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Internal structure of the positronium ion Ps−
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The positronium ion Ps– is often qualitative described as a positronium Ps with a loosely bound second
electron, since the value of the annihilation rate for Ps– is nearly equal to that of the spin-averaged neutral
positronium. This similarity however has never been fully explained. To study its internal structure, we decom-
pose the electron-positron distribution function of Ps– into the sum of two terms: one for the electron closest
to the positron and the other for the farthest. We show that the inner electron behaves almost as if the outer
electron were not present, forming a Ps substructure inside Ps– and that the effect of electron correlation is such
that the outer electron tries to stay as close as possible to the positron but without interfering too much with the
distribution of the inner electron. We show that this phenomenon is closely related to the problem of the critical
stability of the system (Z+, e–, e–) with varying Z charge.
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I. INTRODUCTION

In his seminal paper on “polyelectrons” in 1946, Wheeler
[1] predicted the existence of a bound state of two electrons
and a positron, followed shortly and independently by Hyller-
aas [2]. Wheeler called it trielectron, while Hylleraas called it
positronium ion, following Ruark [3] who in 1945 coined the
name positronium for the system composed by one electron
and one positron.

The positronium negative ion is the simplest coulombic
three-body system and as such is fundamental to the study of
three-body quantum mechanics, to test fundamental physics,
and in many other areas. We refer the reader to the article by
Emami-Razavi and Darewych [4] for an up-to-date review of
the field. The calculation of its binding energy (BE) and other
properties, such as the annihilation rate and various geometri-
cal expectation values, has a long history [1,2,5–29]. Table I
shows a comprehensive chronological list of the ground state
calculations.

In the three decades following Wheeler’s paper, only a
few studies investigated the energetics and structural prop-
erties of Ps–. In 1960, in one of the first early calculations,
Kolos et al. [5] computed the average electron-electron and
electron-positron distances (respectively, 8.5476 and 5.506
bohr), commenting that “the large size of this system is remark-
able”, but without further analysis. In 1968 Ferrante [7] was
the first to tackle the problem of computing the two-photon
and the three-photon annihilation rate of Ps–. He remarked
that the value of the annihilation rate for the positronium ion
is nearly equal to that of the spin-averaged neutral positron-
ium (�Ps = 2.00 × 109 s–1). He also noted that the electron
density at the positron in Ps– is about the same as for the
neutral positronium suggesting a qualitative picture of one
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electron more tightly bound to the positron, and a loosely
bound second electron.

It was only in 1981 that this elusive system was finally
produced and detected experimentally by Mills [30], guiding
a beam of low-energy positrons against a thin carbon film.
This landmark result was followed two years later by the
measurement of its decay rate [31] (� = 2.09(9) ns–1) that
agreed with the theoretical prediction by Ho [9] and Bhatia
and Drachman [10].

In their 1983 paper, Bhatia and Drachman [10] observed
that the two nonlinear exponential parameters of the employed
wave functions differed by about a factor of two. This was
the basis for their intuition of “the basic structure of the Ps–

ground state, which consists mainly of the Ps atom plus a
loosely bound electron”. This picture was further substantiated
by the observation that the annihilation rate of Ps– was very
close to that of Ps, as already noticed by Ferrante [7]. They,
however, did not compute the interparticle distances or the
electronic and positronic densities to clarify the similarity.

These papers [9,10,30,31] immediately sparked a renewed
interest in the positronium ion, both experimentally and the-
oretically. Frolov [13] and Ho [19] did a highly accurate
calculations of the bound-state properties for this system, and
quickly many new theoretical studies followed exploring both
the ground state and possible resonances.

