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Controlling the atom-sphere interaction with an external electric field
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We investigate the system constituted by a polarizable atom near a nanosphere under the influence of an
external electrostatic field, showing that the attractive dispersive force between them can be overcome by the
electrostatic interaction. Therefore, in addition to the advantageous possibility of actively tuning the resultant
force with an external agent without the requirement of physical contact, this force may also become repulsive.
We analyze this situation in different physical regimes of distance and explore the interaction of different atoms
with both metallic and dielectric spheres, discussing which cases are easier to control. Furthermore, our results
reveal that these repulsive forces can be achieved with feasible field intensities in the laboratory.
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I. INTRODUCTION

Quantum electrodynamics (QED) describes light-matter
interactions with unprecedented success, presenting an ex-
cellent agreement between theoretical predictions and exper-
imental results. One of the many situations in which QED
plays a key role is in the understanding of electromagnetic
interactions between neutral bodies with no permanent mul-
tipoles, the so-called dispersive forces [1], that arise from
quantum fluctuations in their charge and current distributions.
It is a multidisciplinary field that has sparked much interest
for decades in different areas, such as chemistry, biology,
colloid science, quantum field theory, and material science
(see Refs. [2,3] and references therein). These ubiquitous
forces typically present an attractive character, a consequence
of the fact that a fluctuating dipole in a given body induces a
dipole in the bodies in its vicinity, which, in most cases, favors
attraction, although this is not always the case. However, when
the interaction is attractive, this may lead to undesirable ef-
fects in nano- and micromechanical systems, such as adhesion
and stiction [4–8]. It has been an important issue and gave
rise to a significant search for engineering configurations that
exhibit repulsive forces. For a detailed overview of theoreti-
cal and experimental efforts regarding dispersive forces, see
Refs. [9–13].

Unfortunately, we have very few general recipes that en-
able us to architect systems endowed with repulsive Casimir
forces, and most situations require a complete calculation be-
fore we conclude their sign. Some examples of configurations
in which repulsion can already be ruled out beforehand were
stated by Kenneth and Klich [14]. The authors proved that the
interaction of (nonmagnetic) dielectric bodies or conductors is
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always attractive whenever they constitute a mirror-symmetric
setup, independently of the objects’ shape or their local di-
electric functions. Interestingly, it was recently shown that a
strategy to circumvent this restriction and achieve repulsion
can be accomplished with the insertion of an intermediate
chiral medium between the two materials [15].

Actually, it was discovered long ago that repulsive Casimir
force may be reached. In 1961, Dzyaloshinskii et al. [16]
investigated systems constituted of three different nonmag-
netic media, namely, two parallel semi-infinite homogeneous
dielectrics of permittivities ε1(ω) and ε2(ω) separated by
an infinite slab of a third dispersive homogeneous medium
of permittivity ε3(ω). If the relation ε1 (iξ ) < ε3 (iξ ) <

ε2 (iξ ) holds for a wide range of frequencies, repulsion occurs
according to their theory. Experimentally, it had not been
observed until 1996 when measurements were performed with
an atomic force microscope in the van der Waals limit [17]. In
this same regime, subsequent evidence of repulsive interac-
tion was also presented by other groups [18–21]. In 2009, a
direct measurement of long-range repulsive forces between
a gold-covered sphere and a large silica plate mediated by
bromobenzene was reported [22].

Another possible way of achieving repulsion concerns
dielectric-magnetic materials. As shown by Feinberg and
Sucher [23,24], this is exactly the case for two atoms if
one of them is electrically polarizable whereas the other
is magnetically polarizable. Based on these works, but in
the context of stochastic QED, Boyer [25] verified repul-
sive forces when two parallel plates are placed close to each
other with vacuum in betweenif one of them is perfectly
conducting (electric permittivity ε → ∞) and the other one
is perfectly permeable (magnetic permeability μ → ∞). Re-
sults involving dielectric-magnetic materials have also been
discussed [3,26,27]. In recent years, the search for repulsive
forces has been expanded to topological materials [28–34]
and metamaterials. In the latter case, attempts were carried
out [35–37], but it turned out that repulsion in such an as-
sembly is exceedingly difficult [38,39]. Likewise, systems
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out-of-thermal equilibrium have received special attention.
Nonequilibrium Casimir forces arise in cases where the ob-
jects and the environment are kept at different temperatures,
and some situations may be a possible source of repulsive
interactions [12,40–42].

Some predictions have demonstrated that bodies with non-
trivial geometry can present a great opportunity to generate
repulsive Casimir interaction in vacuum. Interesting examples
consist of a polarizable particle centered above an infinitely
conducting [43,44] or dielectric [45] plate with a circular
hole. Particularly, in the case of the conducting plate, this
repulsive nonretarded force was also analytically investigated
[46,47]. In addition, for sufficient anisotropy, repulsion can be
obtained between an atom and some conducting bodies as, for
instance, a semi-infinite plate, a wedge [48], and a cylinder,
provided that the atom moves on a trajectory nonintersecting
with the cylinder [49]. Recently, the nonretarded force be-
tween a polarizable particle and a grounded conducting toroid
has been investigated and repulsion was predicted depending
on the values of its two radii and the distance from the particle
to the geometrical center of the toroid [50].

