify the description of atomic wave functions of different
symmetries, we have introduced in this work a Cartesian an-
gular momentum representation, which is tailored for use with
many-electron explicitly correlated basis functions and which
simplifies evaluation of matrix elements.

II. THEORETICAL FRAMEWORK

In the calculations of the energy levels of few-electron light
atomic systems with a well-controlled accuracy, we employ
the expansion in the fine-structure constant α ≈ 1/137,

E (α) = E (2) + E (4) + E (5) + E (6) + · · · , (1)

where E (n) ∼ m αn, and some expansion terms may include
finite powers of ln α. Uncalculated higher-order terms will be
estimated from the corresponding expansion terms in the hy-
drogenic limit, while the numerical accuracy is controlled by
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varying the number of terms in the highly optimized explicitly
correlated wave function.

A. Nonrelativistic energy

The leading term E0 ≡ E (2) is obtained from the non-
relativistic Hamiltonian in the center-of-mass system ( �pN =
−∑

a �pa) by solving the Schrödinger equation (in natural
units)

H (2)� = E0�, (2)

H (2) = �p2
N

2 mN
+

∑
a

�p2
a

2 m
−

∑
a

Z α

ra
+

∑
a<b

α

rab
, (3)

where Z is the nuclear charge, and m and mN are the electron
and nuclear masses, respectively. In this work, the effects of
the finite nuclear mass (recoil) are included in H (2). This is
in contrast to the perturbative approach based on additional
expansion in the electron-nucleus mass ratio, which is par-
ticularly useful in the isotope shift calculations [43]. Once
the wave function � is determined, all the corrections to
the nonrelativistic energy E0 can be expressed in terms of
expectation values 〈�| · · · |�〉 ≡ 〈· · · 〉 of known operators.

B. Leading-order corrections

The leading relativistic E (4) correction is calculated as the
mean value of the Breit-Pauli Hamiltonian [53]. For con-
venience, we split this Hamiltonian, according to its inner
composition, into three parts: the no-spin (ns), the fine-
structure (fs), and the hyperfine-structure (hfs) part:

H (4) = H (4)
ns + H (4)

fs + H (4)
hfs . (4)

The spin-independent part in its explicit form is

H (4)
ns =

∑
a

[
− �p4

a

8 m3
+ π Z α

2 m2
δ3(ra) (5)

+ Z α

2 m mN
pi

a

(
δi j

ra
+ ri

a r j
a

r3
a

)
pj

N

]

+
∑
a<b

[
π α

m2
δ3(rab) − α

2 m2
pi

a

(
δi j

rab
+ ri

ab r j
ab

r3
ab

)
pj

b

]
.

The part related to the fine-structure effects, containing the
vector �σa of Pauli spin matrices of electron a, can be expressed
as follows:

H (4)
fs =

∑
a

Z α

4
�σa ·

[ (g − 1)

m2

�ra

r3
a

× �pa − g

m mN

�ra

r3
a

× �pN

]

+
∑
a �=b

α

4 m2 �σa ·
[
g

�rab

r3
ab

× �pb − (g − 1)
�rab

r3
ab

× �pa

]

−
∑
a<b

3 α g2

16 m2
σ i

a σ
j

b

(
ri

ab r j
ab

r5
ab

− δi j

3 r3
ab

)
, (6)

where g is the free electron g-factor, which accounts for one-
loop QED corrections. Finally, the leading-order Hamiltonian

for the hyperfine splitting, containing the nuclear spin �I , reads

H (4)
hfs =

∑
a

[
1

3

Z α ggN

m mN
�σa · �I π δ3(ra)

+ Z α gN

2 m mN

�I · �ra

r3
a

× �pa − Z α (gN − 1)

2 m2
N

�I · �ra

r3
a

× �pN

+ 3 Z α ggN

8 m mN
σ i

a I j

(
ri

a r j
a

r5
a

− δi j

3 r3
a

)

− α QN

2

(
ri

a r j
a

r5
a

− δi j

3 r3
a

)
3 I i I j

I (2 I − 1)

]
. (7)

Here, QN is the electric quadrupole moment of the nucleus,
and gN is the nuclear g-factor defined by

gN = mN

Z mp

μ

μN

1

I
. (8)

C. Higher-order corrections

1. Centroid energy

Higher-order corrections, E (n) with n > 4, are usually
much smaller than E (4) because they contain higher powers
of α. The explicit form of the mα5 terms is given by

E (5) = 4 Z α2

3 m2

[
19

30
+ ln(α−2) − ln k0

] ∑
a

〈δ3(ra)〉

+ α2

m2

[
164

15
+ 14

3
ln α

] ∑
a<b

〈δ3(rab)〉 (9)

− 7

6 π
m α5

∑
a<b

〈
P

(
1

m α r3
ab

)〉
, (10)

where ln k0 is the Bethe logarithm [53,54], and P(1/r3) is the
Araki-Sucher term [55,56].

A complete set of operators for the quantum electrody-
namic mα6 correction to energy levels of light atoms has been
derived recently [57]. However, due to the lack of a computa-
tional method suitable for a four-electron wave function, we
use the following approximate formula, which includes only
the leading term related to the hydrogenic Lamb shift:

E (6) ≈ π Z2 α3

m2

[
427

96
− 2 ln(2)

] ∑
a

〈δ3(ra)〉, (11)

and we estimate its uncertainty to be about 25%. This estima-
tion is based on the former calculation of mα6 correction to
helium energy levels [58].

2. Fermi contact interaction

The hyperfine Hamiltonian in Eq. (7) represents the leading
hyperfine interactions, but there are also other small correc-
tions that contain higher powers of the fine-structure constant
α. Because most of them are proportional to the Fermi contact
interaction, we account for them in terms of the 1 + ε factor
multiplying the first term of the H (4)

hfs Hamiltonian

(1 + ε)
1

3

Z α ggN

m mN

∑
a

�σa · �I π δ3(ra). (12)
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Below, we briefly describe contributions included in the ε

factor.
The O(α) correction is analogous to that in hydrogenic

systems [59] and is due to the finite nuclear size and the
nuclear polarizability. It is given by [59,60]

H (5)
Z =(−2 Z α m rZ ) �I ·

∑
a

2

3

Z α gN

m mN
�σa π δ3(ra), (13)

where rZ is a kind of effective nuclear radius called the
Zemach radius. Disregarding the inelastic effects, this radius
can be written in terms of the electric charge ρE and magnetic-
moment ρM densities as

rZ =
∫

d3r d3r′ ρE (r) ρM (r′) |�r − �r′|. (14)

Nevertheless, the inelastic, i.e., polarizability, corrections can
be significant, but because they are very difficult to calculate,
they are usually neglected. In this work, we account for possi-
ble inelastic effects by employing rZ = 4.07(5) fm achieved
from a comparison of very accurate calculations of hfs in
9Be+ with the experimental value [60]. Because this correc-
tion is also proportional to the contact Fermi interaction, we
represent it in terms of εZ = −0.000 615. There is a small
recoil correction at the same order of α, for which we refer
to [9,61], and it contributes εrec = −0.000 011.

