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It has recently been shown how to replace spin-wave functions with purely spatial wave functions in the
formulation of spin-density functional theory (SDFT), without any change to the resultant density functional
expressions [F. Zahariev and M. Levy, Phys. Rev. A 100, 062507 (2019)]. The purely spatial wave functions
that are obtained are much more convenient to use and thus allow for a relatively easy decomposition and
manipulation of terms in the constrained-search formulation of SDFT. All the essential ingredients of SDFT,
including the kinetic, exchange, and correlation contributions, are explicitly defined in terms of the universal
functional expressed in this spin-free manner. Constrained-search derivations of the Oliver-Perdew relations for
the kinetic and exchange terms are presented. The up-down spin component of the correlation term is found
to contain the up-down spin component of the Hartree term. A spin-dependent generalization of the adiabatic
connection is put forth and a connection with spin-dependent coordinate scaling is established for the correlation
energy.
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I. INTRODUCTION

An effective way of approximating the exchange-
correlation density functional [1–7] is to construct an
approximate functional that satisfies as many properties of
the exact exchange-correlation density functional as possible
[8,9]. With this in mind, we further expand on the spin-free
approach of Ref. [10].

While the conventional approach to spin-density functional
theory (SDFT) uses spin-wave functions [11,12], in Ref. [10]
we constructed the SDFT universal functional directly in
terms of one of the spatial components of a given spin function
and proved the equivalency of the conventional and spin-free
constructions. This definition dramatically simplifies the for-
mal construction of the SDFT universal functional and allows
for simpler explicit definitions of the subsequent SDFT ex-
pressions that unfold from the universal functional.

The explicit definitions of the essential ingredients of
SDFT that are presented here in terms of the spin-free SDFT
constrained-search approach are generalizations of the respec-
tive definitions from the standard spinless DFT.

The kinetic and electron-electron repulsion operators can
be naturally split into spin related components. Consequently,
the kinetic and electron-electron repulsion terms of the uni-
versal functional reflect the respective operator split. As
a final result, the exchange consists of up-up and down-
down spin components, while the correlation consists of
up-up, up-down, and down-down spin components, and we
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observe that the up-down correlation component contains the
up-down spin component of the Hartree term in its defini-
tion. This observation suggests the possibility of redefining
the SDFT correlation energy by subtracting the up-down
Hartree component from the definition of the correlation
energy.

Constrained-search derivations of the Oliver-Perdew re-
lations for the kinetic and exchange terms are presented.
Spin-dependent coordinate scaling equalities for the kinetic
and exchange terms are found herein on the basis of the
Oliver-Perdew relations.

A spin-dependent generalization of the adiabatic connec-
tion [13–15], in which there are three different constants in
front of the up-up, up-down, and down-down spin components
of the electron-electron repulsion term, is also proposed and
a connection with spin-dependent coordinate scaling is estab-
lished.

The presented approach is a convenient foundation for de-
riving different scaling and adiabatic-connection constraints
that are important for functional approximations.

II. SPIN-FREE IDENTIFICATION OF THE SDFT
UNIVERSAL FUNCTIONAL

An N-electron system will be considered. The
Hamiltonian is Ĥ = T̂ + V̂ , where the kinetic part
is T̂ = − 1

2

∑
1�i�N ∇2

i and the potential part is V̂ =
V̂ee + ∑

1�i�M v↑(ri ) + ∑
M+1�i�N v↓(ri ). The first term

in V̂ is the electron-electron repulsion V̂ee = ∑
1�i< j�N

1
|ri−r j | ,

while v↑(r) and v↓(r) are external potentials that are acting
on the up-spin and down-spin variables, respectively. In the
absence of external fields, the external potentials v↑(r) and
v↓(r) typically signify the electron-nuclear attraction potential
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ven(r), i.e. v↑(r) = v↓(r) = ven(r). When a homogeneous
magnetic field �B along the spin direction is present, however,
v↑(r) and v↓(r) split according to v↑(r) = ven(r) + μB| �B|
and v↓(r) = ven(r) − μB| �B|, where μB is the magneton of
Bohr.

As done in [16], following [17,18], purely spatial wave
functions can be used in the variational principle. That is, the
ground-state energy EGS is

EGS = min
�

〈�|T̂ + V̂ee +
∑

1�i�M

v↑(ri ) +
∑

M+1�i�N

v↓(ri )|�〉,

(1)

where, in expression (1), the purely spatial normalized wave
functions

�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ) (2)

are antisymmetric in the first M and, separately, in the last
(N–M) variables.

