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Two-photon-exchange corrections to the g factor of Li-like ions
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We report calculations of QED corrections to the g factor of Li-like ions induced by the exchange of two virtual
photons between the electrons. The calculations are performed within QED theory to all orders of the nuclear
binding strength parameter Zα, where Z is the nuclear charge number and α is the fine-structure constant. In the
region of low nuclear charges we compare results from three different methods: QED, relativistic many-body
perturbation theory, and nonrelativistic QED. All three methods are shown to yield consistent results. With our
calculations we improve the accuracy of theoretical predictions of the g factor of the ground state of Li-like
carbon and oxygen by about an order of magnitude. Our theoretical results agree with those from previous
calculations but differ by three to four standard deviations from the experimental results available for silicon and
calcium.
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I. INTRODUCTION

Modern Penning-trap experiments based on the continu-
ous Stern-Gerlach effect provide very precise measurements
of the Zeeman splitting of energy levels in one- and few-
electron ions [1–3]. The linear Zeeman splitting is usually
parametrized in terms of the g factor of the atomic system.
The fractional accuracy of the recent measurements of the
g factors of H-like and Li-like ions has reached a few parts
in 10−11 [4,5]. Combined with dedicated theoretical calcula-
tions, these measurements provided the determination of the
electron mass [6] and one of the best tests of bound-state
quantum electrodynamics (QED) [7]. Extension of these tests
towards heavier ions is anticipated in the future [8], which
might open new ways for determination of the fine-structure
constant α [9,10] and searches for physics beyond the stan-
dard model [11].

In view of the very high accuracy of the measurements,
theoretical investigations of atomic g factors often need to
be carried out without any expansion in the nuclear binding
strength parameter Zα (where Z is the nuclear charge num-
ber). In such calculations, the electron-electron interaction has
to be treated by perturbation theory. The starting point of the
perturbation expansion is the hydrogenic approximation, i.e.,
the approximation of noninteracting electrons. The electron-
correlation corrections come from the exchange of virtual
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photons between the electrons. An exchange by each photon
leads to the suppression of the corresponding correction by
a parameter of 1/Z . The first-order perturbation correction
∼1/Z1 is due to the one-photon exchange. This correction is
relatively simple and was calculated for Li-like ions first in
Ref. [12] and later reproduced in Refs. [13,14].

The QED calculation of the two-photon-exchange cor-
rection ∼1/Z2 is a difficult task. First calculations of this
correction were accomplished in Refs. [15,16]. In these stud-
ies, results were reported for just four ions and their numerical
uncertainty was significant on the level of the current exper-
imental precision. In the present work we will perform an
independent calculation of the two-photon-exchange correc-
tion for the ground state of Li-like ions. Our goals will be to
cross-check the previous calculations, to improve the numeri-
cal accuracy, and to study the Z dependence of the two-photon
correction in the low-Z region, checking the consistency of
the applied method with the Zα-expansion calculations per-
formed recently in Ref. [17].

Relativistic units (h̄ = c = m = 1) and Heaviside charge
units (α = e2/4π and e < 0) will be used throughout this
paper.

II. ELECTRONIC-STRUCTURE CORRECTIONS TO THE
g FACTOR

In the present work we assume the nucleus to be spinless
and the electron configuration to be a valence electron v

beyond a closed shell of core electrons denoted by c. Contri-
butions to the g factor can be formally obtained as corrections
induced by the effective magnetic interaction [18]

Vg(r) = 1

μv

(r × α)z, (1)

2469-9926/2021/104(2)/022814(15) 022814-1 Published by the American Physical Society

https://orcid.org/0000-0002-2328-8444
https://orcid.org/0000-0002-1984-1470
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.022814&domain=pdf&date_stamp=2021-08-13
https://doi.org/10.1103/PhysRevA.104.022814
https://creativecommons.org/licenses/by/4.0/


YEROKHIN, KEITEL, AND HARMAN PHYSICAL REVIEW A 104, 022814 (2021)

where α is the vector of Dirac matrices and μv is the angular
momentum projection of the valence electron.