Next, there are radiative and relativistic corrections of the
relative order O(α2). The radiative correction, beyond that
included by the free-electron g-factor, is [59]

H (6)
rad = Z α2

(
ln 2 − 5

2

)
�I ·

∑
a

2

3

Z α gN

m mN
�σa π δ3(ra) (15)

and the corresponding ε factor is εrad = −0.000 384. The
O(α2) relativistic and higher-order corrections are much more
complicated. They have been calculated for the ground state
of 9Be+ [60]. Here we take this result and assume that it is
proportional to the Fermi contact interaction, and we obtain
εrel = 0.001 664. The resulting total ε-correction is

ε = εZ + εrec + εrad + εrel = 0.654 × 10−3. (16)

Some previous works present these multiplicative corrections
for all individual hyperfine contributions, but in our opinion
this cannot be fully correct because higher-order relativistic
corrections may include additional terms, beyond that in Heff

in Eq. (57). These corrections are expected to be smaller than
the experimental uncertainty and therefore they are neglected
here.

III. WAVE FUNCTION

In this section, we introduce the angular momentum for-
malism appropriate for explicitly correlated multielectron
wave functions, i.e., represented in the basis functions which
do not factorize into one-electron terms. This formalism ac-
counts for all symmetries of the wave function present in
atoms and enables straightforward handling of the matrix
elements.

A. Many-electron angular factor

The angular part of the wave function is represented in
terms of the modified solid harmonics, which are adapted here
for use with explicitly correlated basis functions. We define
the solid harmonics as

YLM (�r) =
√

4 π NL rL YLM (r̂), (17)

with some coefficients NL to be determined, involving the
standard spherical harmonics YLM (θ, φ) ≡ YLM (r̂) with r̂ =
�r/r. We recall the addition theorem for spherical harmonics

1

2 L + 1

L∑
M=−L

Y ∗
LM (r̂′)YLM (r̂) = 1

4 π
PL(r̂′ · r̂), (18)

where PL are the Legendre polynomials of the order L. The
corresponding formula for the solid harmonics becomes

1

2 L + 1

L∑
M=−L

Y∗
LM (�r′)YLM (�r) = A2

L r′L rL PL(r̂′ · r̂)

= (r′i1 r′i2 r′i3 · · · r′iL )(L) (ri1 ri2 ri3 · · · riL )(L), (19)

where (ri1 ri2 ri3 · · · riL )(L) is a traceless and symmetric tensor
of the order L constructed from the vector �r with Cartesian
indices i1, i2, i3, . . . , iL. The last equality in Eq. (19) deter-
mines the factor NL, which is related to the coefficient of xL in
the Legendre polynomial PL(x), yielding

N−2
L = 1

2L

(
2 L

L

)
. (20)

For example, N0 = 1, N1 = 1, N2 = √
2/3, N3 = √

2/5, and
so on for consecutive L.

In the correlated wave function, the total angular momen-
tum may come from an arbitrary electron or from an arbitrary
combination of many-electron angular momenta. Therefore,
we introduce the following generalization of the solid har-
monic:

YLM (�ρ1, �ρ2, . . . , �ρL )

≡ 1

L!
(�ρ1 · �∇r ) (�ρ2 · �∇r ) · · · (�ρL · �∇r )YLM (�r). (21)

Here, �ρc stands for either an arbitrary single-electron vari-
able �ra or for a cross product of any pair of electrons
�ra × �rb. Note that because of the L-fold differentiation, the
right-hand side of Eq. (21) is r-independent. The function
YLM (�ρ1, �ρ2, . . . , �ρL ) is symmetric in all its arguments and has
the variable overloading property YLM (�r, �r, . . . , �r) = YLM (�r).
It also obeys the following summation rule:

1

2 L + 1

L∑
M=−L

Y∗
LM (�ρ ′

1, �ρ ′
2, . . . , �ρ ′

L )YLM (�ρ1, �ρ2, . . . , �ρL )

= (ρ ′i1
1 ρ

′i2
2 ρ

′i3
3 · · · ρ ′iL

L )(L) (ρ i1
1 ρ

i2
2 ρ

i3
3 · · · ρ iL

L )(L). (22)

This identity allows all the matrix elements to be expressed in
terms of the scalar product, which is easy to handle with the
explicitly correlated basis functions.

Let us start with the wave function having definite orbital
and spin quantum numbers L and S and the corresponding
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projection quantum numbers ML and MS ,

�LSMLMS =
∑

n

tnψ
LSMLMS
n , (23)

where tn are linear coefficients of the expansion. Each basis
function ψLSMLMS

n is an antisymmetrized product of a spatial
and spin function

ψLSMLMS = A
[
φLML ({�ra}) χ

SMS
{a}

]
, (24)

where the spatial function is a product of the generalized solid
harmonic and a function φ that depends only on interparticle
distances

φLML ({�ra}) = YLML (�ρ1, �ρ2, . . . , �ρL ) φ({�ra}). (25)

Let us now apply this formalism to the four-electron wave
function of the beryllium atom and write explicitly the basis
functions employed for atomic levels of different symmetry.

B. Four-electron basis functions

Let {a} and {�ra} denote a sequence of electron indices
1,2,3,4 and spatial coordinates �r1, �r2, �r3, �r4, respectively. A
singlet state spin wave function χSMS , for {a} fixed at permu-
tation (1,2,3,4), has the form

χ00 = 1

2
(α1 β2 − β1 α2) (α3 β4 − β4 α3), (26)

and the corresponding triplet state functions are

χ1−1 = 1√
2

(α1 β2 − β1 α2) β3 β4, (27)

χ10 = 1

2
(α1 β2 − β1 α2)(α3 β4 + β4 α3), (28)

χ11 = 1√
2

(α1 β2 − β1 α2) α3 α4. (29)

In matrix elements of an arbitrary operator, all spin degrees of
freedom can be reduced algebraically, see Sec. IV A, to a spin-
free expression. Having this in mind and the summation rule
Eq. (22), one can replace the basis functions φLML expressed
in terms the solid harmonics by corresponding Cartesian basis
functions

φi1···iL = (ρ i1
1 ρ

i2
2 ρ

i3
3 · · · ρ iL

L )(L) φ({�ra}), (30)

where the variables ρc were defined beneath Eq. (21). Then,
the spatial part of the basis function takes the following ex-
plicit forms:

(i) For S states,

φS ≡ φ = exp
[− ∑

b

ζb r2
b −

∑
c<d

ηcd r2
cd

]
, (31)

with the nonlinear parameters ζ and η determined variation-
ally.