As in the original constrained-search formulation [3,4], the
wave function minimization in Eq. (1), min

�
, can be split into

two steps, min
(ρ↑,ρ↓ )

min
�→(ρ↑,ρ↓ )

. That is, the whole space of wave

functions is split into classes of wave functions. All the wave
functions in a given class yield the same up- and down-spin
densities,

ρ↑(r) = M
∫

|�(r, r2 . . . , rM ; rM+1, rM+2, . . . , rN )|2dr2, . . . , drMdrM+1, . . . , drN ,

ρ↓(r) = (N − M )
∫

|�(r1, r2, . . . , rM ; r, rM+2 . . . , rN )|2dr1, . . . , drMdrM+2, . . . , drN .

(3)

The first minimization step aims to find the minima in each wave function class, while the second minimization step compares
these local class minima and finds the global minimum among them. Hence, min

�
is indeed equivalent to min

(ρ↑,ρ↓ )
min

�→(ρ↑,ρ↓ )
and

Eq. (1) can be expressed as

EGS = min
(ρ↑,ρ↓ )

min
�→(ρ↑,ρ↓ )

〈�|T̂ + V̂ee +
∑

1�i�M

v↑(ri ) +
∑

M+1�i�N

v↓(ri ) +
∑

1�i�N

v(ri )|�〉

= min
(ρ↑,ρ↓ )

{
min

�→(ρ↑,ρ↓ )
〈�|T̂ + V̂ee|�〉 +

∫
ρ↑(r)v↑(r)dr +

∫
ρ↓(r)v↓(r)dr

}

= min
(ρ↑,ρ↓ )

{
F [ρ↑, ρ↓] +

∫
ρ↑(r)v↑(r)dr +

∫
ρ↓(r)v↓(r)dr

}

= F [ρgs↑, ρgs↓] +
∫

ρgs↑(r)v↑(r)dr +
∫

ρgs↓(r)v↓(r)dr, (4)

where the universal functional in minimizing expression (4) is identified as

F [ρ↑, ρ↓] = min
�→(ρ↑,ρ↓ )

〈�|T̂ + V̂ee|�〉 = 〈
�min

(ρ↑,ρ↓ )

∣∣T̂ + V̂ee

∣∣�min
(ρ↑,ρ↓ )

〉
, (5)

and ρgs↑(r) and ρgs↓(r) are the ground-state up- and down-spin
densities, respectively. The total density is

ρ(r) = ρ↑(r) + ρ↓(r). (6)

In the original density-functional theory [1–7], the ground-
state energy EGS and corresponding total density ρgs(r), for
the attractive potential v(r), are given by

EGS = min
ρ

{
F [ρ] +

∫
ven(r)ρ(r)dr

}

= F [ρgs] +
∫

ven(r)ρgs(r)dr, (7)

where the universal functional in its constrained-search form
[3,4] is

F [ρ] = min
�→ρ

{〈�|T̂ + V̂ee|�〉}. (8)

The connection between the universal functionals F [ρ] and
F [ρ↑, ρ↓] [10] is

F [ρ] = min
ρ↑+ρ↓=ρ

F [ρ↑, ρ↓]. (9)

In the case of an external potential ven(r) and an electronic
open shell, when the number of up and down electrons differ,
the up and down densities ρ↑(r) and ρ↓(r) differ as well.
According to the generalized Hohenberg-Kohn theorem [1,4],
all the properties of the electronic systems, including the up-
and down-spin ground-state densities ρgs↑(r) and ρgs↓(r) are
determined by the total ground-state density ρgs(r).

If one is given the total ground-state density ρgs(r), which
is then inserted as a variable in the universal functional F [ρ],
the constrained minimization of Eq. (9) finds the pair of up-
and down-spin ground-state densities ρgs↑(r) and ρgs↓(r),

F [ρgs] = min
ρ↑+ρ↓=ρgs

F [ρ↑, ρ↓] = F [ρgs↑, ρgs↓]. (10)
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Observe that Eq. (10) constructs, in the above manner,
the Hohenberg-Kohn correspondences ρgs(r) → ρgs↑(r) and
ρgs(r) → ρgs↓(r).

III. NONINTERACTING LIMIT OF THE SDFT UNIVERSAL
FUNCTIONAL

The definition of the universal functional from Eq. (1) can
be generalized, by including the adiabatic-connection cou-
pling constant λ in front of the electron-electron repulsion
term V̂ee [13–15], to obtain

Fλ[ρ↑, ρ↓] = min
�→(ρ↑,ρ↓ )

〈�|T̂ + λV̂ee|�〉

= 〈
�min,λ

(ρ↑,ρ↓ )

∣∣T̂ + λV̂ee

∣∣�min,λ
(ρ↑,ρ↓ )

〉
. (11)

The noninteracting limit of the universal functional (i.e.,
λ = 0) is denoted as

Ts[ρ↑, ρ↓] = Fλ=0[ρ↑, ρ↓] = 〈
�min,λ=0

(ρ↑,ρ↓ )