On the experimental side progress has been slower [32]
due to the low intensity of the Ps– beam. In 2006 Fleischer
et al. [33] measured the Ps– annihilation rate to greater accu-
racy. In 2008 a more efficient process to generate Ps– using
Cs-coated tungsten surfaces was discovered [34] opening a
new era of experimental observation on this peculiar ion,
allowing for example, the observation of the photodetachment
process [35,36]. The photodetachment of positronium ions
can provide a source for energy tunable Ps beams [37,38]. In
2011 Ceeh et al. [39] using a high-intensity neutron induced
positron source measured to high precision the Ps– decay
rate to be 2.0875(50) ns–1, in agreement with the most recent
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theoretical value by Puchalski et al. [40]. In 2016, Michishio
et al. [41] experimentally detected a shape resonance of the
positronium negative ion. For a perspective on possible future
experiments with positronium and its negative ion we refer the
readers to the recent reviews of Cassidy [42], Mills [43], and
Nagashima [32].

Over the years the various computational methods used
to study Ps– improved both accuracy and precision of the
calculations and now we know, to many decimal places, the
energy and many geometrical expectation values, such as an-
gles and various powers of interparticle distances. The current
best estimate of the ground state energy [29] is an impressive
–0.262 005 070 232 980 107 770 400 51. In all these years,
however, the similarity between Ps and Ps– has never been
fully clarified. Furthermore, even more surprisingly, to the
best of our knowledge there are no published studies of the
pair distribution functions, i.e., the probability that in Ps–

a pair of particles is at a given distance, and their graphs
have never been compared to the Ps distribution to clarify the
similarity between the Ps and Ps– internal structure.

This paper is organized as follows: Sec. II presents the
structure of the various wave function employed; Sec. III
shows an attempt to include a three-body term into the
wave function. Section IV presents various one and two-
dimensional (2D) probability distribution functions to show
that one electron in Ps– behaves almost like in Ps, while the
other is at larger distances. Finally, Sec. V shows that the
presence of the Ps substructure inside Ps– is closely related to
the problem of the critical stability of the system (Z+, e–, e–)
with varying Z charge.

II. WAVE FUNCTION CONSTRUCTION

There is no shortage, as we have seen, of extremely accu-
rate wave functions for Ps– so our aim is not to compete with
those expansions with thousands of terms. Instead, we try to
build an accurate but extremely compact trial wave function
with a clear physical meaning to get an insight on the internal
structure of the positronium ion.

The ground state wave function has total angular momen-
tum L = 0, so it can be described using the interparticle
distances: �(r12, r13, r23) where 1 and 2 are the electrons and
3 is the positron. In the ground state, the two electrons are in
a S = 0 state and the wave function must be symmetric with
respect to the exchange between them.

In the study of atomic and molecular systems the Hartree
Fock (HF) approximation is of central importance, not only
as a practical computational tool but also to establish well
defined concepts – like the correlation energy or the orbital
structure– that are very useful when one uses wave functions
that go beyond the mean field approximation. Ps– has three
particles of identical mass and the HF approximation fails
from the very beginning to give a realistic description of this
system since the positive charge is not much heavier than the
electrons like in atoms. The HF functional form corresponds
to � = f (r13) f (r23) with the neglect of the electron-electron
interaction and imposing the same electron-positron “orbital”
for the two pairs. This structure can successfully describe
the ground state of the helium atom but completely fails

TABLE I. Chronological list of calculations on the ground state
energy and structure of Ps–. The decimal digits in bold agree with the
most accurate calculation to date, shown in the last row.

Year and Reference Energy (Hartree)

Wheeler 1946 [1] –0.257036
Hylleraas 1947 [2] –0.25765
Kolos 1960 [5] –0.2619956
Frost 1964 [6] –0.2620011
Ferrante 1970 [7] –0.26070122
Poshusta 1983 [8] –0.261787
Ho 1983 [9] –0.262004895
Bathia 1983 [10] –0.2620050565
Frolov 1986 [11] –0.26200506975
Petelenz 1987 [12] –0.2620050694
Frolov 1987 [13] –0.26200507020
Patil 1988 [14] –0.26103
Ball 1988 [15] –0.2619(2)
Haftel 1989 [16] –0.26200486
Frolov 1989 [17] –0.2620050702322
Ball 1990 [18] –0.26200(6)
Ho 1990 [19] –0.262005070205
Frolov 1993 [20] –0.2620050702319
Ho 1993 [21] –0.262005070232855
Frolov 1994 [22] –0.2620050702326
Cox 1996 [23] –0.262005070231742
Frolov 1999 [24] –0.2620050702329757
Korobov 2000 [25] –0.262005070232980107
Drake 2002 [26] –0.262005070232980107627
Frolov 2005 [27] –0.26200507023298010776885
Frolov 2009 [28] –0.2620050702329801077703745
Frolov 2015 [29] –0.26200507023298010777040051

when applied to the hydrogen negative ion H–, and it is not
surprising that it also fails for Ps–.