(ii) For odd P states (�ρ1 = �rp),

φi
P = ri

p φ . (32)

(iii) For even P states (�ρ1 = �rp × �rq),

φi
Pe = εi jk r j

prk
q φ, (33)

where εi jk is the Levi-Civita symbol.

(iv) For even D states (�ρ1 = �rp, �ρ2 = �rq),

φ
i j
D =

(
ri

pr j
q + r j

pri
q

2
− δi j

3
rk

prk
q

)
φ. (34)

The subscripts p and q refer to arbitrary electrons (including
the same ones), so that angular momentum may come from
all the electrons in different combinations. A contribution
to the expansion (23) from such different combinations can
be optimized in a global minimization of the nonrelativistic
energy.

In all matrix elements, the spin part is algebraically re-
duced and the angular part of the φLML function is converted
into its Cartesian representation using the summation rule for
solid harmonics of Eq. (22), so that the final formulas can all
be represented in terms of simple reduced matrix elements,
which are convenient to use with explicitly correlated func-
tions. This spin reduction is described in the following section.

IV. MATRIX ELEMENTS

The matrix element of an arbitrary operator Q is

〈�|Q|�〉 =
∑

n

∑
m

t∗
n tm

〈
ψn|Q|ψm

〉
, (35)

where we skipped the angular LSMLMS or JM superscript
over the wave function, because all formulas below will be
independent of the angular representation of the wave func-
tion. The operator Q can adopt a variety of shapes according
to a nonrelativistic Hamiltonian and relativistic corrections.
In the operator Q, we can distinguish in general the spatial
part O (scalar, vector, or tensor) and its spin part involving
Pauli matrices σ . Below, we briefly describe the reduction of
the matrix elements performed to get rid of the spin degrees
of freedom. Such reduced matrix elements are assigned a
double-angular-bracket symbol 〈〈〉〉.

A. Reduction of the scalar matrix elements

Let us start from the spin-independent operator O, for
which

〈ψ ′|O|ψ〉 =Î 〈〈φ′|O|φ〉〉, (36)

where Î denotes the identity operator in the angular momen-
tum subspace. Namely, if we assume a JM representation,
then

〈ψJ ′M ′ |ψJM〉 = 〈J ′M ′|JM〉 〈〈φ′|φ〉〉. (37)

The analogous formula holds for LML and SMS representa-
tion, so Eq. (36) is independent of the angular momentum
representation, as in all the formulas below in this subsection.

The reduced matrix element in Eq. (36) is defined by

〈〈φ′|O|φ〉〉 = 〈
φ′({�ra})|OA[ul φ({�rb})]

〉
. (38)

In the above expression, A denotes the sum over all n! permu-
tations of n electrons,

A =
n!∑

l=1

εl Pl . (39)
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The coefficients

ul = εl〈χ ′ | �̂Pl χ〉 with � = 1, �σa, or �σa �σb, (40)

which accompany the right function φ, depend on particular
permutation Pl and are explicitly shown for n = 4 in Ta-
ble VII of Appendix B. The reduced matrix element may have
implicit summation over Cartesian indices; then, 〈〈φ′|O|φ〉〉
denotes 〈〈φ′i|O|φi〉〉 or 〈〈φ′i jO|φi j〉〉 depending on the angular
momentum of the state in question. We will skip these Carte-
sian indices as long as it does not lead to any confusion. These
reduced matrix elements are a workhorse of this approach. For
example, the matrix elements of the nonrelativistic Hamilto-
nian H can also be expressed in terms of the reduced ones.
The fact that we originally did not use the wave function with
specified J and M is irrelevant. The nonrelativistic Hamilto-
nian H does not depend on J or M, so different ψLSJM will
lead to the same matrix elements as long as L and S are fixed.

B. Reduction of spin-dependent operators

Similarly, all the matrix elements of the spin-dependent
operators in Eq. (6) can be expressed in terms of the reduced
ones as follows:

〈ψ ′|
∑

a

�σa · �Oa|ψ〉 = − �L · �S
(L + 1)

i εi jk
∑

a

〈〈φ′i|O j
a|φk〉〉a,

(41)

〈ψ ′|
∑
a<b

σ i
a σ

j
b Oi j

ab|ψ〉 = 12 (Li L j )(2) (Si S j )(2)

(2 L + 3) (L + 1)

×
∑
a<b

〈〈φ′i|Oi j
ab|φ j〉〉ab, (42)

where �S = 1
2

∑
a �σa. Again, the angular indices of the wave

function ψ are skipped because this angular part goes to
matrix elements of �L · �S or (Li L j )(2) (Si S j )(2) operators.

The above reduced matrix elements are defined as

〈〈φ′|Oc|φ〉〉c = 〈
φ′({�ra})|Oc A

[
uc

l φ({�rb})
]〉
, (43)

〈〈φ′|Ocd |φ〉〉cd = 〈
φ′({�ra})|Ocd A

[
ucd

l φ({�rb})
]〉
, (44)

and they have the advantage that they involve only scalar
operators built of spatial variables �ra, and therefore they can
all easily be evaluated in an explicitly correlated basis, in
particular in the ECG basis. Moreover, these reduced matrix
elements have the following properties:∑

c

〈〈φ′|O|φ〉〉c = 2 〈〈φ′|O|φ〉〉, (45)

∑
c<d

〈〈φ′|O|φ〉〉cd = −〈〈φ′|O|φ〉〉, (46)

which will be used to prove the above reduction formulas. For
these proofs, we shall need also the following two equalities:

−i εi jk〈〈φ′i|L j |φk〉〉 = (L + 1) 〈〈φ′|φ〉〉, (47)

〈〈φ′i|(Li L j )(2)|φk〉〉 = −1

6
(L + 1) (2 L + 3) 〈〈φ′|φ〉〉. (48)

The reduction formulas are independent of the operator �Oa.
So, to prove Eq. (41), let �Oa = �L be the orbital angular mo-

mentum. Then

lhs = 〈ψ ′|
∑

a

�σa · �L|ψ〉 = 〈ψ ′|2 �S �L |ψ〉 = 2 �S �L 〈〈φ′|φ〉〉.
(49)

Using Eqs. (45) and (47), the right-hand side (rhs) of Eq. (41)
can be rearranged to

rhs = − �L · �S
L + 1

i εi jk
∑

a

〈〈φ′i|L j |φk〉〉a

= 2

L + 1
�L · �S (−i) εi jk〈〈φ′i|L j |φk〉〉 = 2 �S �L 〈〈φ′|φ〉〉,

(50)

which is equal to the left-hand side (lhs). Similarly, to prove
Eq. (42), let Oi j

ab = (Li L j )(2); then

lhs = 〈ψ ′|
∑
a<b

σ i
a σ

j
b (Li L j )(2)|ψ〉

= 2 〈ψ ′|Si S j (Li L j )(2)|ψ〉
= 2 (Si S j )(2) (Li L j )(2) 〈〈φ′|φ〉〉. (51)

Taking Eq. (48), the right-hand side of Eq. (42) becomes

rhs = − 12 (Li L j )(2) (Si S j )(2)

(2 L + 3)(L + 1)
〈〈φ′i|(Li L j )(2)|φ j〉〉

= 2 (Li L j )(2) (Si S j )(2) 〈〈φ′|φ〉〉, (52)

which is equal to the lhs.