∣∣T̂ ∣∣�min,λ=0
(ρ↑,ρ↓ )

〉
. (12)

The kinetic energy operator can be split into up- and down-
spin components:

T̂ = −1

2

N∑
i=1

∇2
ri

= T̂↑ + T̂↓, (13)

where

T̂↑ = −1

2

M∑
i=1

∇2
ri
, T̂↓ = −1

2

N∑
i=M+1

∇2
ri
, (14)

and, as a result, the minimization in Eq. (12) can be similarly
split:

Ts[ρ↑, ρ↓] = min
�→(ρ↑,ρ↓ )

〈�|T̂ |�〉 = 〈
�min,λ=0

(ρ↑,ρ↓ )

∣∣T̂ ∣∣�min,λ=0
(ρ↑,ρ↓ )

〉

= min
�→(ρ↑,ρ↓ )

{〈�|T̂↑|�〉 + 〈�|T̂↓|�〉}. (15)

After a partial integration on the right-hand side of Eq.
(15) of the N↓ = (N−M ) variables in 〈�|T̂↑|�〉, correspond-
ing to the down-spin electrons, and the N↑ = M variables in
〈�|T̂↓|�〉, corresponding to the up-spin electrons, it follows
that

Ts[ρ↑, ρ↓] = Ts,↑[ρ↑] + Ts,↓[ρ↓], (16)

where

Ts,↑[ρ↑] = min
�→ρ↑

〈�|T̂↑|�〉 = 〈
�min

ρ↑

∣∣T̂↑
∣∣�min

ρ↑

〉
, (17a)

Ts,↓[ρ↓] = min
�→ρ↓

〈�|T̂↓|�〉 = 〈
�min

ρ↓

∣∣T̂↓
∣∣�min

ρ↓

〉
. (17b)

The wave functions in Eq. (17a) and Eq. (17b) are of the types
�(r1, r2, . . . , rM ) and �(rM+1, rM+2, . . . , rN ), respectively.

In the following the shorthand notation �(ρ↑,ρ↓ ) =
�min,λ=0

(ρ↑,ρ↓ ) is used.
If the densities ρ↑(r) and ρ↓(r) are pure-state noninteract-

ing v-representable with respect to T̂↑ and T̂↓, respectively,
�min

ρ↑ and �min
ρ↓ are single determinants (denote them as �ρ↑

and �ρ↓ , respectively) and the minimizing noninteracting
wave function �min,λ=0

(ρ↑,ρ↓ ) is a product of these two determinants,

�(ρ↑,ρ↓ ) = �ρ↑�ρ↓ . (18)

A density is termed “pure-state noninteracting v-
representable,” if it arises from a ground eigenstate of
the noninteracting electronic Hamiltonian T̂ + ∑

i v(ri ) with
some external potential v(r) [5].

In the most general case, the pure-state constrained-search
definitions in Eqs. (5), (8), (11), (12), (15), and (17) have
to be generalized to ensemble constrained-search definitions,
where Eq. (18) is replaced by a product of two minimizing
single-determinant ensembles [see Eqs. (A13)–(A15) in the
Appendix for details).

In a similar vein, the forthcoming derivations for the ex-
change and correlation energy also use Eq. (18). Nevertheless,
the final results are valid in the most general case. The
general proofs use the ensemble approach of the Appendix.
Equation (18) in all cases is used for simplicity of presenta-
tion.

The analog of Eq. (9) for the noninteracting case, on the
basis of Eqs. (11), (12), and (16), is

Ts[ρ] = min
ρ↑+ρ↓=ρ

Ts[ρ↑, ρ↓] = min
ρ↑+ρ↓=ρ

{Ts,↑[ρ↑] + Ts,↓[ρ↓]}.
(19)

IV. KINETIC AND ELECTRON-ELECTRON REPULSION
COMPONENTS IN SDFT

The universal functional can be split into its kinetic and
electron-electron repulsion components:

Fλ=1[ρ↑, ρ↓] = T [ρ↑, ρ↓] + Vee[ρ↑, ρ↓], (20)

where

T [ρ↑, ρ↓] = 〈
�min,λ=1

(ρ↑,ρ↓ )

∣∣T̂ ∣∣�min,λ=1
(ρ↑,ρ↓ )

〉
, (21a)

Vee[ρ↑, ρ↓] = 〈
�min,λ=1

(ρ↑,ρ↓ )

∣∣V̂ee

∣∣�min,λ=1
(ρ↑,ρ↓ )

〉
. (21b)

Based on the kinetic operator split in expressions (13) and
(14), the kinetic part of the universal functional is split into
up- and down-spin components:

T [ρ↑, ρ↓] = 〈
�min,λ=1

(ρ↑,ρ↓ )