However, if one has to deal with specific geometries and
materials, the aforementioned routes will not help. To obtain
repulsion in this scenario, we must tailor light-matter inter-
actions at the nanoscale. The idea of tuning QED effects can
be traced back to the pioneering work of Purcell in 1946 [51]
where it was shown that the environment of a quantum emitter
may substantially affect its spontaneous emission rate. Con-
trolling the dispersive interaction resorting to the application
of tunable external electric or magnetic fields has proved to be
a profitable venue [15,33,52,53]. It was recently shown that
an electrostatic field could generate a repulsive interaction
between atoms [54]. The interpretation of their result was
disputed [55,56], and, subsequently, a thorough and rigorous
study was carried out to settle the issue [57,58]. However,
regardless of the interpretation, Ref. [54] has correctly and
interestingly shown that realistic values of electrostatic fields
can be used to tune the interaction between atoms, changing
it from attractive to repulsive.

A natural question is whether this holds for interactions
between atoms and surfaces. In this regard, here we investi-
gate the effect of applying an external electrostatic field in the
system composed of a neutral and isolated sphere and an atom
in its ground state with no permanent dipole moment. We
analyze both metallic and dielectric spheres and show that, by
varying the intensity and the orientation of the electric field,
the component of the resultant force on the atom along the
line containing the center of the sphere and the atom, given
by the sum of dispersive and electrostatic contributions, can
become repulsive, meaning that the electrostatic force may
overcome the dispersive one. Our findings reveal that such a
control can be performed using the electric field as an effective
knob that allows for the manipulation of the attractive or
repulsive character of the atom-sphere interaction, requiring
no physical contact. Most importantly, this tunability can be
obtained even for feasible values of the external field, and
can easily be implemented in laboratories. Furthermore, we
show that our results are robust against the size of the sphere,
enabling the same electrostatic field to control a system com-
posed of different bodies interacting with the atom.
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FIG. 1. A neutral and isolated sphere of radius R and a polariz-
able atom in its ground state at a distance a from the surface of the
sphere. The Oz axis is chosen parallel to the line connecting the atom
to the center of the sphere. An external uniform electrostatic field E0

is applied at an angle θ0 with respect to the Oz axis.

This paper is organized as follows. In Sec. II we introduce
the relevant forces that take place in the setup and establish the
validity conditions of our calculations. Section III is dedicated
to the discussions of our results and Sec. IV is left for final
remarks and conclusions. Additionally, we included an Ap-
pendix containing important information on the mathematical
description of materials and atoms studied in this paper.

II. ATOM-SPHERE INTERACTION

In this paper, we are concerned with the physical system
depicted in Fig. 1. It consists of a neutral and isolated sphere
of radius R and a polarizable atom in the ground state with no
permanent dipole moment (nor higher-order multipoles). For
convenience, we choose the Cartesian axes in such a way that
the sphere is centered at the origin and the atom is located at
a generic point za = R + a of the positive semiaxis Oz with a
being the distance from the atom to the surface of the sphere.
This system is exposed to an external uniform electrostatic
field E0 applied at an arbitrary angle θ0 with respect to the Oz
axis. The atom interacts with the sphere through a dispersive
force, and the applied electric field also induces an electro-
static coupling between them.

In the following subsections, we separately present the
evaluation of each contribution to analyze which effect is
dominant.

A. Dispersive force

Before presenting the expression of the dispersive force
exerted by the sphere on the atom, a comment is in order.
In principle, this dispersion force is modified by the external
electrostatic field since both energy levels and eigenstates
of an atom are affected by the electrostatic field. As a con-
sequence, the atomic polarizability of the ground state of
the atom is also altered. However, for the field intensities
and range of distances between the atom and the sphere to
be considered in this paper, it can be shown that such a
variation is negligible. A heuristic way of realizing this is
to consider the atom as a two-level oscillating system with
frequency ω0 and reduced mass μ. A constant force, such as
the one exerted by an electrostatic uniform field, only shifts
the equilibrium position, leaving the oscillations unaltered.
Hence, the polarizability is unaffected as long as the harmonic
approximation holds during the whole motion. This requires
eE0/(μω2

0 ) � a0, where e is the electron charge, E0 stands
for the applied electrostatic field, and a0 is the Bohr radius.
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Taking a0 ∼ 0.5 Å, μ as the electron mass, and ω2
0 ∼