C. Reduction of the vector and tensor matrix elements

Analogous reductions can be performed for the hyperfine
operators in Hhfs, namely

〈ψ ′|
∑

a

�σa Oa|ψ〉 = �S
∑

a

〈〈φ′|Oa|φ〉〉a, (53)

〈ψ ′| �O|ψ〉 = − �L
(L + 1)

i εi jk〈〈φi|O j |φk〉〉, (54)

〈ψ ′|
∑

a

σ j
a Oi j

a |ψ〉 = −6 S j (Li L j )(2)

(2 L + 3) (L + 1)

∑
a

〈〈φi|Oi j
a |φ j〉〉a,

(55)

〈ψ ′|Oi j |ψ〉 = −6 (Li L j )(2)

(2 L + 3) (L + 1)
〈〈φi|Oi j |φ j〉〉. (56)

The proofs of the above reduction formulas are very similar
to those shown in the preceding subsection. One assumes
that Oa = Î , �O = �L, Oi j

ab = (Li L j )(2), and repeats the previous
proofs correspondingly.

V. EFFECTIVE FINE/HYPERFINE HAMILTONIAN

To account for the combined fine and hyperfine structure
with an arbitrary coupling strength, it is necessary to ex-
tend the original formulation of the hyperfine splitting theory
by Hibbert [62] and represent the fine and the hyperfine
structure of an arbitrary state in terms of an effective Hamilto-
nian, instead of expectation values. The effective Hamiltonian

022824-6



FINE AND HYPERFINE SPLITTING OF THE LOW-LYING … PHYSICAL REVIEW A 104, 022824 (2021)

TABLE I. Convergence of the nonrelativistic energy E0 of ∞Be (in a.u.) and comparison with other ECG results, or if not available, with
the most accurate value from another method.

Size 2s3s 3S Size 2s2p 1P Size 2s2p 3P

768 −14.430 065 800 88 1024 −14.473 445 215 92 1024 −14.567 241 485 35
1024 −14.430 066 834 12 1536 −14.473 449 010 68 1536 −14.567 243 359 33
1536 −14.430 067 459 90 2048 −14.473 450 455 64 2048 −14.567 243 913 64
2048 −14.430 067 579 18 3072 −14.473 451 162 07 3072 −14.567 244 114 67
3072 −14.430 067 637 28 4096 −14.473 451 310 50 4096 −14.567 244 192 08
4096 −14.430 067 666 35 6144 −14.473 451 361 77 6144 −14.567 244 215 84
∞ −14.430 067 678(7) ∞ −14.473 451 384(9) ∞ −14.567 244 232(8)
[63] 7000 −14.430 059 43 [45] 16 400 −14.473 451 388 2 [46] 8000 −14.567 244 222

Size 2p2 3Pe Size 2p2 1D Size 2s3d 3D

1024 −14.395 452 640 71 1536 −14.408 232 496 49 1536 −14.384 631 192 32
1536 −14.395 453 441 97 2048 −14.408 234 916 82 2048 −14.384 632 963 77
2048 −14.395 453 625 95 3072 −14.408 236 788 28 3072 −14.384 633 859 38
3072 −14.395 453 700 13 4096 −14.408 237 032 51 4096 −14.384 634 414 54
4096 −14.395 453 720 27 6144 −14.408 237 213 69 6144 −14.384 634 572 57
6144 −14.395 453 738 26 8192 −14.408 237 270 12 8192 −14.384 634 603 77
∞ −14.395 453 745(4) ∞ −14.408 237 290(9) ∞ −14.384 634 616(7)
[64] FCPC −14.395 431 6 [65] 12 300 −14.408 237 282 [44] 8100 −14.384 634 597 13

reads

Heff = c0 + c1 �L · �S + c2 (LiL j )(2)(SiS j )(2)

+ a1 �I · �S + a2 �I · �L + a3 (LiL j )(2)SiI j

+ b

6

3 (I i I j )(2)

I (2 I − 1)

3 (LiL j )(2)

L (2 L − 1)
, (57)

where the coefficients a1, a2, a3, b, c0, c1, and c2 are indepen-
dent of �J = �L + �S but are specific to the particular state. The
c0 coefficient is the so-called centroid energy, which in our
case is

c0 = E0 + E (4)
ns + O(α5), (58)

where E0 is the nonrelativistic energy (see Table I), and
E (4)

ns = 〈H (4)
ns 〉 is the spin-independent relativistic correction.

This correction can be rewritten as

E (4)
ns = −1

8
V1 + Z

8
V2 + 1

4
V3 − 1

2
V4 + Z

2 mN
V5, (59)

with V1, . . . ,V5 defined in Table II. The fine-structure param-
eters c1 and c2, using formulas from the previous section, are

c1 = − 1

(L + 1)

[
Z

4

(
(g − 1)Vf1 − g

mN
Vf4

)

+ 1

4

(
gVf2 − (g − 1)Vf3

)]
, (60)

c2 = − 12

(2 L + 3)(L + 1)

3 g2

16
Vf5, (61)

while the hyperfine structure parameters are

a1 = Z

mN

ggN

12
Vh1, (62)

a2 = − 1

(L + 1)

Z

mN

(
gN

2
Vh2 − gN − 1

2 mN
Vh3

)
, (63)

a3 = −6

(2 L + 3) (L + 1)

Z

mN

3 ggN

8
Vh4,

b = 6 L (2 L − 1)

(2 L + 3) (L + 1)
QN Vh5. (64)

The expectation values Vfi and Vhi used to determine the
fine and hyperfine parameters are defined in Table III.
Once these parameters are calculated, the effective hyperfine-
structure Hamiltonian Heff can be diagonalized, for example
in the |L, ML; S, MS; I, MI〉 basis, yielding the combined
fine/hyperfine levels with respect to the centroid energy c0.