∣∣ − 1

2

M∑
i=1

∇2
ri

∣∣�min,λ=1
(ρ↑,ρ↓ )

〉

+ 〈
�min,λ=1

(ρ↑,ρ↓ )

∣∣ − 1

2

N∑
i=M+1

∇2
ri

∣∣�min,λ=1
(ρ↑,ρ↓ )

〉

= T↑[ρ↑, ρ↓] + T↓[ρ↑, ρ↓]. (22)

The electron-electron repulsion operator can be respec-
tively split into up-up, up-down, and down-down spin
components:

V̂ee =
N∑
j>i

N−1∑
i=1

1

|ri − r j | = V̂ee,↑↑ + V̂ee,↑↓ + V̂ee,↓↓, (23)
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where

V̂ee,↑↑ =
M−1∑
i=1

M∑
j>i

1

|ri − r j | , V̂ee,↑↓ =
M∑

i=1

N∑
j=M+1

1

|ri − r j | ,

V̂ee,↓↓ =
N−1∑

i=M+1

N∑
j>i

1

|ri − r j | . (24)

The electron-electron repulsion part of the universal func-
tional can be correspondingly split into up-up, up-down, and
down-down spin components:

Vee[ρ↑, ρ↓] = 〈
�min,λ=1

(ρ↑,ρ↓ )

∣∣Vee,↑↑+Vee,↑↓ + Vee,↓↓
∣∣�min,λ=1

(ρ↑,ρ↓ )

〉
= Vee,↑↑[ρ↑, ρ↓]+Vee,↑↓[ρ↑, ρ↓] + Vee,↓↓[ρ↑, ρ↓].

(25)

V. HARTREE, EXCHANGE, AND CORRELATION
COMPONENTS OF THE UNIVERSAL

FUNCTIONAL IN SDFT

The exchange term is defined as

Ex[ρ↑, ρ↓] = 〈�(ρ↑,ρ↓ )|V̂ee|�(ρ↑,ρ↓ )〉 − J[ρ↑+ρ↓]

= (〈�ρ↑ |V̂ee,↑↑|�ρ↑〉 − J[ρ↑]) + (〈�ρ↓ |V̂ee,↓↓|�ρ↓〉 − J[ρ↓])

+
(

〈�ρ↑�ρ↓ |V̂ee,↑↓|�ρ↑�ρ↓〉−
∫∫

ρ↑(r1)ρ↓(r2)

|r1 − r2| dr1dr2

)

= (〈�ρ↑ |V̂ee,↑↑|�ρ↑〉 − J[ρ↑]) + (〈�ρ↓ |V̂ee,↓↓|�ρ↓〉 − J[ρ↓])

= Ex,↑↑[ρ↑] + Ex,↓↓[ρ↓], (26)

where the third term in the second equality,
〈�ρ↑�ρ↓ |V̂ee,↑↓|�ρ↑�ρ↓〉−

∫∫ ρ↑(r1 )ρ↓(r2 )
|r1−r2| dr1dr2, vanishes

and the definition of the Hartree term

J[ρ] = 1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2| dr1dr2 (27)

is used in the third equality.
As a result, the exchange term is split into up-up

and down-down spin components on the right-hand side
of Eq. (26).

The correlation term is defined as

Ec[ρ↑, ρ↓] = 〈
�min

(ρ↑,ρ↓ )

∣∣T̂ + V̂ee

∣∣�min
(ρ↑,ρ↓ )

〉

− 〈
�min

(ρ↑,ρ↓ )

∣∣T̂ + V̂ee

∣∣∣�min
(ρ↑ ,ρ↓ )

〉
, (28)

or equivalently as

Ec[ρ↑, ρ↓] = Exc[ρ↑, ρ↓] − Ex[ρ↑, ρ↓], (29)

where the exchange-correlation is defined as

Exc[ρ↑, ρ↓] = T [ρ↑, ρ↓] + Vee[ρ↑, ρ↓] − Ts[ρ↑, ρ↓]

− J[ρ↑ + ρ↓]

= T [ρ↑, ρ↓] + Vee[ρ↑, ρ↓] − Ts[ρ↑, ρ↓] − J[ρ↑]

−J[ρ↓] −
∫ ∫

ρ↑(r1)ρ↓(r2)

|r1 − r2| dr1dr2 (30)

Equation (28) can be transformed to

Ec[ρ↑, ρ↓] = (T↑[ρ↑, ρ↓] − Ts,↑[ρ↑])

+ (T↓[ρ↑, ρ↓] − Ts,↓[ρ↑])

+ (Vee,↑↑[ρ↑, ρ↓] − 〈�ρ↑ |V̂ee,↑↑|�ρ↑〉)