To the zeroth order in the electron-electron interaction, the
g factor of the ground state of a Li-like ion is given by the
expectation value of the magnetic potential Vg on the hydro-
genic Dirac wave function of the valence 2s state. For the point
nucleus, the result is known in the closed form

gDirac = 〈2s|Vg|2s〉 = 2

3
{[2

√
1 − (Zα)2 + 2]1/2 + 1}. (2)

Corrections to the g factor of a Li-like ion due to the pres-
ence of core electrons are evaluated by perturbation theory in
the electron-electron interaction, with the expansion parame-
ter 1/Z . The leading correction of order 1/Z1 is induced by the
one-photon exchange between the valence and core electrons.
The corresponding correction was calculated in Ref. [12] (see
also Ref. [13]) and can be written as

�g1ph = 2
∑
μc

[�1ph(vcvc) + �1ph(cvcv)

− �1ph(cvvc) − �1ph(vccv)], (3)

where the summation runs over the angular momentum pro-
jection of the core electron μc and

�1ph(abcd ) =
∑
n �=a

〈a|Vg|n〉〈nb|I (�db)|cd〉
εa − εn

+ 1

4
〈ab|I ′(�db)|cd〉(〈d|Vg|d〉 − 〈b|Vg|b〉).

(4)

Here �ab = εa − εb, I (ω) is the operator of the electron-
electron interaction, and I ′(ω) = ∂I (ω)/∂ω.

The electron-electron interaction operator I (ω) is defined
as

I (ω, r1, r2) = e2α
μ
1 αν

2 Dμν (ω, r1, r2), (5)

where αμ
a = (1,αa) is the four-vector of Dirac matrices acting

on ra, Dμν is the photon propagator, and ω is the photon
energy. In the present work we use the photon propagator in
the Feynman and Coulomb gauges. In the Feynman gauge, the
electron-electron interaction takes the simplest form

IFeyn(ω) = α(1 − α1 · α2)
ei|ω|r12

r12
, (6)

where r12 = |r12| = |r1 − r2|, and |ω| should be understood as
|ω| = √

ω2 + iε, where ε is a positive infinitesimal addition.
The electron-electron interaction operator in the Coulomb
gauge reads

ICoul(ω) = α

[
1

r12
− α1 · α2

ei|ω|r12

r12

+ (α1 · ∇1)(α2 · ∇2)

ω2

ei|ω|r12 − 1

r12

]
. (7)

It can be easily seen that the one-photon-exchange cor-
rection �g1ph given by Eq. (3) can be obtained from the
corresponding correction to the Lamb shift,

�E1ph(vc) =
∑
μc

[〈cv|I (0)|cv〉 − 〈vc|I (�vc)|cv〉], (8)

FIG. 1. Feynman diagrams representing the two-photon-
exchange correction to the Lamb shift: (a) the ladder diagram,
(b) the crossed diagram, and (c) the three-electron diagram. The
double line denotes the electron propagating in the field of the
nucleus and the wavy line denotes the virtual photon.

by perturbing this expression with the magnetic potential Vg.
Specifically, one perturbs the one-electron wave functions

|a〉 → |a〉 + |δa〉, |δa〉 =
∑
n �=a

|n〉〈n|Vg|a〉
εa − εn

(9)

and energies

εa → εa + δεa, δεa = 〈a|Vg|a〉. (10)

In this work we use this approach in order to obtain formu-
las for the two-photon-exchange corrections to the g factor.
We start with the two-photon-exchange correction for the
Lamb shift, graphically represented in Fig. 1. The Feynman
diagrams for the g factor in Fig. 2 are obtained from the Lamb-
shift diagrams by inserting the magnetic interaction Vg in all
possible ways. The corresponding formulas for the g factor
are obtained by using formulas for the two-photon-exchange
correction for the Lamb shift derived in Refs. [19,20] and
perturbing them with the magnetic potential Vg.

The two-photon-exchange correction to the g factor is
conveniently represented as a sum of the direct (dir), ex-
change (ex), and three-electron (3el) contributions, obtained
as perturbations of the corresponding Lamb-shift corrections.
Furthermore, each of the three contributions is subdivided into
the irreducible (ir) and reducible (red) parts. The reducible
parts are induced by the intermediate states degenerate in
energy with the energy of the reference state of the ion. We
thus represent the total two-photon-exchange correction to the
g factor as the sum of three irreducible and three reducible
contributions

�g2ph = �gir,dir + �gir,ex + �g3el,ir

+ �gred,dir + �gred,ex + �g3el,red. (11)

We now examine each of these terms one by one.