VI. CALCULATIONS AND RESULTS

A. Centroid energies

1. Variational optimization of the nonrelativistic energy

In the numerical calculations, we followed closely our
previous works devoted to the singlet S and P states of
beryllium [42,43]. We used the wave functions expanded in
the basis of ECG functions (31)–(34), whose nonlinear pa-
rameters were variationally optimized. The optimization was
performed at the infinite nuclear mass limit of the nonrela-
tivistic Hamiltonian, Eq. (3). Then, the nonrelativistic energies
and the wave functions of 9Be were generated with the same
nonlinear parameters without significant loss of accuracy. To
achieve numerical accuracy ∼10−9 for nonrelativistic energy
E0, which is equivalent to a numerical accuracy of energy
levels <0.01 cm−1, we assumed the maximum size of the
basis sets equal to 4096, 6144, and 8192 for S-, P-, and
D-states, respectively. A sequence of energies obtained for
consecutive basis sets enabled extrapolation to the complete
basis limit and estimation of the error resulting from basis-set
truncation. The nonrelativistic energy E0 convergence for all
the studied states of ∞Be is presented in Table I. Note that the
rate of convergence depends on the given atomic state.
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TABLE II. Expectation values of various operators and spin-independent reduced matrix elements of 9Be (in a.u.).

Reduced matrix element 2s3s 3S 2s2p 1P 2p2 1D

E0 −14.429 160 970(6) −14.472 543 762(11) −14.407 351 381(10)
V1 = ∑

a〈〈 �p4
a 〉〉 2 149.48 58(8) 2 132.787 7(18) 2 109.009 3(9)

V2 = ∑
a〈〈4 π δ3(ra)〉〉 441.618 01(6) 438.458 40(4) 434.113 91(8)

V3 = ∑
a<b〈〈4 π δ3(rab)〉〉 19.904 846(4) 19.700 026(7) 19.370 006(5)

V4 = ∑
a<b〈〈pi

a

(
δi j

rab
+ ri

ab r j
ab

r3
ab

)
pj

b〉〉 1.814 877(4) 1.622 713(4) 1.380 895 6(5)

V5 = ∑
a〈〈pi

a

(
δi j

ra
+ ri

a r j
a

r3
a

)
pj

N〉〉 −223.060 24(2) −220.643 672(2) −217.444 43(3)

ln k0 5.752(3)a 5.752 32(8)c 5.752(3)a∑
a<b〈〈P(r−3

ab )〉〉 −7.486 93(2)b −7.097 17(3)b −6.918 15(2)b

Vh1 = ∑
a〈〈4 π δ3(ra)〉〉a 13.294 900(10)

Vh2 = i εi jk
∑

a〈〈i|
( �ra

r3
a

× �pa

) j |k〉〉 −0.370 894(3) −0.559 374 9(18)

Vh3 = i εi jk
∑

a〈〈i|
( �ra

r3
a

× �pN

) j |k〉〉 −0.112 512(9) −0.216 094(3)

Vh5 = ∑
a〈〈i| ri

a r j
a

r5
a

− δi j

3 r3
a
| j〉〉 0.112 086 0(11) 0.080 872 8(12)

aAdopted from the 2s2p 1P state [42].
bCalculated in the infinite mass limit.
cReference [42].

This table contains also the best currently available lit-
erature results. For the 2s3s 3S state, the energy reported
by Frolov and Wardlaw [63] seems to be rather poorly
converged—despite using a 7000-term ECG expansion, their
result is about 8 × 10−6 a.u. ≈ 2 cm−1 above our energy ob-
tained with a 4096-term wave function. Significantly longer
ECG expansions have been employed for the 2s2p 1P,
2s2p 3P, and 2p2 1D states by Adamowicz et al. [45,46,65].

In these cases, their variational energy is 10−8−10−9 a.u.
lower than our upper bound, whereas for the 2s3d 3D state
our upper bound slightly improves over the variational energy
obtained by Sharkey et al. [44] from an equivalent ECG ex-
pansion. The best previous calculations of the nonrelativistic
energy for the 2p2 3P state were obtained using a full-core
plus correlation (FCPC) method [64] and gave the energy
almost 5 cm−1 higher than the current one.

TABLE III. Expectation values of various operators and spin-independent reduced matrix elements of 9Be (in a.u.).

Reduced matrix element 2s2p 3P 2p2 3Pe 2s3d 3D

E0 −14.566 341 475(4) −14.394 568 519(5) −14.383 731 170(6)
V1 = ∑

a〈〈 �p4
a 〉〉 2 131.397 1(15) 2 086.304 2(12) 2 144.482 7(7)

V2 = ∑
a〈〈4 π δ3(ra)〉〉 438.127 79(11) 429.777 10(13) 440.786 59(9)

V3 = ∑
a<b〈〈4 π δ3(rab)〉〉 19.684 698(3) 19.065 685(2) 19.837 514(2)

V4 = ∑
a<b〈〈pi

a

(
δi j

rab
+ ri

ab r j
ab

r3
ab

)
pj

b〉〉 1.457 377 9(16) 1.070 998 2(13) 1.809 602 7(12)

V5 = ∑
a〈〈pi

a

(
δi j

ra
+ ri

a r j
a

r3
a

)
pj

N〉〉 −220.376 91(6) −214.225 93(5) −222.412 27(6)

ln k0 5.752(3)a 5.752(3)a 5.752(3)a∑
a<b〈〈P(r−3

ab )〉〉 −6.966 49(3)b −6.505 54(4)b −7.493 48(2)b

Vf1 = i εi jk
∑

a〈〈i|
( �ra

r3
a

× �pa

) j |k〉〉a −0.605 451(3) −0.620 435 4(7) −0.016 199 88(6)

Vf2 = i εi jk
∑

a

∑
b�=a〈〈i|

( �rab
r3
ab

× �pb

) j |k〉〉a 0.273 149 3(4) 0.296 033 6(2) 0.010 830 7(4)

Vf3 = i εi jk
∑

a

∑
b�=a〈〈i|

( �rab
r3
ab

× �pa

) j |k〉〉a −1.124 565(4) −1.154 002 9(3) −0.040 076 2(5)

Vf4 = i εi jk
∑

a〈〈i|
( �ra

r3
a

× �pN

) j |k〉〉a −0.243 575 3(2) −0.187 062 4(12) 0.003 014 1(4)

Vf5 = ∑
a<b〈〈i| ri

ab r j
ab

r5
ab

− δi j

3 r3
ab

| j〉〉ab −0.017 082 4(3) 0.012 571 98(2) −0.000 828 213(2)

Vh1 = ∑
a〈〈4 π δ3(ra)〉〉a 9.247 623(18) −1.389 667(5) 12.130 05(3)

Vh2 = i εi jk
∑

a〈〈i|
( �ra

r3
a

× �pa

) j |k〉〉 −0.606 202(3) −0.621 281 1(7) −0.016 209 10(9)

Vh3 = i εi jk
∑

a〈〈i|
( �ra

r3
a

× �pN

) j |k〉〉 −0.240 311(8) −0.237 269(4) 0.003 328 5(8)

Vh4 = ∑
a〈〈i| ri

a r j
a

r5
a

− δi j

3 r3
a
| j〉〉a 0.219 150 1(6) −0.218 683 3(9) 0.002 441(2)

Vh5 = ∑
a〈〈i| ri

a r j
a

r5
a

− δi j

3 r3
a
| j〉〉 0.192 574 73(18) −0.194 530 5(4) 0.002 083(2)

aAdopted from the 2s2p 1P state [42].
bCalculated in the infinite mass limit.
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TABLE IV. Centroid energy contributions (in cm−1) relative to the ground 2s2 1S state for 9Be and comparison with experimental and
other theoretical data. The total energy in terms of the ionization potential is also shown at the bottom of the table.