+
(

Vee,↑↓[ρ↑, ρ↓] −
∫∫

ρ↑(r1)ρ↓(r2)

|r1 − r2| dr1dr2

)

+ (Vee,↓↓[ρ↑, ρ↓] − 〈�ρ↓ |V̂ee,↓↓|�ρ↓〉), (31)

with a natural split of the correlation energy into up- and
down-spin components for the kinetic part as well as up-up,
up-down, and down-down spin components for the repulsion
part:

Ec[ρ↑, ρ↓] = Tc,↑[ρ↑, ρ↓] + Tc,↓[ρ↑, ρ↓] + Vee,c,↑↑[ρ↑, ρ↓]

+ Vee,c,↑↓[ρ↑, ρ↓] + Vee,c,↓↓[ρ↑, ρ↓], (32)

where

Tc,↑[ρ↑, ρ↓] = T↑[ρ↑, ρ↓] − Ts,↑[ρ↑]

Tc,↓[ρ↑, ρ↓] = T↓[ρ↑, ρ↓] − Ts,↓[ρ↓]

Vee,c,↑↑[ρ↑, ρ↓] = Vee,↑↑[ρ↑, ρ↓] − 〈�ρ↑ |V̂ee,↑↑|�ρ↑〉

Vee,c,↑↓[ρ↑, ρ↓] = Vee,↑↓[ρ↑, ρ↓] −
∫∫

ρ↑(r1)ρ↓(r2)

|r1 − r2| dr1dr2

Vee,c,↓↓[ρ↑, ρ↓] = Vee,↓↓[ρ↑, ρ↓] − 〈�ρ↓ |V̂ee,↓↓|�ρ↓〉. (33)

Approximating Vee,c,↑↓[ρ↑, ρ↓] from Eq. (33) is ef-
fectively equivalent to approximating Ṽee,c,↑↓[ρ↑, ρ↓] =
Vee,↑↓[ρ↑, ρ↓], as the two differ by the explicitly known
integral

∫∫ ρ↑(r1 )ρ↓(r2 )
|r1−r2| dr1dr2. In the latter choice of approx-

imation, one is using the following form of the exchange-
correlation energy,

Ẽxc[ρ↑, ρ↓] = T [ρ↑, ρ↓] + Vee[ρ↑, ρ↓] − Ts[ρ↑, ρ↓]

− J[ρ↑] − J[ρ↓], (34)

instead of the form given by Eq. (30).

VI. COORDINATE SCALING OF THE WAVE FUNCTION,
DENSITIES, AND OPERATORS

In Ref. [10], we introduced the spin-dependent coordinate
scaling of the wave function and densities, and a basic in-
equality was presented,

F [ρλ↑
↑ , ρ

λ↓
↓ ] �

〈
λ↑

3M
2 λ↓

3(N−M )
2 �min

(ρ↑,ρ↓ )(λ↑r1, λ↑r2, . . . , λ↑rM ; λ↓rM+1, λ↓rM+2, . . . , λ↓rN )
∣∣T̂

+ V̂ee

∣∣λ↑
3M
2 λ↓

3(N−M )
2 �min

(ρ↑,ρ↓ )(λ↑r1, λ↑r2, . . . , λ↑rM ; λ↓rM+1, λ↓rM+2, . . . , λ↓rN )
〉
, (35)
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where the up- and down-spin variables in the wave function
�min

(ρ↑,ρ↓ )(λ↑r1, λ↑r2, . . . , λ↑rM ; λ↓rM+1, λ↓rM+2, . . . , λ↓rN )
were scaled by λ↑ and λ↓, respectively. The prefactor

λ↑
3M
2 λ↓

3(N−M )
2 is to keep the normalization of the coordinate-

scaled wave function fixed. The coordinate-scaled densities
in Eq. (35) are

ρ
λ↑
↑ (r) = ρ

λ↑
↑ (x, y, z) = λ↑3ρ↑(λ↑x, λ↑y, λ↑z),

ρ
λ↓
↓ (r) = ρ

λ↓
↓ (x, y, z) = λ↓3ρ↓(λ↓x, λ↓y, λ↓z).

(36)

At λ↑ = λ↓ = 1, the inequality in Eq. (35) becomes the
equality in Eq. (5).