1031 Hz2 (see the Appendix), it is possible to confirm that
we may neglect changes in the atomic polarizability for fields
satisfying E0 � 1010 V/m, a condition met by the fields
employed in this paper. A full quantum-mechanical calcula-
tion yields an equivalent conclusion. As shown in Ref. [55],
the relative change in the static polarizability is given by
the Stark effect δω0/ω0 ∼ αE2

0 /(h̄ω0), which shows that we
may neglect variations in the polarizability for all cases in
which perturbation theory remains valid. For cesium, the atom
with the greatest polarizability considered here, the relation
δω0/ω0 � 1 requires E0 � 1010 V/m. Hence, we may com-
fortably disregard any effect of E0 in the dispersive interaction
as can also be shown by a full quantum electrodynamics
analysis [57,58].

To begin with, we consider the small sphere limit (R � a)
so that the dipole approximation holds. In this case, assuming
a nonmagnetic sphere, the dispersive interaction energy is
given by [59,60]

U (disp)
dip (za) = − h̄R3

4π2ε0z6
a

∫ ∞

0
dξ αa(iξ )

ε(iξ ) − 1

ε(iξ ) + 2
e−2ξza/c

×
[

3 + 6ξza

c
+ 5(ξza)2

c2
+ 2(ξza)3

c3
+ (ξza)4

c4

]
,

(1)

where ε0 is the electric permittivity of vacuum, c is the light
velocity in vacuum, αa(iξ ) denotes the atomic polarizability
evaluated at imaginary frequencies ξ , and we used that the
sphere dynamical polarizability can be written as [61]

αs(iξ ) = 4πε0
ε(iξ ) − 1

ε(iξ ) + 2
R3, (2)

where ε(iξ ) is its electric permittivity (normalized by ε0). In
the next section, we will perform the integration in Eq. (1)
numerically for different materials and atoms. However, there
are some limits for which we may obtain simple analytical
expressions, useful for a first analysis since they can already
furnish a physical intuition about the orders of magnitude of
all quantities involved. In the case of a two-level atom, we
can employ a Lorentz oscillator model with a single resonance
as indicated in Eq. (A1) of the Appendix. Furthermore, for a
perfectly conducting sphere, Eq. (2) simplifies to

α(c)
s = 4πε0R3. (3)

Substituting these results back into Eq. (1), we may arrive
at closed formulas both for the retarded regime (za � c/ω0,
where ω0 is the atomic transition frequency) and for the non-
retarded one (za � c/ω0). In the retarded regime, we may take
αa(iξ ) ≈ αa(0) in Eq. (1) [59] with αa(0) denoting the static
atomic polarizability and by performing the integration, we
obtain

U (disp)
dip,R = −23h̄cα(c)

s αa(0)

64π3ε2
0z7

a

. (4)

On the other hand, in the nonretarded regime, Eq. (1) reduces
to

U (disp)
dip,NR = − 3h̄

16π3ε2
0z6

∫ ∞

0
dξ α(c)

s αa(iξ )

= −3h̄ω0α
(c)
s αa(0)

32π2ε2
0z6

a

. (5)

This expression is usually not very realistic since the nonre-
tarded and the perfectly conducting sphere approximations are
not compatible in general. As a matter of fact, in this distance
regime, the distance a must be much smaller than the domi-
nant transition wavelength λ0 = 2πc/ω0 of the atom such that
retarded effects in the interaction can be disregarded. In ad-
dition, the perfect conductor approximation assumes that the
electric field does not penetrate the material, holding, thereby,
as long as a is much greater than the penetration length lp.
Therefore, these two approximations together are valid for
lp � a � λ0, which restricts their applicability regime. How-
ever, it will be useful as a first rough description to investigate
orders of magnitude.

When a � R, the dipole approximation for the sphere
breaks, implying that Eq. (1) is no longer valid, and we must
now sum over much more multipoles. Assuming the nonre-
tarded regime, we may obtain the dispersive interaction from
the expression,

U (disp)
NR = − h̄

8π2ε0

∞∑
l=1

(2l + 1)(l + 1)
R2l+1

z2l+4
a

×
∫ ∞

0
dξ αa(iξ )

ε(iξ ) − 1

ε(iξ ) + [(l + 1)/l]
, (6)

as shown in Ref. [60]. Let us now analyze the electrostatic part
of the interaction.

B. Electrostatic force

In this subsection, we describe the electrostatic force that
arises between the atom and the sphere due to the application
of an electrostatic field E0. In such a situation, the atom
acquires an induced electric dipole moment in response to
the total field acting on it, namely, the external field and the
electrostatic field created by the sphere. By the same token, in
principle, the sphere also suffers the influence of a resultant
electric field given by the sum of the external field and the
field created by the polarized atom. However, the atomic po-
larizability of an atom in its ground state scales with 4πε0a3

0,
and the electric-field intensity of a point dipole of magnitude
p behaves as ∼p/(4πε0r3) with r being the distance of the
space point under consideration to the dipole. Hence, the ratio
between the magnitude of the field created by the atom on the
sphere and that of the external field is on the order of ∼(a0/a)3,
a negligible quantity in our configuration. As a consequence,
although the electric dipole moment induced on the atom will
be computed taking into account the external field and the
electrostatic field created by the sphere, it will be enough
to consider only the external field E0 when computing the
response of the sphere to the electrostatic field acting on it.