2s2p 3P 2s2p 1P 2s3s 3S 2p2 1D 2p2 3Pe 2s3d 3D

mα2 21 968.103(3) 42 554.325(6) 52 075.750(10) 56 862.395(5) 59 667.912(2) 62 046.433(3)
mα4 13.189(3) 12.171(3) 5.726(4) 21.968(4) 30.728(4) 8.000(5)
mα5 −1.06(4) −1.0106(10) −0.46(7) −1.73(5) −2.46(5) −0.61(5)
mα6 −0.048(10) −0.045(9) −0.021(5) −0.08(2) −0.11(3) −0.027(7)
Total 21 980.18(5) 42 565.441(11) 52 080.99(7) 56 882.55(6) 59 696.07(6) 62 053.79(6)
Theory (ECG) 21 979.4(11)e

Theory (FCPC)f 21 980.85 42 568.80 52 081.09 56 890.9 59 699.8 62 055.25
Theory (MCHF)h 22 099.30 42 710.97 52 080.09 56 945.89 59 793.35 62 165.91
Experiment 21 980.16(8)a,g 42 565.450 2(10)b 52 080.94(6)a 56 882.547 4(21)c 59 696.07(5)a,g 62 053.74(6)a,g

Total−Experimentd 0.02(5) −0.009(11) 0.05(7) 0.00(6) 0.04(6) 0.05(6)
Total (ionization) 53 212.51(5) 32 627.265(11) 23 111.73(5) 18 310.13(5) 15 496.62(6) 13 138.90(5)
Theory (FCPC)f 53 211.22 32 623.27 23 110.98 13 136.8

aJohansson [66] and Kramida et al. [52].
bCook et al. [47].
cCook et al. [49].
dTheoretical uncertainty assumed.
eKedziorski et al. [46], averaged over J .
fChung and Zhu [64,67].
gCentroid uncertainty taken as the maximum error from the individual J lines.
hFischer and Tachiev [68].

In general, the current state-of-the-art calculations offer a
relative accuracy of the order of 10−10, which corresponds to
≈10−4 cm−1 of absolute accuracy. Still, there seems to be
room for further accuracy improvement of the ECG method in
relation to four-electron atoms, either by increasing the basis
size or by tuning the optimization algorithms. However, the
ability to maintain reliable numerical convergence is limited
due to the double-precision arithmetic used in the algorithms.
Significant improvement of the current results will require the
use of higher precision arithmetic and bases of size >20 000,
which means a dramatic increase in the computation time.
This suggests the need to redesign current ECG algorithms
or look for new, more efficient solutions in the future.

2. Calculations of reduced matrix elements

The finite-mass wave functions were subsequently em-
ployed in the evaluation of matrix elements. The values of
all the reduced matrix elements for relativistic and QED cor-
rections along with the nonrelativistic energy and the Bethe
logarithm are collected in Tables II and III. All the entries
represent extrapolated values with estimated uncertainty. Be-
cause the use of original formulas for singular operators leads
to a slow numerical convergence (this spurious effect is par-
ticularly exposed in calculations using Gaussian-type basis
functions having improper short-distance behavior), regular-
ized versions of matrix elements were employed following
the rules provided in Appendix A. For the 2s2p 1P state, the
Bethe logarithm, ln k0, was calculated directly in Ref. [42],
and in this case the overall uncertainty is dominated by
the higher-order corrections. This numerical value of ln k0

was adopted also for the remaining states with a relevantly
large uncertainty assigned. Eventually, this uncertainty domi-
nated the overall theoretical uncertainty. The centroid energies

evaluated with these matrix elements are put together in
Table IV.

B. Combined fine/hyperfine structure

The effective Hamiltonians of the general form given by
Eq. (57) were constructed separately for each atomic state.
They differ from each other in numerical values of parameters
a1, a2, a3, b, c1, and c2, listed in Table V, and hence also
in the number of terms included. These Hamiltonians were
diagonalized in the basis of |L, ML; S, MS; I, MI〉 states using
standard angular momentum algebra. Numerical eigenvalues
representing the shift of the atomic hyperfine level with re-
spect to the corresponding centroid are presented in Table VI.
Depending on the atomic state, these hyperfine levels extend

FIG. 2. The fine and hyperfine splitting for the 2s2p 3Po state.
The hf splitting was scaled by a factor of 20.
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TABLE V. The nonrelativistic energy and theoretical fine- and hyperfine-structure parameters for the 2s2p 3P state of 9Be (in MHz).
Nuclear mass mN = 9.012 183 07(8) u [21], magnetic moment μ/μN = −1.177 432(3) [8], and quadrupole moment QN = 0.05350(14) barns
[9] were used for the 9Be nucleus. The a1 coefficient is to be multiplied by 1 + ε according to Eq. (16). Shown uncertainties are of the numerical
origin, while implicit relative uncertainties due to unknown relativistic corrections are about α2.

State c1 c2 a1 a2 a3 b/QN (MHz/barn)

2s3s 3S −332.283 4(3)
2s2p 1P −13.888 28(8) 15.801 75(7)
2s2p 3P 32 987.6(2) 5 399.15(2) −231.128 4(6) −22.699 24(5) 14.788 68(5) 27.148 87(3)
2p2 3Pe 32 321.08(9) −3 973.643(4) 34.732 27(8) −23.263 96(15) −14.757 164(4) −27.424 71(4)
2p2p 1D −13.963 93(3) 32.575 5(3)
2s3d 3D 90.400(9) 124.654 6(2) −303.169 8(6) −0.404 656 7(15) 0.078 38(7) 0.838 9(6)

in the range from tens up to almost a hundred thousand MHz.
Figures 2–4 show graphically the fine/hyperfine splitting in
the case of three angular momenta states. The corresponding
eigenfunctions, in turn, can be employed to provide intensities
of transitions between individual hyperfine levels and help to
overcome the line-shape-related limitations to the precision of
contemporary measurements [47,49].