The Oliver-Perdew relations of the kinetic and exchange
parts [19] follow from Eqs. (16)–(18), and Eqs. (26) and (27),

Ts[ρ↑, ρ↓] = 1
2 {Ts[ρ↑, ρ↑] + Ts[ρ↓, ρ↓]}

= 1
2 {Ts,↑[2ρ↑] + Ts,↓[2ρ↓]}, (37)

and

Ex[ρ↑, ρ↓] = 1
2 {Ex[ρ↑, ρ↑] + Ex[ρ↓, ρ↓]}

= 1
2 {Ex,↑↑[2ρ↑] + Ex,↓↓[2ρ↓]}. (38)

Magyar et al. [20] used the Oliver-Perdew relation for the
exchange in Eq. (38) to obtain the following spin-dependent
coordinate scaling equation:

Ex[ρλ↑
↑ , ρ↓] = 1

2 {λ↑Ex[ρ↑, ρ↑] + Ex[ρ↓, ρ↓]}. (39)

Simple spin-dependent coordinate scaling generalizations
of Eq. (39) based on the Oliver-Perdew relations in Eqs. (37)
and (38) are

Ts[ρ
λ↑
↑ , ρ

λ↓
↓ ] = λ2

↑Ts,↑[ρλ↑
↑ ] + λ2

↓Ts,↓[ρλ↓
↓ ], (40)

and

Ex[ρλ↑
↑ , ρ

λ↓
↓ ] = λ↑Ex,↑↑[ρλ↑

↑ ] + λ↓Ex,↓↓[ρλ↓
↓ ]. (41)

Additionally, one can modify the basic operators of the
Hamiltonian by spin-dependent coordinate scaling.

The most general coordinate scaling of the kinetic operator
(together with a new scaling notation) is

T̂ (λ↑,λ↓ ) = T̂ λ↑
↑ + T̂ λ↓

↓ , (42)

where

T̂ λ↑
↑ = −1

2

M∑
i=1

∇2
λ↑ri

, T̂ λ↓
↓ = −1

2

N∑
i=M+1

∇2
λ↓ri

. (43)

The most general coordinate scaling of the three spin com-
ponents of the electron-electron repulsion operator (together
with a new scaling notation) is

V̂
(λ↑,λ↓ )

ee = V̂
(λ↑,λ↑ )

ee,↑↑ + V̂
(λ↑,λ↓ )

ee,↑↓ + V̂
(λ↓,λ↓ )

ee,↓↓ , (44)

where

V̂
(λ↑,λ↑ )

ee,↑↑ =
M∑
j>i

M−1∑
i=1

1

|λ↑ri − λ↑r j | ,

V̂
(λ↑,λ↓ )

ee,↑↓ =
M∑
j>i

M−1∑
i=1

1

|λ↑ri − λ↓r j | ,

V̂
(λ↓,λ↓ )

ee,↓↓ =
M∑
j>i

M−1∑
i=1

1

|λ↓ri − λ↓r j | ,

(45)

for nonzero values of λ↑ and λ↓.
Define �

min,(λ↑,λ↓ )
(ρ↑,ρ↓ ) as the wave function, which yields

(ρ↑, ρ↓) and minimizes 〈T̂ (λ↑,λ)↓ + V̂ (λ↑,λ↓ )
ee 〉, while λ↑ and

λ↓ are held fixed. With the above convenient notation, one
can derive a generalization of the basic coordinate-scaling
equality from Ref. [10],

F [ρλ↑
↑ , ρ

λ↓
↓ ] = 〈

�
min,( 1

λ↑ , 1
λ↓ )

(ρ↑,ρ↓ )

∣∣T̂ ( 1
λ↑ , 1

λ↓ ) + V̂
( 1

λ↑ , 1
λ↓ )

ee

∣∣�min,( 1
λ↑ , 1

λ↓ )

(ρ↑,ρ↓ )

〉
, (46)

where �
min,( 1

λ↑ , 1
λ↓ )

(ρ↑,ρ↓ ) is the wave function, which yields (ρ↑, ρ↓) and minimizes 〈T̂ ( 1
λ↑ , 1

λ↓ ) + V̂
( 1
λ↑ , 1

λ↓ )

ee 〉, while λ↑ and λ↓ are held
fixed.

VII. GENERALIZED ADIABATIC CONNECTION

The universal functional can also be generalized to

F(γ1,γ2,γ3 )[ρ↑, ρ↓] = min
�→(ρ↑,ρ↓ )

〈�|T̂ + γ1V̂ee,↑↑ + γ2V̂ee,↑↓ + γ3V̂ee,↓↓|�〉

= 〈
�min

(γ1,γ2,γ3 ),(ρ↑,ρ↓ )

∣∣T̂ + γ1V̂ee,↑↑ + γ2V̂ee,↑↓ + γ3V̂ee,↓↓
∣∣�min

(γ1,γ2,γ3 ),(ρ↑,ρ↓ )

〉
, (47)

where γ1, γ2, and γ3 are three adiabatic-connection parameters, instead of just one as in Eq. (11).
The following equality establishes a link between the spin-dependent coordinate scaling and the generalized adiabatic

connection:〈
λ↑

3M
2 λ↓

3(N−M )
2 �(λ↑r1, λ↑r2, . . . , λ↑rM ; λ↓rM+1, λ↓rM+2, . . . , λ↓rN )