It is well known that the electrostatic field created by the
sphere when exposed to an external uniform and constant
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field E0 is identical, in its outer region, to that of a point
dipole located at its center [61], which we will denote by
ps = αs(0)E0 with αs given in Eq. (2). The electrostatic field
created by the sphere at the atom’s position is given by

Es(ra) = αs

4πε0

3E0cos θ0 ẑ − E0

z3
a

, (7)

so that, the electric dipole moment induced on the atom by the
resultant field, pa = αa[E0 + Es(ra)], takes the form

pa = αa

(
1 − αs

4πε0z3
a

)
E0 + 3αaαsE0cos θ0

4πε0z3
a

ẑ. (8)

Hence, the electrostatic force exerted by the sphere on the
atom is the same as that exerted by a point dipole ps at the
origin on a point dipole pa at the atom’s position. It is worth
emphasizing that we are only interested in the z component
of this force. In this sense, we initially write the general
expression for the force exerted by a dipole p′ at the origin
on a dipole p at an arbitrary position r, given by

F (el)
pp′ = 1

4πε0r4
[3(p · r̂)p′ + 3(p′ · r̂)p + 3(p · p′)r̂

− 15(p · r̂)(p′ · r̂)r̂]. (9)

The z component of the electrostatic force F (el)
z on the

atom can be obtained by making the substitutions p′ −→
ps, p −→ pa, r̂ −→ ẑ, and taking the scalar product of both
sides of Eq. (9) with ẑ, which leads us to

F (el)
z = 3

4πε0z4
a

[pa · ps − 3(pa · ẑ)(ps · ẑ)]. (10)

The last two scalar products readily follow from Eq. (8) and
the fact that ps = αsE0, whereas the first one is given by

pa · ps = αaαsE
2
0

[
1 + αe

4πε0z3
a

(3 cos2θ0 − 1)

]
. (11)

After plugging these results back into Eq. (10), we are left
with

F (el)
z = 3αaαsE2

0

4πε0z4
a

×
[

1 − αs

4πε0z3
a

− 3 cos2 θ0

(
1 + αs

4πε0z3
a

)]
.(12)

To check the consistency of this formula, let us consider two
particular configurations. First, we choose θ0 = 0 so that ps
and pa are aligned and the force between them is attractive.
Indeed, we see that Eq. (12) becomes

F (el)
z = −6αaαsE2

0

4πε0z4
a

(
1 + 2

αs

4πε0z3
a

)
< 0. (13)

If we now consider θ0 = π/2, a situation in which the dipoles
are parallel to each other but perpendicular to the Oz axis, we
obtain a repulsive force. In fact, it follows from Eq. (12) that

F (el)
z = 3αaαsE2

0

4πε0z4
a

(
1 − αs

4πε0z3
a

)
, (14)

which is clearly a positive expression since αs/(4πε0z3
a ) < 1.

As a final comment, we point out that αs/(4πε0z3
a ) ∼

(R/za)3, according to Eq. (2) and, therefore, whenever we

work in the small sphere limit (R � a), we may simply ap-
proximate Eq. (12) by

F (el)
z ≈ 3αaαsE2

0

4πε0z4
a

(1 − 3 cos2 θ0). (15)

III. RESULTS AND DISCUSSIONS

We start by considering the system composed of a hydro-
gen atom near a gold sphere, demonstrating that an external
electrostatic field can be applied to control the attractive or
repulsive character of the resultant force. Next, we show that
the same behavior also occurs when considering other atomic
species, such as Na, K, Rb, Cs, and Fe. Finally, to attest that
the tuning mechanism we are discussing here is robust under
the change in the sphere’s material, we analyze the case of
a dielectric sphere made of silicon dioxide (SiO2). In this
situation, we verify that repulsive resultant forces can also be
obtained within the same approach with the only difference
that, for a given distance between the atom and the sphere,
the values of necessary fields for switching the attractive or
repulsive character of the force are slightly different.