FIG. 2. Feynman diagrams representing the two-photon-
exchange corrections to the g factor. The wavy line terminated by a
cross denotes the magnetic interaction.
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A. Direct irreducible part

The direct irreducible contribution comes from the ladder
(lad) and crossed (cr) diagrams. For the Lamb shift, this
contribution is given by Eq. (32) of Ref. [20]. Changing the
variable ω → −ω in the ladder part and using the property
I (ω) = I (−ω), we write the expression as

�Eir,dir = i

2π

∫ ∞

−∞
dω

[ ∑
n1n2 �=cv,vc

Flad,dir (ω, n1n2)

(�̃cn1 + ω)(�̃vn2 − ω)

+
∑

n1n2 �=cv

Fcr,dir (ω, n1n2)

(�̃cn1 − ω)(�̃vn2 − ω)

]
, (12)

where �̃an ≡ εa − εn(1 − i0). Furthermore,

Flad,dir (ω, n1n2) =
∑

μcμ1μ2

〈cv|I (ω)|n1n2〉〈n1n2|I (ω)|cv〉,

(13)

Fcr,dir (ω, n1n2) =
∑

μcμ1μ2

〈cn2|I (ω)|n1v〉〈n1v|I (ω)|cn2〉,

(14)

where μ1 and μ2 denote the angular momentum projections
of the states n1 and n2, respectively. The summations over
the n run over the complete spectrum of the Dirac equation,
implying the sum over the corresponding relativistic angular
quantum numbers κn and the principal quantum numbers of

the discrete spectrum and the integration over the continuum
part of the spectrum. The terms excluded from the summation
over n1 and n2 in Eq. (12) will be accounted for by the
reducible part.

Formulas for the g factor are obtained by perturbing the
above expressions with the magnetic potential Vg. One per-
turbs the initial-state and intermediate-state wave functions
and energies in the denominators. Perturbations of wave func-
tions lead to the corrections δF ,

δFlad,dir (ω, n1n2) = 2
∑

μcμ1μ2

[〈cv|I (ω)|n1n2〉〈n1n2|I (ω)|δcv〉

+ 〈cv|I (ω)|n1n2〉〈n1n2|I (ω)|cδv〉
+ 〈cv|I (ω)|n1n2〉〈δn1n2|I (ω)|cv〉
+ 〈cv|I (ω)|n1n2〉〈n1δn2|I (ω)|cv〉], (15)

δFcr,dir (ω, n1n2) = 2
∑

μcμ1μ2

[〈cn2|I (ω)|n1v〉〈n1v|I (ω)|δcn2〉

+ 〈cn2|I (ω)|n1δv〉〈n1v|I (ω)|cn2〉
+ 〈cn2|I (ω)|n1v〉〈δn1v|I (ω)|cn2〉
+ 〈cδn2|I (ω)|n1v〉〈n1v|I (ω)|cn2〉], (16)

with perturbed wave functions |δa〉 defined by Eq. (9). Per-
turbations of energies in the denominators lead to corrections
δ1F and δ2F ,

δ1Flad,dir (ω, n1n2) =
∑

μcμ1μ2

(Vn1n1 − Vcc)〈cv|I (ω)|n1n2〉〈n1n2|I (ω)|cv〉, (17)

δ2Flad,dir (ω, n1n2) =
∑

μcμ1μ2

(Vn2n2 − Vvv )〈cv|I (ω)|n1n2〉〈n1n2|I (ω)|cv〉, (18)

δ1Fcr,dir (ω, n1n2) =
∑

μcμ1μ2

(Vn1n1 − Vcc)〈cn2|I (ω)|n1v〉〈n1v|I (ω)|cn2〉, (19)

δ2Fcr,dir (ω, n1n2) =
∑

μcμ1μ2

(Vn2n2 − Vvv )〈cn2|I (ω)|n1v〉〈n1v|I (ω)|cn2〉, (20)

where Vab = 〈a|Vg|b〉. Finally, the correction to the g factor is

�gir,dir = i

2π

∫ ∞

−∞
dω

{ ∑
n1n2 �=cv,vc

[
δFlad,dir (ω, n1n2)

(�̃cn1 + ω)(�̃vn2 − ω)
+ δ1Flad,dir (ω, n1n2)

(�̃cn1 + ω)2(�̃vn2 − ω)
+ δ2Flad,dir (ω, n1n2)

(�̃cn1 + ω)(�̃vn2 − ω)2

]

+
∑

n1n2 �=cv

[
δFcr,dir (ω, n1n2)

(�̃cn1 − ω)(�̃vn2 − ω)
+ δ1Fcr,dir (ω, n1n2)