Because the states 3S1, 1P1, and 1D2 involve only two
angular momenta, one can employ the commonly used AJ and
BJ coefficients to represent their hyperfine structure,

〈Hhfs〉J = AJ �I · �J + BJ

6

3 (I i I j )(2)

I (2 I − 1)

3 (Ji J j )(2)

J (2 J − 1)
, (65)

where �J is the total electronic angular momentum. So, in the
case of the 2s3s 3S1 state, �J = �S and

A1(3S) = a1 (1 + ε) = −332.50(2) MHz, (66)

B1(3S) = 0, (67)

TABLE VI. Fine/hyperfine levels (in MHz) of low-lying ex-
cited states of 9Be atom. �J = �L + �S, �K = �I + �S, �F = �L + �S + �I .
The numerical uncertainty is negligible, while the implicit relative
uncertainty due to unknown higher-order relativistic corrections is
about α2.

νJ (F ) 2s2p 3P 2p2 3Pe νK (F ) 2s3d 3D

ν0(3/2) −56 982 −71 265 ν1/2(3/2) 968.54
ν1(1/2) −37 140 −29 054 ν1/2(5/2) 820.31
ν1(3/2) −37 343 −29 028 ν3/2(1/2) −23.38
ν1(5/2) −37 697 −28 983 ν3/2(3/2) 245.25
ν2(1/2) 34 449 31 643 ν3/2(5/2) 507.55
ν2(3/2) 34 262 31 649 ν3/2(7/2) 429.71
ν2(5/2) 33 950 31 658 ν5/2(1/2) −485.73
ν2(7/2) 33 514 31 668 ν5/2(3/2) −659.71

ν5/2(5/2) −777.63
ν5/2(7/2) −803.93
ν5/2(9/2) −150.57

νJ (F ) 2s2p 1P1 2s3s 3S1 νJ (F ) 2p2 1D2

ν1(1/2) 35.777 831.25 ν2(1/2) 64.363
ν1(3/2) 13.043 332.50 ν2(3/2) 41.892
ν1(5/2) −20.621 −498.75 ν2(5/2) 5.893

ν2(7/2) −41.456

where ε = 0.654 × 10−3, see Eq. (16). In the case of the
2s2p 1P1 state, �J = �L and

A1(1P) = a2 = −13.888 2(7) MHz, (68)

B1(1P) = b = 0.845 40(4) MHz. (69)

Finally for the 2p2 1D2 state, �J = �L and

A2(1D) = a2 = −13.964 0(7) MHz, (70)

B2(1D) = b = 1.742 80(9) MHz. (71)

The calculation of the fine/hyperfine structure for the
2s2p 3P, 2p2 3Pe, and 2s3d 3D states requires diagonaliza-
tion of the effective fine/hyperfine Hamiltonian in Eq. (57).
For the 2s3d 3D state, the diagonalization reveals that the a1

parameter is around three times larger than the parameters c1

and c2. This makes the interaction of electronic and nuclear
spins the dominating one and disqualifies J as a good quantum
number. Therefore, one cannot use AJ and BJ coefficients—
instead, we present actual values of the fine/hyperfine levels.
In addition, to account for the leading relativistic and radiative
corrections, the a1 parameter is rescaled by the (1 + ε) factor;
see Eq. (66) and the related discussion in Sec. II C 2.

FIG. 3. The fine and hyperfine splitting for the 2p2 3Pe state. The
hf splitting was scaled by a factor of 500.
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FIG. 4. The fine and hyperfine splitting for the 2s3d 3D state.
The angular momentum number K , defined as �K = �I + �S, is an
approximate quantum number.

C. Comparison with experimental and other theoretical results

Table IV presents our recommended total energies of cen-
troids and their components of Eq. (1). The energy of the
ground 2s2 1S level was taken as a reference for the wave-
number scale. The extrapolated values and uncertainties of the
nonrelativistic contribution (see Table I) and of all the correc-
tions were estimated from their convergence with increasing
size of basis sets. As can be inferred from the table, except for
the 2s2p 1P state, the accuracy of the total energy is limited
mainly by the uncertainty of the leading QED correction. This
correction is dominated by the Bethe logarithm term, which is
estimated using ln k0 = 5.752(3) [42].

The total energy of a centroid for all six states consid-
ered here is consistent within theoretical uncertainty with the
experimental one [47,49,52,66]—see “Total-Experiment” en-
tries in Table IV. The agreement is on the level of 0.01 cm−1.
In particular, our predictions agree with order-of-magnitude
more accurate measurements reported by the Williams group
[47,49]. For the 2p2 3Pe

J term, there is a small difference
between the original triplet (J = 0, 1, 2) wave numbers by
Johansson [66] and those reported on the NIST web page [52],
which affects the centroid values. The experimental value
placed in Table IV refers to original measurements, and we
note that the value from the NIST compilation is smaller by
0.09 cm−1.

There are also scarce theoretical data in the literature con-
cerning selected excited states of 9Be. Chung and Zhu [64,67]
evaluated the energy using the FCPC method and included
the relativistic and QED correction but without the uncertainty
estimation; see Table IV. Their centroid energies differ from
ours and from the experimental ones by 0.1–3.4 cm−1. Much
more recent results obtained by Fischer and Tachiev using a
multiconfiguration Hartree-Fock (MCHF) [68] method differ
from ours by as much as 63−146 cm−1 with the exception of
the 3S level (∼1 cm−1). The centroid energy of the 2s2p 3P
state obtained from Kedziorski’s calculations [46], being less
accurate, agrees within the uncertainty with our result. Sur-
prisingly, their relativistic correction 12.40(7) cm−1 is in

significant disagreement with our value of 13.189(3) cm−1.
The difference between these two values corresponds to the
difference between their centroid energy and the experimental
one, and thus raises doubts about their uncertainty estimation.

Fine-structure splittings obtained theoretically and exper-
imentally for both 3P terms agree well with each other. A
separate comment is required concerning the 2s3d 3D term.
Its fine structure has not been revealed in Johansson’s exper-
iments [66]. Even then, it has been given on the NIST page
[52]. The fine splitting has also been predicted theoretically
by Chung and Zhu [67] and by Fischer and Tachiev [68].
However, in view of the clear domination of the IS over LS
coupling (see the discussion in Sec. VI B), we claim that for
this term the notion of the fine structure should be either
totally abandoned or at least reinterpreted in terms of the
�K = �I + �S angular momentum (see Fig. 4).