A. Hydrogen atom near a metallic sphere

In this subsection, we discuss the interaction between a
hydrogen atom and a gold sphere. The model for the atomic
polarizability and the dielectric function of the sphere can be
found in the Appendix. To facilitate the analysis of the change
in sign of the resultant force, we define the ratio 
 between
the z component of the resultant force and the absolute value
of the dispersive force acting on the atom, namely,


 = F (net)
z

|F (disp)| = F (el)
z + F (disp)

|F (disp)| , (16)

where F (disp) = −∂U (disp)/∂za with U (disp) being the disper-
sive interaction energy. According to the previous definition,

 > 0 means a repulsive force on the atom, whereas 
 <

0 means an attractive one. Throughout this paper, we will
mainly focus on discussions of the ratio 
 calculated with
the dispersive interaction given in Eq. (1), which is valid for
any distance za as long as obeying the dipole approximation.
In a few situations, however, we will also show results for 


considering distances a within the range of the nonretarded
regime. In these cases, we will resort to Eq. (6) to evaluate the
dispersive contribution. Nonetheless, we will call the reader’s
attention every time this change occurs to avoid any misinter-
pretation.

We begin assuming that the distance separating the atom
and the sphere is much larger than the sphere’s radius (a �
R), and, therefore, we employ Eq. (1) in order to evaluate the
dispersive force. Note that, in doing so, some care must be
taken in choosing these parameters. To determine the direction
of application of the field that provides the strongest repulsion,
Fig. 2 displays 
 as a function of θ0 for feasible intensities E0

of the electrostatic field. We set the sphere’s radius R = 60 nm
and the distance between the atom and the sphere a =
700 nm, typical values in experiments involving dispersive
forces. First of all, a direct inspection of Fig. 2 reveals that
there are intervals of θ0 for which 
 is positive, which implies
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FIG. 2. Ratio 
 as a function of the angle θ0 between the applied
electric field and the Oz axis. Different colors refer to different field
intensities. We set R = 60 nm and a = 700 nm.

a repulsive force between the sphere and the atom. It is also
evident that the orientations of the electrostatic field that best
favor repulsion occur for θ0 = π/2 or θ0 = 3π/2 as expected
since the induced dipoles on the atom and the sphere are
perpendicular to the Oz axis and parallel to each other in
both cases, being the configurations of maximal electrostatic
repulsion. Another interesting trait present in Fig. 2 is that the
absolute value of 
 at the peaks is smaller than its absolute
value at the valleys. This follows from the combination of two
intertwined features: (i) the repulsive electrostatic force for
θ0 = π/2 is less intense than the attractive electrostatic force
for θ0 = 0 as can be seen from Eqs. (13) and (14), and (ii) the
electrostatic and dispersive contributions to the resultant force
have opposite directions for θ0 = π/2, whereas they point
in the same direction for θ0 = 0. Finally, one should note
that the intersection of all curves occurs at 
 = −1, a direct
consequence of the definition in Eq. (16). 
 = −1 implies
F (el)

z = 0 and since F (el)
z is proportional to E2

0 [see Eq. (12)],
the solution of this condition is independent of E0.

Let us now investigate the dependence of 
 with the con-
tinuous variation of the other parameters, keeping θ0 fixed at
π/2. In Fig. 3, we plot 
 as a function of E0 for different
values of the distance a and R = 60 nm. For a given value of
a as we increase the magnitude of the external field E0, the
system undergoes from an attractive to a repulsive resultant
force. Moreover, this can be achieved with feasible values of
electrostatic fields. For instance, in the range of distances con-
sidered in this figure, we see that the changes from attraction
to repulsion occur within the values of 0.4–1.1 × 105 V/m.
Note that increasing the distance a, the electrostatic field nec-
essary to overcome the dispersive force decreases as expected
since the dispersive contribution diminishes with a faster than
the electrostatic one. Figure 4 presents a profile that also fol-
lows the previous discussion, showing the ratio 
 as a function
of the distance a for different field intensities and the same
sphere’s radius R = 60 nm and field orientation θ0 = π/2.

FIG. 3. Ratio 
 as a function of the field intensity E0. Different
colors denote different distances a from the atom to the sphere’s
surface. We set R = 60 nm and θ0 = π/2.

We call attention to the fact that 
 depends only slightly on
the sphere’s radius. Indeed, in the small sphere limit (R � a),
we may approximate the electrostatic force by Eq. (15) as
already discussed. A comparison with Eq. (1) shows that the
ratio 
 is independent of R for a given distance between the
atom and the sphere’s center (i.e., for fixed za). This is a
remarkable feature as it holds regardless of the material com-
posing the sphere and implies that the electrostatic control of
the atom-sphere interaction is robust against the sphere’s size
as long as the dipole approximation remains valid. However,
when the atom-sphere distance is on the order of the sphere’s
radius or smaller, Eq. (1) no longer holds. Assuming that this
distance is short enough so that we can describe the disper-
sive interaction in the nonretarded limit, we must change our
approach and calculate the ratio 
, evaluating the dispersive
contribution from Eq. (6), instead of from Eq. (1). This situa-
tion is displayed in Fig. 5 in which we plot 
 as a function of
shorter distances between the atom and the sphere’s surface.
Note that, for electric-field intensities 30–100 times the values
depicted in Fig. 4, we already overcome the dispersive force
for distance regimes smaller than 100 nm.