(�̃cn1 − ω)2(�̃vn2 − ω)
+ δ2Fcr,dir (ω, n1n2)

(�̃cn1 − ω)(�̃vn2 − ω)2

]}
. (21)

B. Exchange irreducible part

The exchange irreducible contribution for the Lamb shift is given by [see Eq. (32) of Ref. [20]]

�Eir,ex = i

2π

∫ ∞

−∞
dω

[ ∑
n1n2 �=cv,vc

Flad,ex(ω, n1n2)

(�̃vn1 − ω)(�̃cn2 + ω)
+

∑
n1n2 �=cc,vv

Fcr,ex(ω, n1n2)

(�̃vn1 − ω)(�̃vn2 − ω)

]
, (22)

where the functions F are given by

Flad,ex(ω, n1n2) = (−1)
∑

μcμ1μ2

〈vc|I (ω)|n1n2〉〈n1n2|I (ω̃)|cv〉, (23)

Fcr,ex(ω, n1n2) = (−1)
∑

μcμ1μ2

〈vn2|I (ω)|n1v〉〈n1c|I (ω̃)|cn2〉, (24)
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with ω̃ ≡ ω − � and � ≡ εv − εc. Again, the terms excluded from the summation over n1 and n2 will be accounted for by the
corresponding reducible part. It should be mentioned that our present definition of the irreducible part differs slightly from that
of Ref. [20]. Specifically, here we do not exclude from the summation over n1 and n2 the state separated by the finite-nuclear-size
effect from the reference state (i.e., the 2p1/2 state for v = 2s state), since it leads to unnecessary complications in the case of
the g factor.

The formulas for the g factor are obtained similarly to the direct contribution, by perturbing expressions for the Lamb shift
with the potential Vg,

�gir,ex = i

2π

∫ ∞

−∞
dω

{ ∑
n1n2 �=cv,vc

[
δFlad,ex(ω, n1n2)

(�̃vn1 − ω)(�̃cn2 + ω)
+ δ1Flad,ex(ω, n1n2)

(�̃vn1 − ω)2(�̃cn2 + ω)
+ δ2Flad,ex(ω, n1n2)

(�̃vn1 − ω)(�̃cn2 + ω)2

]

+
∑

n1n2 �=cc,vv

[
δFcr,ex(ω, n1n2)

(�̃vn1 − ω)(�̃vn2 − ω)
+ δ1Fcr,ex(ω, n1n2)

(�̃vn1 − ω)2(�̃vn2 − ω)
+ δ2Fcr,ex(ω, n1n2)

(�̃vn1 − ω)(�̃vn2 − ω)2

]}
. (25)

The perturbations of the F functions by the magnetic potential Vg are defined as

δFlad,ex(ω, n1n2) = (−2)
∑

μcμ1μ2

[〈vc|I (ω)|n1n2〉〈n1n2|I (ω̃)|δcv〉 + 〈vc|I (ω)|n1n2〉〈n1n2|I (ω̃)|cδv〉

+ 〈vc|I (ω)|n1n2〉〈δn1n2|I (ω̃)|cv〉 + 〈vc|I (ω)|n1n2〉〈n1δn2|I (ω̃)|cv〉

− 1

2
(Vvv − Vcc)〈vc|I (ω)|n1n2〉〈n1n2|I ′(ω̃)|cv〉], (26)

δFcr,ex(ω, n1n2) = (−2)
∑

μcμ1μ2

[〈vn2|I (ω)|n1v〉〈n1c|I (ω̃)|δcn2〉 + 〈vn2|I (ω)|n1δv〉〈n1c|I (ω̃)|cn2〉

+ 〈vn2|I (ω)|n1v〉〈δn1c|I (ω̃)|cn2〉 + 〈vδn2|I (ω)|n1v〉〈n1c|I (ω̃)|cn2〉

− 1

2
(Vvv − Vcc)〈vn2|I (ω)|n1v〉〈n1c|I ′(ω̃)|cn2〉], (27)

and

δ1Flad,ex(ω, n1n2) =
∑

μcμ1μ2

(Vvv − Vn1n1 )〈vc|I (ω)|n1n2〉〈n1n2|I (ω̃)|cv〉, (28)

δ2Flad,ex(ω, n1n2) =
∑

μcμ1μ2

(Vcc − Vn2n2 )〈vc|I (ω)|n1n2〉〈n1n2|I (ω̃)|cv〉, (29)