In 1944 Chandrasekhar [44] in his study on the negative
hydrogen ion remarked that the relative success of the simple
wave function ψ = exp(–a r1–a r2) to qualitatively describe
the He atom has a simple physical interpretation. Each elec-
tron moves in a suitable screened Coulomb field generated
by the other and is described by a screened hydrogenlike
orbital. This approach, however, fails to describe the hydrogen
negative ion. Chandrasekhar argued that the case of H–, with
its barely bound second electron, is completely different, and
suggested to assign a different screening constant to each elec-
tron and wrote ψ = exp(–a r1–b r2) + exp(–a r2–b r1). The
same can be said about the positronium ion. If the two
electron-positron interactions are treated independently, we
can write the functional form

� = (1 + P̂12) f1(r13) f2(r23). (1)

The functions fi describe the attraction between the
positron and the electrons and P̂12 is the permutation operator.
We model each function with an exponential Padè functional

form f (r) = e
−r/2+b r2

1+c r and different b and c parameters. The
function f behaves as e– r

2 near zero, satisfying the cups
conditions, and as e

b
c r asymptotically where c is always non-

negative. Previous studies [45–50] showed that by using this
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TABLE II. Energy and binding energy (in Hartree) and percentage of the recovered binding energy with respect to the exact value for
various wave functions.

� Energy BE % BE

f (r13) f (r23) –0.2439(1) unbound
(1 + P̂12) f1(r13) f2(r23) –0.25652(1) 0.0065 54.3
(1 + P̂12) f1(r13)�(Ps23) –0.25642(1) 0.0064 53.5
(1 + P̂12)J (r12) f1(r13)�(Ps23) –0.25894(1) 0.0089 74.6
(1 + P̂12)g(r12) f1(r13)�(Ps23) –0.26133(1) 0.0113 94.4
(1 + P̂12)g(r12) f1(r13) f2(r23) –0.26135(1) 0.0114 94.6
(1 + P̂12)g(r12) f1(r13) f2(r23)g3(r12, r23) –0.26164(1) 0.0116 96.9
(1 + P̂12)

∑2
i aig(r12) f1(r13) f2(r23)g3(r12, r23) –0.26183(1) 0.0118 98.6

Exacta –0.262005 0.0120 100

aRef. [29]

kind of function it is possible to develop very compact but
accurate wave functions for few particle systems.

We used variational Monte Carlo (VMC) to estimate the
variational energy and the various distribution functions. We
first roughly optimized the parameters minimizing the mean
absolute deviation of the local energy [51], and then fine-tuned
them using an energy optimization procedure.

Table II shows that the functional form in Eq. (1), with
four variational parameters, can describe a bound Ps– ion and
recovers 54% of the exact binding energy.

Inspecting the two optimized f functions reveals that one
of them is almost superimposable to e–r/2, the exact wave
function for the ground state of Ps. The other function f has
a slower exponential decay describing a more loosely bound
electron. So, the intuitive and qualitative picture of Ps– being
composed by a Ps with an additional electron at a larger
distance comes out naturally by inspecting this compact wave
function. We wish to point out that all the extremely accurate
wave functions developed in the past (see Table I) are abso-
lutely necessary to compare calculations with experimental
data, but lack such a simple physical interpretation since their
structure goes beyond the simple pairs approximation we have
employed. As noted long time ago by Mulliken [52] just at the
dawn of the massive use of computers for electronic structure
calculations, “the more accurate the calculations became, the
more the concepts tended to vanish into thin air”.