FIG. 4. Ratio 
 as a function of the distance a between the atom
and the sphere’s surface for different field intensities. We set R =
60 nm and θ0 = π/2.
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FIG. 5. Ratio 
 as a function of the distance a from the atom to
the sphere’s surface for different field intensities in the short-distance
regime. We set R = 60 nm and θ0 = π/2.

Analytical expressions both in the retarded and the nonre-
tarded regimes can be obtained, providing us with interesting
physical insights for our results. In this paragraph, we will
not focus on hydrogen but rather on any atom described by
the two-level model given in Eq. (A1). In the retarded regime
(za � c/ω0), we may determine the dispersive force from
Eq. (4) and employ Eq. (15) with θ0 = π/2 to obtain


 = 48π2ε0E2
0 z4

a

161h̄c
− 1. (17)

This expression has some notable characteristics. It is inde-
pendent of the atomic parameters and the material composing
the sphere (but, to the latter, we must also assume that the
retarded limit is true for frequencies that characterize the
sphere’s material). This is an expected result since, in the re-
tarded regime, the dispersive force is proportional to the static
polarizability that cancels out when we evaluate 
. We see that
the electrostatic force becomes relevant when the electrostatic
energy U (el) ∼ ε0E2

0 z3
a, corresponding to the electrostatic en-

ergy contained in a region of the size of the distance separating
the atom and the sphere, is on the order of the energy carried
by the photons relevant to the dispersive interaction, which is
given by Uphoton ∼ h̄c/za. To give a numerical estimate, if one
takes the distance to be ten times the hydrogen wavelength
transition, it would be necessary an electric-field intensity
around 10−3 V/m to overcome the dispersive interaction. This
small field reflects a feeble dispersive force. However, situa-
tions of more practical interest to the applications mentioned
in Sec. I concern the short-distance limit. In this nonretarded
regime, when calculating the dispersive force from Eq. (5) and
using Eq. (15) with θ0 = π/2, we arrive at


 = 4πε0E2
0 z3

a

3h̄ω0
− 1. (18)

Therefore, the minimum field Ec necessary for the electro-
static attraction to overcome the dispersive force satisfies the
relation,

4πε0E2
c z3

a

3
= h̄ω0, (19)

which means that repulsion is ensured once the atomic tran-
sition energy equals the electrostatic energy contained in a
sphere of radius corresponding to the atom-sphere distance.
We remind the reader that the results obtained in this sec-
tion did not assume the nonretarded regime nor a perfectly
conducting sphere. Nonetheless, the power-law present in
Eq. (19) is valuable in order to provide a first estimate re-
garding the necessary electric field to achieve repulsion. For
example, for a hydrogen atom and taking za = 800 nm, we
obtain Ec ∼ 6 × 104 V/m, a value on the same order of mag-
nitude and only 20% above the predicted one using a more
general expression, given in Eq. (1). Expression (19) overesti-
mates the necessary field for two reasons: (i) the nonretarded
limit overestimates the dispersive force and (ii) a perfectly
conductor demands a stronger field than a real metal (see
Sec. III C).

Another important aspect included in Eq. (19) is that the
required electrostatic field in the nonretarded regime scales
with

√
ω0 and, consequently, atoms with lower transition fre-

quencies are easier to control. It can be well understood if
we note that when we increase ω0, the dispersive and the
electrostatic forces diminish since the atomic polarizability
is reduced. Nevertheless, as can be inferred from Eqs. (1),
(14), and (A1), the integrand in the ratio F (disp)/F (el)

z depends
on ω0 through the factor ω2

0/(ω2
0 + ξ 2). Therefore, increasing

ω0 also increases the integrand for every value of ξ . As a
consequence, as we increase ω0, the dispersive force weak-
ens more slowly than the electrostatic one, thus, explaining
the aforementioned behavior. Physically, it is related to the
fact that the dispersive interaction is a fluctuating-induced
phenomenon that arises in the coupling between the dipole
fluctuations on each body. Although increasing the transition
frequency reduces the dispersive force (since it weakens the
virtual excitations and reduces the polarizability), it also al-
lows for a faster atomic dipole fluctuation, which enhances the
dipole-dipole correlation and smooths the decrease in the dis-
persive force in comparison with the electrostatic force. This
hallmark was discussed for two-level atoms in the nonretarded
regime but, in the following subsection, we demonstrate that
it remains accurate even for a more realistic treatment of
atoms and taking into account the complete dispersive energy
interaction, dropping the nonretarded interaction assumption.