VII. CONCLUSIONS

We have performed the most accurate calculations of
centroid energies and fine/hyperfine-structure parameters of
low-lying 1,3PJ , 3S1, 3Pe

J , and 1,3DJ excited states of the 9Be
atom. The obtained results, apart from being in agreement
with available experimental values, allow the accuracy of
standard atomic structure calculations to be assessed. For a
long time, the FCPC method by Chung and Zhu [67] was
considered the most accurate one regarding the centroid ener-
gies, which included the finite nuclear mass, relativistic, and
QED corrections. However, significant differences between
the FCPC results and our calculations (and experiments),
reaching several reciprocal centimeters (up to 8 cm−1 for the
1D state), show the importance of the use of high-quality
wave functions in accurate studies of the atomic structure. It
is noteworthy that these differences are often greater than the
entire QED correction. What is more, some of the previous
calculations of the combined fine and hyperfine structure were
performed incorrectly. The reason was that the LS coupling
was assumed to be dominant over all other couplings. In other
words, we demonstrated that the standard approach in terms
of AJ and BJ hyperfine parameters does not work for some
9Be excited states, and that a subtle analysis is necessary to
properly identify the origin of energy level splitting.

Apart from presenting accurate results for the fine and
hyperfine structure, we have introduced an approach allowing
us to handle the combined fine and hyperfine structure of an
arbitrary atomic system in terms of an effective Hamiltonian.
This Hamiltonian is to be diagonalized for particular values
of the fine/hyperfine coupling parameters. This approach is
particularly suitable in cases in which the hyperfine mixing
becomes significant. Moreover, we expressed the fine and hy-
perfine parameters in terms of reduced matrix elements with
Cartesian angular factors. These factors can conveniently be
combined with a general correlated basis function and applied
to an arbitrary atomic term.

The current capabilities of theoretical methods are limited
by the accuracy of both mα5 and mα6 QED components. As
shown by the instance of the 2s2p 1P state, more accurate
calculations of the former component are feasible, but sig-
nificantly more effort will be needed to evaluate accurately
the latter component. Its complete evaluation will require
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TABLE VII. Matrix element reduction coefficients; see Sec. IV A.

Pl 2 ul (singlet) 2 ul 2 u1
l 2 u2

l 2 u3
l 2 u4

l 2 u12
l 2 u13

l 2 u14
l 2 u23

l 2 u24
l 2 u34

l

1234 2 2 0 0 2 2 0 0 0 0 0 −2
1243 2 −2 0 0 −2 −2 0 0 0 0 0 2
1324 −1 −1 1 −1 −1 −1 0 0 −1 0 1 1
1342 −1 1 −1 1 1 1 0 0 1 0 −1 −1
1423 −1 1 −1 1 1 1 0 1 0 −1 0 −1
1432 −1 −1 1 −1 −1 −1 0 −1 0 1 0 1
2134 2 2 0 0 2 2 0 0 0 0 0 −2
2143 2 −2 0 0 −2 −2 0 0 0 0 0 2
2314 −1 −1 −1 1 −1 −1 0 0 1 0 −1 1
2341 −1 1 1 −1 1 1 0 0 −1 0 1 −1
2413 −1 1 1 −1 1 1 0 −1 0 1 0 −1
2431 −1 −1 −1 1 −1 −1 0 1 0 −1 0 1
3124 −1 −1 1 −1 −1 −1 0 0 −1 0 1 1
3142 −1 1 −1 1 1 1 0 0 1 0 −1 −1
3214 −1 −1 −1 1 −1 −1 0 0 1 0 −1 1
3241 −1 1 1 −1 1 1 0 0 −1 0 1 −1
3412 2 0 0 0 0 0 0 1 −1 −1 1 0
3421 2 0 0 0 0 0 0 −1 1 1 −1 0
4123 −1 1 −1 1 1 1 0 1 0 −1 0 −1
4132 −1 −1 1 −1 −1 −1 0 −1 0 1 0 1
4213 −1 1 1 −1 1 1 0 −1 0 1 0 −1
4231 −1 −1 −1 1 −1 −1 0 1 0 −1 0 1
4312 2 0 0 0 0 0 0 1 −1 −1 1 0
4321 2 0 0 0 0 0 0 −1 1 1 −1 0

construction of wave functions strictly obeying the cusp con-
dition, as has already been demonstrated for two-electron
systems [61,69].
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APPENDIX A: REGULARIZATION

This Appendix briefly describes the regularization tech-
nique of singular operators used in this work. We can assume
that an operator Q to be regularized depends only on a two-
particle coordinate �raX , i.e., electron-nucleus Q = Q(�ra) ≡
Q(�raN ), X = N or electron-electron Q = Q(�rab), X = b.

For any operator Q, one finds a corresponding operator Q̃,
such that

(
1

m
+ 1

mX

)
Q = 1

mN
[ �pN, [ �pN, Q̃]] + 1

m

∑
c

[ �pc, [ �pc, Q̃]]

= [Q]r − 2 {E0 − H (2), Q̃}, (A1)

where the curly brackets denote an anticommutator and

[Q]r = 4 (E0 − V ) Q̃ −
∑

c

�pc Q̃ �pc − 1

mN
�pN Q̃ �pN. (A2)

Using the above notation, an expectation value of a one-
electron operator Q = Q(�ra) can be represented in the
regularized form as

〈�|Q|�〉 =
(

1

m
+ 1

mX

)−1

〈�|[Q]r |�〉. (A3)

There are two one-electron operators, i.e., 4 π δ3(ra) and
r−5

a (ri
a r j

a − 1/3 δi j r2
a ), and one two-electron operator, i.e.,

4 π δ3(rab), to be regularized. The corresponding Q̃ operators
are of the following form: r−1

a , 1/6 r−3
a (ri

a r j
a − δi j r2

a/3), and
r−1

ab , respectively.
Another regularization scheme is needed for

∑
a �p4

a . In this
case,

∑
a

�p4
a =

[∑
a

�p4
a

]
r

− 4 {E0 − H (2),V },

where

[∑
a

�p4
a

]
r

= 4 (E0 − V )2 − 2
∑
a<b

�p2
a �p2

b

− 4

mN
(E0 − V ) �p2

N + 1

m2
N

�p4
N. (A4)
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Using this definition, the following identity can be written:

〈�|
∑

a

�p4
a |�〉 = 〈�|

[∑
a

�p4
a

]
r

|�〉. (A5)

Finally, we make use of the following regularization
scheme for the Araki-Sucher term (in the infinite mass limit)
[32]:

〈
�

∣∣∣∣P
(

1

r3
ab

)∣∣∣∣�
〉

=
∑

c

〈
�

∣∣∣∣ �pc
ln rab

rab
�pc

∣∣∣∣�
〉
+

〈
�

∣∣∣∣4π (1 + γ ) δ(rab) + 2 (E0 − V )
ln rab

rab

∣∣∣∣�
〉
. (A6)

APPENDIX B: TABLE OF u COEFFICIENTS

Table VII shows the matrix element reduction coefficients discussed in Sec. IV A.
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