We can directly write our compact wave function as � =
(1 + P̂12) f1(r13)�(Ps23) where we have explicitly inserted the
exact Ps wave function, at the expense of two variational
parameters, with a negligible decrease in the binding en-
ergy. To improve the variational energy without changing the
functional form, one strategy could be to use an exponential
Padè of higher degree. The improvement, however, would
be negligible. Instead the quality of the wave function can
be greatly improved including a correlation factor g(r12) to
describe the instantaneous repulsion between electrons: � =
(1 + P̂12)g(r12) f1(r13) f2(r23). In fact, almost all published cal-
culations on the Ps– ion expand the exact wave function in
building blocks of this form.

Such a wave function has a clear physical meaning since
each function describes the interaction between a different
pair of particles. We know that the correlation factor must
behave as e

r
2 close to the origin. In atomic and molecular

calculations, it is common to assume that the correlation factor

is an increasing function that reaches a constant value at
infinity. However, a recent analysis by Lesiuk et al. [53] of the
correlation factor for the helium atom showed that this is not
necessarily the case: asymptotically the correlation factor can
behave exponentially or even going to zero. Furthermore, Tew
and Klopper [54] empirically found that the optimum correla-
tion factor in their helium wave function is not monotonic and
reaches a maximum before decreasing.

In order to accommodate for all possible behaviors at
infinity, we described the functions g with the same func-

tional form used before: g(r) = e
r/2+b r2

1+c r . If b = 0 the function
is commonly called the Jastrow factor and reaches an
asymptotic value at infinity. For finite values of b, the cor-
relation factor can either go to zero or to infinity depending
on the sign of b. Using the exact Ps wave function for
the function f2(r23) and a Jastrow correlation factor (� =
(1 + P̂12)J (r12) f1(r13)�(Ps23)), the recovered binding energy
improves up to 75%. Releasing the b parameter in the corre-
lation factor gives a much better wave function that recovers
more than 94% of the binding energy (see Table II): an im-
pressive result for such a compact wave function with only
four variational parameters. On a side note, this is a strong
indication that a Jastrow correlation factor is not a good de-
scription of the electron-electron interaction in the Ps– ion.

If we do not constrain the function f2 to describe a pure
Ps and release its parameters the total (and binding) energy
improves very little: another sign that the Ps structure inside
the total wave function comes out naturally.

Figure 1 shows the three optimized two-body functions.
Note that the correlation factor increases up to about 7 bohr
and then decreases to zero. At present, it is not clear why
this form of correlation factor is superior to the commonly
employed Jastrow factor and further studies are needed to
investigate what is the best correlation factor in positronic
systems.

III. THREE-BODY CORRECTIONS

The wave function �2B = (1 + P̂12)g(r12) f1(r13) f2(r23) is
the most general wave function written as a symmetrized
product of two-body functions. We call E2B the lowest energy
that can be obtained for infinitely flexible g and f two-body
functions. The difference between the exact energy and the
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FIG. 1. Two-body functions for the optimized wave function
of Ps–: g (black), f1 (dashed black) and f2 (thick red). Units are
arbitrary.

limit two-body energy is a well-defined quantity and it is
entirely due to three-body terms missing in the wave function.
Using the functions g and f shown in the previous section,
we recovered an energy of –0.26135(1) hartree, corresponding
to 94.6% of the binding energy. In order to check how close
we are to E2B we employed a more sophisticated form for
the two-body functions, adding a cubic term in the numerator
of the exponent, and a quadratic term in the denominator of
the exponent. After extensive optimizations the best energy
we could get was –0.26143(1) hartree with a rather modest
improvement. This means we are likely very close to the theo-
retical energy limit for that wave function functional form, and
we estimate the three-body contribution to the exact energy
E3B ≈ 0.0006 hartree.