B. Other atoms

Even though the two-level approximation suits well in
the mathematical description of the hydrogen polarizability,
there is no good agreement with experiments when assuming
only one relevant transition for heavier atoms. However, in
such cases, a good solution is to implement the so-called
two-oscillator model, which consists of keeping two atomic
transitions as the main contributions to the dynamical atomic
polarizability as shown in the Appendix. We now come back
to the description of the dispersive interaction through Eq. (1)
and, by using Eqs. (14) and (A2), we are guided to the results
presented in Fig. 6. The first panel exhibits 
 as a function of
the distance a for a fixed field intensity E0 = 1 × 105 V/m,
whereas the second panel exposes the ratio 
 as a function
of the electric field at a given distance a = 500 nm from
the sphere’s surface. In both of them, each curve denotes
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(b)

(a)

FIG. 6. (a) Ratio 
 as a function of the distance a between a
given atomic species and the sphere’s surface for E0 = 1 × 105 V/m.
(b) Ratio 
 as a function of the field intensity E0 with a = 500 nm.
In all panels, different colors refer to different atomic species, and
we set R = 60 nm and θ0 = π/2.

a different atomic specimen. Note from Fig. 6(a) that all 


curves eventually cross the zero value when a ranges between
508–530 nm. It should also be noted that it is possible to
change the profile of the net force on each atom just by
varying its distance a. An equivalent route of observing this
same behavior is to investigate 
 as a function of the electric
field and, accordingly, the outcome is the possibility of chang-
ing the 
 sign just by varying the intensity of this external
agent. Moreover, we stress that this modification occurs for
feasible values of the electric field, being within the scope of
experimental realization. The pattern presented in the curves
of Figs. 6(a) and 6(b) can also be understood. In the two-
oscillator model [Eq. (A2)], one of the frequencies is generally
much smaller than the other (typically, ω01/ω02 ∼ 0.01) and,
as a consequence, the lower transition frequency ends up
being responsible for the dominant response. Hence, the elec-
trostatic effect is more prominent for atoms exhibiting smaller
transition frequencies, exactly as illustrated in the panels. In
other words, for a given distance, atoms with smaller ω01

require a smaller electrostatic field to overcome the dispersive
force.

Amid the atoms we chose to work with, cesium is the most
easily controlled by the electrostatic field because it exhibits
the smallest ω01 (although it has the highest ω02)—except
for hydrogen, which is well represented by the one-oscillator

FIG. 7. Contour plot of the ratio 
 for cesium atom varying θ0

and E0. The dashed black line indicates combinations of θ0 and E0

for which 
 = 0. Here, we chose R = 60 nm and a = 700 nm.

model as we stated before. Therefore, we have chosen this
atomic species to explore the contour plots that follow. We
begin with Fig. 7 that shows 
 as a function of θ0 and E0. In
this figure, the dashed black line indicates 
 = 0, separating
regions in the parameter space of θ0 and E0 for which the
net force is attractive or repulsive. Note that the most intense
repulsion value (when it takes place) occurs for θ0 = π/2 as
previously mentioned. Curves similar to the ones in Fig. 2 but
to the caesium atom are found by taking horizontal lines of
constant E0 in Fig. 7. Lastly, in Fig. 8, we consider 
 as a
function of a and E0, and, once more, the dashed white line
represents 
 = 0. Likewise, by selecting the horizontal lines,
we obtain results similar to those in Fig. 4.

FIG. 8. Contour plot of the ratio 
 for the cesium atom varying
a and E0. The dashed white line indicates combinations of a and E0

for which 
 = 0. Here, we chose R = 60 nm and θ0 = π/2.
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z

(b)

(a)

z

FIG. 9. Ratio 
 as a function of the distance a between a ce-
sium atom and the sphere’s surface for (a) E0 = 7 × 104 V/m, using
Eq. (1), and (b) E0 = 9 × 106 V/m, using Eq. (6). In all panels,
different colors refer to spheres made of different materials, and we
set R = 60 nm and θ0 = π/2. The insets show the resultant force on
the atom as a function of a.

C. Atoms near a dielectric sphere

In our previous discussions, we have always assumed the
interaction with a metallic sphere. If the atoms are near a
dielectric one instead, the general expressions presented in
Sec. II are still valid, and we must only substitute back on
them the polarizability of the dielectric sphere in question.
A model for the electric permittivity of silica spheres is
described in the Appendix. For dielectrics, both the disper-
sive and the electrostatic interactions are weaker than for the
metallic case when considering a given atom placed at a fixed
distance separating it from the sphere. Therefore, it is not clear
at first sight whether 
 should be greater for a dielectric or a
metallic sphere (with all conditions being the same). In other
words, is it easier to generate repulsion when an atom is close
to a dielectric instead of a metallic sphere? To address this
question, in Fig. 9, we plot 
 for a cesium atom next to a silica
sphere as a function of the atom-sphere distance a in different
regimes and compare it with 
 for the same situation replacing
the silica sphere for a gold one with the same radius. We see
that, for a fixed distance, 
 is always greater in the dielectric
case. For example, the distance for which the electrostatic
force equalizes the dispersive one for the gold case is a dis-

tance where the same field has already generated repulsion in
the dielectric situation. It is related to the results obtained in
Sec. III A where we explained the mechanism which makes
it easier to control atoms with smaller transition frequencies.
Metals allow for a faster response than dielectrics (analo-
gous to atoms with higher transition frequencies), implying
greater polarizability for each imaginary frequency, which,
in turn, enhances the dispersive and the electrostatic forces.
However, the effect on the former is more pronounced due to
its fluctuating-induced nature, and, therefore, metals require
stronger electric-field intensities than dielectrics so that the
atom-sphere force becomes repulsive.