δ1Fcr,ex(ω, n1n2) =
∑

μcμ1μ2

(Vvv − Vn1n1 )〈vn2|I (ω)|n1v〉〈n1c|I (ω̃)|cn2〉, (30)

δ2Fcr,ex(ω, n1n2) =
∑

μcμ1μ2

(Vvv − Vn2n2 )〈vn2|I (ω)|n1v〉〈n1c|I (ω̃)|cn2〉. (31)

C. Direct reducible part

The reducible part of the two-electron diagrams for the Lamb shift is given by Eq. (41) of Ref. [20]. Separating the direct
contribution, we write it as

�Ered,dir = −i

4π

∫ ∞

−∞
dω

{[
1

(ω + i0)2
+ 1

(ω − i0)2

]
Flad,dir (ω, cv)

+
[

1

(ω + � + i0)2
+ 1

(ω + � − i0)2

]
Flad,dir (ω, vc) − 2

(ω − i0)2
Fcr,dir (ω, cv)

}
. (32)

We note that the crossed cv term in the above expression exactly coincides with the one excluded from the summation in
Eq. (12). The ladder cv and vc terms in the above expression are very similar to those excluded from the summation in Eq. (12)
but differ by signs of i0. Specifically, the terms excluded from the summation over n1,2 in Eq. (12) contained poles at both ω = i0
and ω = −i0 (or at ω = −� + i0 and ω = −� − i0), thus “squeezing” the integration contour between the two poles, causing
singularities. By contrast, the ladder terms in Eq. (32) have double poles, from one side of the integration contour. Therefore,
the integration contour can be “moved away” from the pole (assuming a finite photon mass in the case of ω = 0), so there are no
real singularities in Eq. (32). Taking into account that the ladder cv term and the crossed cv term cancel each other (as proven in
Ref. [19]), the expression is simplified further to yield

�Ered,dir = − i

2π
P

∫ ∞

−∞
dω

1

ω + �
F ′

lad,dir (ω, vc), (33)
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where P denotes the principal value of the integral and F ′(ω) = ∂F (ω)/∂ω.
Corrections to the g factor arise through perturbations of the Lamb-shift formulas with the magnetic potential Vg. We divide

them into two parts

�gred,dir = �gred,dir,wf + �gred,dir,en, (34)

where the first term is induced by perturbations of the wave functions and the second by perturbations of the energies. The
perturbed-wave-function part is immediately obtained from Eq. (33) as

�gred,dir,wf = − i

2π
P

∫ ∞

−∞
dω

1

ω + �
δF ′

lad,dir (ω, vc), (35)

where δFlad,dir is defined by Eq. (15). The derivation of the energy-perturbed reducible part is more difficult and is carried
out by perturbing the formulas given by Eq. (47) of Ref. [19]. This derivation is potentially problematic, because vanishing
contributions to the Lamb shift may induce nonzero magnetic perturbations. For example, the energy difference �an = εa − εn

induces a perturbation 〈a|Vg|a〉 − 〈n|Vg|n〉. If εn = εa and μn �= μa, the energy difference vanishes but the magnetic perturbation
survives. In order to avoid potential ambiguities, we fix the reducible part by the requirement of the gauge invariance of the total
correction to the g factor. The result for the direct energy-perturbation reducible part is

�gred,dir,en = 1

4
[−δ1F ′′

lad,dir (0, cv) − δ2F ′′
lad,dir (0, cv) − δ1F ′′

lad,dir (�, vc) − δ2F ′′
lad,dir (�, vc)

+ δ1F ′′
cr,dir (0, cv) + δ2F ′′

cr,dir (0, cv)] + i

4π
P

∫ ∞

−∞
dω

δ1F ′′
lad,dir (ω, vc) − δ2F ′′

lad,dir (ω, vc)

ω + �
, (36)

where F ′′(ω) = ∂2F (ω)/(∂ω)2.
It should be pointed out that the second integration by parts, leading to the second derivative of the photon-exchange operator

I ′′(ω) in Eq. (36), is potentially troublesome. The reason is that the imaginary part of the first derivative I ′(ω) is discontinuous
at ω = 0. Specifically, Im[I ′(0+)] = −Im[I ′(0−)] �= 0. This discontinuity leads, in principle, to the appearance of additional
off-integral terms in Eq. (36). We found, however, that their numerical contributions are completely negligible for the case under
consideration in the present paper. The same holds for the exchange reducible part.