Formally we can decompose the exact wave function �0

into the product of two- and three-body contributions: �0 =
�2B�3B. Unfortunately, almost nothing is known about �3B.
It is likely that it must contains some logarithmic term in
the triple collision region, i.e., where the three particles are
very close [55–58] but at present its exact form is unknown.
Three-body contributions to the exact wave function, how-
ever, are not limited to the triple collision region. To partially
take into account three-body effects when one electron is at
larger distance from the positron than the other, Patil [14]
suggested the inclusion of the term g3(r12, r23) = exp(p r12 ·
r23/

√
r2

12 + r2
23 ) with an optimizable parameter p into the

wave function. We multiplied our best two-body wave func-
tion with this term and obtained

(1 + P̂12)g(r12) f1(r13) f2(r23)g3(r12, r23). (2)

After optimizing all parameters, we observed a small im-
provement in the total energy, recovering 96.95% of the
binding energy. Further research is needed to develop a better
compact three-body correlation factor. Finally, we employed
a linear combination of two such terms and after reoptimizing
all linear and nonlinear parameters we obtained an energy of
–0.26183(1) that recovers 98.6% of the binding energy.

IV. PAIR DISTRIBUTION FUNCTIONS

We have shown that, employing a symmetrized product
of two-body functions, the presence of Ps inside the Ps–

FIG. 2. Pair distributions functions: ρ+−(r) (thick black) and
ρ−−(r) (thin black) in Ps–. ρPs(r) (dashed red) in positronium. All
curves are normalized to 1.

wave function comes out naturally. Suggestive as it might
be, however, we must remember that the two-body functions
in the total wave function are not physical observables. To
support our findings, we must look at the various geometrical
observables. Of course, the average particle distances have
been the focus of many calculations since the study by Kolos
et al. [5]. The average electron-electron distance in Ps– is 8.55
bohr while the average electron-positron distance is 5.49 bohr
[29]. Since the average electron-positron distance in Ps is 3
bohr, it is clear that directly comparing average distances of
the two systems is not very useful: the simple comparison of
the average distances does not by itself reveal a picture of Ps–

as a positronium with a loosely bound second electron. It is
likely that this apparent discrepancy is the reason why in all
previous studies of Ps– this intuitive picture has never been
examined quantitatively going beyond the calculation of the
average distances.

If our purpose is to get an insight into the geometrical struc-
ture and to understand to what degree there is a Ps “inside”
Ps–, we must look at the pair distribution functions ρi j (r), i.e.,
the probability that a pair of particles i and j is at a given
distance r, defined as

ρi j (r) = ∫ δ(ri j − r)�2(R)dR, (3)

where R indicates the coordinate vector of the three particles.
Using our best variational wave function, we have com-

puted the probability distribution functions ρ−−(r) and ρ+–(r),
i.e., the probability to find a pair of particles at a specific
distance.

Figure 2 shows the ρ+−(r) and the ρ−−(r) pair distribu-
tions, along with the exact distribution of positronium ρPs(r).
All curves have been normalized to 1 for an easier compari-
son. The e–-e– distribution has a maximum around 6.5 bohr
but its tail extends to beyond 20 bohr. The e+ e– distribution
has a maximum around 2.4 bohr whereas the maximum of the
probability distribution in Ps is at exactly 2 bohr.

The curves in Fig. 2 support the intuitive picture of one
electron close to the positron, while the second electron is
at larger distances since ρ−−(r) has a maximum at a larger
distance and a more slowly decaying tail than ρ+–(r). The
probability distribution ρ+−(r), however, is quite different
from the distribution in Ps, and it is not directly comparable:
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FIG. 3. Decomposition of ρ+–(r) (thick black, normalized to 2)
into ρ in

+–(r) and ρout
+– (r) (thin black, normalized to 1) along with the

electron-positron distribution in Ps (dashed red).

since the two electrons are indistinguishable, the two electron-
positron distances are averaged out.