∣∣V̂ee,↑↑ + V̂ee,↑↓ + V̂ee,↓↓
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× ∣∣λ↑
3M
2 λ↓

3(N−M )
2 �(λ↑r1, λ↑r2, . . . , λ↑rM ; λ↓rM+1, λ↓rM+2, . . . , λ↓rN )

〉

= 〈�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )|λ↑V̂ee,↑↑ + V̂
( 1

λ↑ , 1
λ↓ )

ee,↑↓ + λ↓V̂ee,↓↓|�(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )〉. (48)

The scaling parameters λ↑ and λ↓ from the left-hand side
of Eq. (48) effectively become the adiabatic-connection pa-
rameters γ1 and γ3 on the right-hand side of Eq. (48).

VIII. POSSIBLE EXTENSIONS

In the framework of the current density functional theory
(CDFT) [21], where the universal functional is F [ρ, �j], with
ρ(r) and �j(r) being the total density and current density, the
traditional non-spin-dependent coordinate scaling has already
been applied [22]. The spin-dependent coordinate scaling ap-
proach presented in this article can be similarly extended and
used in the framework of the spin-dependent current density
functional theory (SCDFT) [23,24], in which the universal
functional F [ρ↑, �j↑, ρ↓, �j↓] depends on the up- and down-
spin pairs of densities ρ↑(r), ρ↓(r) and current densities �j↑(r),
�j↓(r), respectively.

The traditional coordinate scaling has already been ap-
plied to both the time-dependent density functional theory
(TDDFT) [25] and time-dependent current density functional
theory (TDCDFT) [26]. The spin-dependent coordinate scal-
ing can also be extended to the spin-dependent versions of
TDDFT and TDCDFT.

The application of the spin-dependent coordinate scaling
to the spin-dependent version of Mermin’s thermal DFT and
its generalizations [27] is another possible extension.

IX. CONCLUSIONS

We have partitioned the universal spin-density functional
into its spin-dependent components, accordingly generalized
the adiabatic connection, and related the generalized adiabatic
connection to spin-dependent coordinate scaling.

The kinetic and electron-electron repulsion terms of the
universal functional, and as a result the exchange and correla-
tion terms, are naturally split into spin components. Explicit

forms of the spin-dependent components of the correlation
energy are presented. Constrained-search derivations of the
Oliver-Perdew relations for the kinetic and exchange terms
are presented. The up-down spin component of the correlation
term is found to contain the up-down spin component of the
Hartree term. The part of the correlation term that excludes
the up-down component of the Hartree term is proposed as the
main target of approximations. It is assumed that the explicit
partitioning of the correlation term into spin-dependent com-
ponents and the possibility of omitting the explicit up-down
Hartree component will shed a light on the approximation
process. A spin-dependent generalization of the adiabatic con-
nection is put forth and a link with spin-dependent coordinate
scaling is established for the correlation energy.

The main advantage of the spin-free approach to SDFT is
the ease of conceiving and proving new relations. Although all
the derivation presented in the article could have been estab-
lished and proven within the conventional approach, some of
the explicit expressions presented in the article, regardless of
their simplicity, are nevertheless useful but would have been
difficult to guess or derive without the spin-free approach.

The approach described in this work provides a conve-
nient foundation for deriving further scaling and adiabatic-
connection constraints that are important for density-
functional approximations.
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APPENDIX

The ensemble density matrix D̂ is

D̂(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ) =
∞∑

i=1

pi�i(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN )�∗
i (r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ),

(A1)
where all the wave functions �i(r1, r2, . . . , rM ; rM+1, rM+2, . . . , rN ) are normalized and, although some of the coefficients pi � 0
may be zero, it is assumed that

∞∑
i=1

pi = 1 (A2)
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for total normalization purposes, where the normalization is

Tr[D̂] =
∞∑

i=1

pi

∫
�i(r1, . . . , rM ; rM+1, . . . , rN )�∗

i (r1, . . . , rM ; rM+1, . . . , rN )dr1 · · · drMdrM+1 · · · drN = 1. (A3)

The universal spin-density functional by the ensemble constrained search is

Fλ[ρ↑, ρ↓] = min
D̂−>(ρ↑,ρ↓ )

Tr[(T̂ + λV̂ee)D̂], (A4)

where

Tr[(T̂ + λV̂ee)D̂] =
∞∑

i=1

pi

∫
�∗

i (r1, . . . , rM ; rM+1, . . . , rN )(T̂ + λV̂ee)�i(r1, . . . , rM ; rM+1, . . . , rN )dr1 · · · drMdrM+1 · · · drN ,

(A5)
and D̂ → (ρ↑, ρ↓) means that

ρ↑(r) =
∞∑

i=1

pi

∫
�∗

i (r, . . . , rM ; rM+1, . . . , rN )�i(r, . . . , rM ; rM+1, . . . , rN )dr2 · · · drMdrM+1 · · · drN ,

ρ↓(r) =
∞∑

i=1

pi

∫
�∗

i (r1, . . . , rM ; r, . . . , rN )�i(r1, . . . , rM ; r, . . . , rN )dr1 · · · drMdrM+2 · · · drN .