IV. FINAL REMARKS AND CONCLUSIONS

We have investigated the possibility of controlling the dis-
persive interaction in the system composed of an atom and a
neutral and isolated sphere when exposed to an external elec-
trostatic field. We have explored both metallic and dielectric
spheres as well as the implications of considering different
atomic species. Our results demonstrated that the electrostatic
force, that arises between the atom and the sphere, can provide
active control of this interaction without demanding physi-
cal contact. More specifically, the electrostatic force enables
the tunability of the sign of the resultant force since this
electrostatic contribution can overcome the dispersive one.
Moreover, we highlight that such a degree of control can
be achieved for feasible values of the electric field, being
within the scope of experimental realization. Concerning the
outcomes of studying different atomic species and materials
composing the sphere, we concluded that larger field intensi-
ties are required when dealing with metallic spheres and with
atoms that exhibit larger transition frequencies. We have also
discussed in detail the dependence of our results on the mag-
nitude of the electric field, its orientation, and the atom-sphere
distance. Although our results assume a spherical surface, we
expect that the orders of magnitude of the electrostatic field
required to overcome the dispersive interaction are insensitive
to small shape variations. Nonetheless, it is still interesting
to be able to investigate different geometries. Whenever the
dipole approximation remains valid, our treatment can be
immediately applied. Therefore, it suffices to substitute the
polarizability of the sphere with the appropriate dynamical
polarizability of the object under study. As the polarizability
scales with the volume, the orders of magnitude involved must
hold regardless of the shape, replacing the object with a sphere
of the same volume. We expect that the results presented
above may open different routes to control dispersive forces
and inspire other configurations that may also exhibit repul-
sion.
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TABLE I. Data for Na, K, Fe, Rb, and Cs atoms. This table contains parameters of the two-oscillator model to be used in Eq. (A2) [62]
(1 a.u. = 1.648 × 10−41 C2 m2 J−1).

Atom αa1(0) (a.u.) ω01 (eV) αa2(0) (a.u.) ω02 (eV)

Na 162.1 2.12 0.547 116.4
K 288.4 1.66 1.754 87.0
Fe 307.8 1.75 9.972 42.8
Rb 316.7 1.65 1.85 119.6
Cs 397.3 1.53 2.597 123.8

APPENDIX: ATOMIC POLARIZABILITIES AND
DIELECTRIC FUNCTIONS

In order to characterize the hydrogen atomic polarizability
in the dispersive interaction, we employed a single-oscillator
model, given by

αa(iξ ) = ω2
0αa(0)

ω2
0 + ξ 2

, (A1)

with αa(0) = 4.5 a.u. and ω0 = 11.65 eV [62]. In the case of
heavier atoms, such as Na, K, Fe, Rb, and Cs, we employed a
two-oscillator model, written as

αa(iξ ) = ω2
01αa1(0)

ω2
01 + ξ 2

+ ω2
02αa2(0)

ω2
02 + ξ 2

. (A2)

The fitted parameters for each of these atomic specimen
also analyzed here are reported in Table I.

The mathematical description of the different materials
composing the spheres is based on their dielectric functions.
We assume that the expressions for the metallic (gold: Au)
and dielectric (silicon dioxide: SiO2) spheres are written us-
ing a Drude model and a Drude-Lorentz model, respectively,
according to

εAu(iξ ) = 1 + ω2
p0

γ0ξ + ξ 2
, (A3)

εSiO2 (iξ ) = 1 + ω2
p1

ω2
T 1 + γ1ξ + ξ 2

+ ω2
p2

ω2
T 2 + γ2ξ + ξ 2

. (A4)

The fitted parameters for these materials are reported in
Table II.

TABLE II. Data for gold and silicon dioxide spheres. This table contains parameters for each model in Eqs. (A3) [63] and (A4) [60].

Parameter Value (Hz) Parameter Value (Hz)

ωp0 1.37 × 1016 γ0 4.05 × 1013

ωp1 1.75 × 1014 γ1 4.28 × 1013

ωp2 2.96 × 1016 γ2 8.09 × 1015

ωT 1 1.32 × 1014 ωT 2 2.72 × 1016
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