While the electrons are indistinguishable, and the spatial
wave function is symmetric with respect to the exchange of
the two, at any given instant we can pick the electron closer
to the positron and compute the probability distribution of
its distance from the positron, and we can do the same with
the more distant electron. We are effectively partitioning the
ρ+−(r) distribution, without violating the indistinguishability
principle, into two distributions with an immediate physical
and geometrical meaning, one for the inner electron and the
other for the outer electrons, with respect to the positron:
ρ+–(r) = ρ in

+–(r) + ρout
+– (r). Formally

ρ in
+−(r) =

∫
δ(min(r13, r23) − r)�2(R)dR (4)

and

ρout
+−(r) =

∫
δ(max(r13, r23) − r)�2(R)dR. (5)

We wish to point out that usually the analytical calcula-
tions to obtain such distributions can be quite difficult and
sometimes even impossible for some basis set expansions.
They have been recently obtained for the two-electron atoms
[59] with a basis of Laguerre functions in scaled perimetric
coordinates, and to our knowledge they have never been com-
puted for the positronium ion. These distributions instead are
completely trivial to compute within a Monte Carlo simula-
tion, since it only amounts to sorting the two electron-positron
distances and binning them separately in two vectors.

Figure 3 shows the partitioning of ρ+–(r) into ρ in
+–(r) and

ρout
+– (r) along with the electron-positron distribution in Ps.

Now the strong similarity between the Ps probability dis-
tribution and ρ in

+–(r) is clear and indeed we can say that there
is (almost) a positronium inside Ps–, with one electron that be-
haves almost as if it were in a Ps, and a second electron more
loosely bound, since the maximum of ρout

+– (r) is at about 5.5
bohr. It is remarkable that the inner electron behaves almost
as if the outer electron were not present, and that the effect
of electronic correlation is such that the outer electron tries to
stay as close as possible to the positron but without interfering
too much with the distribution of the inner electron.

FIG. 4. (r13, r23) probability distribution, in arbitrary units, as a
function of the two electron-positron distances in Ps−. Distances are
in bohr.

Figure 4 and 5 show, respectively, the 2D distribution for
the two electron-positron distances D(r13, r23) and its contour
plot.

Since the wave function is symmetric with respect to the
exchange of the two electrons, the 2D distribution is symmet-
ric along the line r13 = r23. The maximum of the D(r13, r23)
probability distribution is at (3.2,3.2), but the tendency of
one electron to stay at larger distances from the positron is
apparent from the peculiar shape of the distribution, with the
two ridges where one electron forms a Ps substructure, as we
have seen, and the other is more distant.

To elucidate how the second electron distributes itself
around the Ps substructure, we computed a second 2D proba-
bility distribution. Figure 6 shows the probability distribution
of the more distant electron on the xy plane defined by the
three particles. The x axes is along the Ps with the origin of
the coordinate at the center of the two particles.

FIG. 5. Contour plot of D(r13, r23) in Fig. 4. Distances are in bohr.
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FIG. 6. Contour plot of the distribution of the second electron
around Ps. The x axes is defined by the direction from e– to e+ in
Ps, the origin is in the middle. The xy plane is defined by the three
particles.

In the plane defined by the three particles, the distribution
of the loosely bound electron has a maximum for (x, y) =
(1.3, 4.1) (distances are in bohr), closer to the positron, on
the positive side of the x axes.

V. CRITICAL POSITIVE CHARGE TO BIND TWO
ELECTRONS

To better understand why in Ps– the outer electron is so
loosely bound that the system resembles Ps in some prop-
erties, let us consider the system of three charges with unit
masses (Z+, e–, e–). For Z = 1 we just have the positronium
ion. For Z → 0 this system dissociate into (Z+, e–) + e–.
Evidently there must exist a critical charge Zc such that the
three-particle system has exactly the same ground state energy
than the threshold energy −Z2

c /4. There is an extensive litera-
ture on the critical stability of three and four particle systems
with varying charges and masses. We refer the reader to the
article by Armour et al. [60] for a comprehensive review of
the field. The first to study this particular system was Re-
bane [61] who, from purely theoretical arguments, established
that 0.9070 < Zc < 0.9276. More recently Li and Shakeshaft
[62] using a Pekeris-type wave function gave the accurate
estimate Zc = 0.921802. We performed several VMC simula-
tions varying Zc, using the best functional form developed in
the previous section reoptimizing all variational parameters.
Subsequently, we performed diffusion Monte Carlo (DMC)
simulations to estimate the exact ground state energy obtain-
ing the bound 0.9218 < Zc < 0.9219, in optimal agreement
with Li and Shakeshaft. We could not go beyond four decimal
digits in the determination of Zc due to the statistical noise
inherent in Monte Carlo simulations.