(A6)

In the noninteracting case λ = 0, due to the split of the kinetic operator in Eq. (13), Eq. (A4) can be simplified as

T [ρ↑, ρ↓] = min
D̂−>(ρ↑,ρ↓ )

Tr[T̂ D̂] = min
D̂−>(ρ↑,ρ↓ )

{Tr[T̂↑D̂↑] + Tr[T̂↓D̂↓]}

= min
D̂↑−>ρ↑

Tr[T̂↑D̂↑] + min
D̂↓−>ρ↓

Tr[T̂↓D̂↓] = T↑[ρ↑] + T↓[ρ↓], (A7)

where the normalized up- and down-spin ensemble density matrices are

D̂↑(r1, . . . , rM ) =
∞∑

i=1

pi�
∗
i (r1, . . . , rM )�i(r1, . . . , rM ),

D̂↓(rM+1, . . . , rN ) =
∞∑

i=1

pi�
∗
i (rM+1, . . . , rN )�i(rM+1, . . . , rN ),

(A8)

and

Tr[T̂↑D̂↑] =
∞∑

i=1

pi

∫
�∗

i (r1, . . . , rM )T̂↑�i(r1, . . . , rM )dr1 · · · drM,

Tr[T̂↓D̂↓] =
∞∑

i=1

pi

∫
�∗

i (rM+1, . . . , rN )T̂↓�i(rM+1, . . . , rN )drM+1 · · · drN ,

(A9)

and D̂↑ → ρ↑ and D̂↓ → ρ↓ mean, respectively,

ρ↑(r) =
∞∑

i=1

pi

∫
�i(r, . . . , rM )�∗

i (r, . . . , rM )dr2 · · · drM,

ρ↓(r) =
∞∑

i=1

pi

∫
�i(r, . . . , rN )�∗

i (r, . . . , rN )drM+2 · · · drN ,

(A10)

From the above, it follows that the minimizing ensemble of T [ρ↑, ρ↓] and the minimizing ensembles of T↑[ρ↑] and T↓[ρ↓]
are related in the following ways.
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Denote

D̂min
(ρ↑,ρ↓ )(r1, . . . , rM ; rM+1, . . . , rN ) =

∞∑
i=1

pi�
min
(ρ↑,ρ↓ ),(r1, . . . , rM ; rM+1, . . . , rN )�min ∗

(ρ↑,ρ↓ ),i(r1, . . . , rM ; rM+1, . . . , rN ),

D̂min
ρ↑ (r1, . . . , rM ) =

∞∑
i=1

pi�
min
ρ↑,i(r1, . . . , rM )�min ∗

ρ↑,i (r1, . . . , rM ),

D̂min
ρ↓ (rM+1, . . . , rN ) =

∞∑
i=1

pi�
min
ρ↓,i(rM+1, . . . , rN )�min ∗

ρ↓,i (rM+1, . . . , rN ),

(A11)

such that

T [ρ↑, ρ↓] = min
D̂−>(ρ↑,ρ↓ )

Tr[T̂ D̂] = Tr
[
T̂ D̂min

(ρ↑,ρ↓ )

]
, (A12)

and

T↑[ρ↑] = min
D̂↑−>ρ↑

Tr
[
T̂↑D̂↑

] = Tr
[
T̂↑D̂min

ρ↑

]
,

T↓[ρ↓] = min
D̂↓−>ρ↓

Tr[T̂↓D̂↓] = Tr
[
T̂↓D̂min

ρ↓

]
.

(A13)

It can be inferred from Eq. (A7) that

D̂min
ρ↑ (r1, . . . , rM ) =

∫
D̂min

(ρ↑,ρ↓ )(r1, . . . , rM ; rM+1, . . . , rN )drM+1, . . . , drN ,

D̂min
ρ↓ (rM+1, . . . , rN ) =

∫
D̂min

(ρ↑,ρ↓ )(r1, . . . , rM ; rM+1, . . . , rN )dr1, . . . , drM .

(A14)

It further follows that

D̂min
(ρ↑,ρ↓ )(r1, . . . , rM ; rM+1, . . . , rN ) = D̂min

ρ↑ (r1, . . . , rM )D̂min
ρ↓ (rM+1, . . . , rN ). (A15)

The validity of Eq. (A15) can be double checked by a direct substitution in Eq. (A7).
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