FIG. 7. Decomposition of ρ+–(r) (thick black, normalized to 2)
into ρ in

+–(r) and ρout
+– (r) (thin black, normalized to 1) along with the

electron-positron distribution in the (Z+, e–) system (dashed red) for
Z = 0.921802.

Since for Z < Zc the system dissociates, it is a natural
question to ask what happens to the wave function exactly at
Z = Zc where the ground state energy is equal to the threshold
energy −Z2

c /4. This problem has never been studied before,
but there is an extensive literature on the closely related sys-
tem consisting of two electrons and a fixed nucleus of charge
Z. The critical charge Zc for the two-electron atomic systems,
after many years of controversies, has finally been established
by Estienne et al. [63] to be Zc = 0.911 028 224 077 255 73
and independently confirmed by Pilón and Turbiner [64]. Esti-
enne et al. [63] found that not only the wave function at the
critical charge is square integrable, as theoretically predicted,
but it also remains localized at a finite distance from the
nucleus.

King et al. [59] studied the electronic distributions of the
inner and outer electrons for the two-electron atoms at various
Z and at Zc. They found that as the nuclear charge decreases,
the inner electron distribution becomes more hydrogeniclike,
to the extent that there is very little discernible difference
between the distribution for the hydrogenic system and that
calculated as the inner electron distribution for Z = Zc. It is
still an open question whether the inner electron distribution at
the critical charge is exactly that of the hydrogenlike system,
or it is slightly different. The numerical study of this problem
using the variational principle requires extremely accurate
trial wave functions: if the deviation of the approximated wave
function from the exact one is of order ε, the variational
energy has a quadratic error ε2, much smaller, and so the
variational principle is not very sensitive to slight variations
in the wave functions.

We have reoptimized the parameters of our best wave func-
tions to simulate our three-particle system for Z = 0.921802,
the value of the critical charge estimated by Li and Shakeshaft
[62]. To reduce the error still present in the optimized wave
function we performed a DMC simulation, to obtain a better
approximation to the exact distributions, and finally used the
second order estimator to obtain the desired distributions.
Figure 7 shows the partitioning of ρ+–(r) into ρ in

+–(r) and
ρout

+– (r) along with the electron-positron distribution of Ps for
the system at the critical charge.

We observe the same phenomenon described by King et al.
[59]: the closer Z is to the critical charge, the closer the inner
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electron distribution to that of the (Z+, e–) system. Our wave
function is not accurate enough to establish if, at the critical
charge, the inner electron distribution is exactly equal to the
(Z+, e–) system or it is slightly different. Nevertheless, it is
now clear why the inner electron in Ps– behaves almost like
in Ps: the critical charge Zc = 0.921802 is very close to the
Z = 1 charge in the physical system. If the critical charge had
been much smaller, Ps– could not be described as a Ps with a
loosely bound electron.

VI. SUMMARY AND CONCLUSIONS

We clarified the empirical observation that some properties
of Ps– are nearly equal to that of the spin-averaged neutral Ps.
We showed that writing the Ps– wave function as a product
of pair functions, the description of this ion as a Ps with a
loose electron orbiting around comes out naturally. We then

partitioned the electron-positron distribution ρ+−(r) into the
sum of two terms: ρ in

+–(r) + ρout
+– (r). We showed that the distri-

bution of the electron closest to the positron, ρ in
+–(r), is almost

superimposable to the electron-positron distribution in Ps, and
this is the reason why we could say that there is “almost” a Ps
inside Ps–.

We finally related this phenomenon to the determination of
the critical constant Zc of the system of three moving charges
with unit masses (Z+, e–, e–): Ps–(e+, e–, e–) is very close
to the critical system (Z+

c , e–, e–) where one electron is de-
taching from (Z+

c , e–).
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