D. Exchange reducible part

The reducible exchange correction for the Lamb shift is given by Eq. (41) of Ref. [20]. We write this correction as

�Ered,ex = i

2π

∫ ∞

−∞
dω

{
− 1

2
Flad,ex(ω, cv)

[
1

(� − ω − i0)2
+ 1

(� − ω + i0)2

]
− 1

2
Flad,ex(ω, vc)

[
1

(−ω − i0)2
+ 1

(−ω + i0)2

]
+ Fcr,ex(ω, cc)

1

(� − ω + i0)2
+ Fcr,ex(ω, vv)

1

(−ω + i0)2

}
. (37)

We observe that the crossed cc and vv terms in the above expression exactly coincide with the two terms excluded from the
summation in Eq. (22). The ladder cv and vc terms in the above expression are similar to those excluded from the summation in
Eq. (22) but differ from them by the signs of i0. We evaluate the above expression by integrating by parts and taking the principal
value of the integral, separating the pole contribution. The result is

�Ered,ex = − 1

2
[F ′

cr,ex(�, cc) + F ′
cr,ex(0, vv)]

+ i

2π
P

∫ ∞

−∞
dω

[
F ′

lad,ex(ω, cv)

� − ω
+ F ′

lad,ex(ω, vc)

−ω
− F ′

cr,ex(ω, cc)

� − ω
− F ′

cr,ex(ω, vv)

−ω

]
. (38)

It should be mentioned that the individual terms in the large square brackets under the integral in the above formula contain
singularities at ω = 0 and ω = �. When the ladder and exchange terms are combined together, however, the singularities
disappear and the principal value of the resulting integral becomes well defined and can be calculated numerically.
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The reducible exchange contribution for the g factor is the sum of perturbations of the wave functions and perturbations of
the energies, �gred,ex = �gred,ex,wf + �gred,ex,en, where

�gred,ex,wf = − 1

2
[δF ′

cr,ex(�, cc) + δF ′
cr,ex(0, vv)]

+ i

2π
P

∫ ∞

−∞
dω

[
δF ′

lad,ex(ω, cv)

� − ω
+ δF ′

lad,ex(ω, vc)

−ω
− δF ′

cr,ex(ω, cc)

� − ω
− δF ′

cr,ex(ω, vv)

−ω

]
, (39)

�gred,ex,en = 1

4
[−δ1F ′′

lad,ex(ω, cv) − δ2F ′′
lad,ex(ω, cv) − δ1F ′′

lad,ex(ω, vc) − δ2F ′′
lad,ex(ω, vc) + δ1F ′′

cr,ex(�, cc) + δ2F ′′
cr,ex(�, cc)

+ δ1F ′′
cr,ex(0, vv) + δ2F ′′

cr,ex(0, vv)] + i

4π
P

∫ ∞

−∞
dω

[
δ1F ′′

lad,ex(ω, cv) − δ2F ′′
lad,ex(ω, cv)

ω − �

+ δ1F ′′
lad,ex(ω, vc) − δ2F ′′

lad,ex(ω, vc)

ω
− δ1F ′′

cr,ex(ω, cc) + δ2F ′′
cr,ex(ω, cc)

ω − �
− δ1F ′′

cr,ex(ω, vv) + δ2F ′′
cr,ex(ω, vv)

ω

]
.

(40)

E. Three-electron part

The three-electron irreducible contribution to the Lamb shift is given by Eq. (14) of Ref. [20],

�E3el,ir =
∑
PQ

(−1)P+Q
∑

n

′ IP2P3nQ3(�P3Q3)IP1nQ1Q2(�Q1P1)

εQ1 + εQ2 − εP1 − εn
. (41)

Here 1, 2, and 3 label the three electrons of the ions (in arbitrary order), the operators P and Q permute the initial-state and the
final-state electrons, (−1)P and (−1)Q are the sign of permutations, and the prime on the sum means that the terms with the
vanishing denominator are excluded from the summation. Furthermore, �ab ≡ εa − εb and Iabcd (�) ≡ 〈ab|I (�)|cd〉.

The corrections to the g factor are obtained as first-order perturbations of Eq. (41) by Vg. It is convenient to split the whole
contribution into the perturbations of the external wave functions (pwf), external energies (en), and the propagator (ver),

�g3el,ir = �g3el
ir,pwf + �g3el

ir,en + �g3el
ir,ver, (42)

�g3el
ir,pwf = 2

∑
PQ

(−1)P+Q
∑

n

′ 1

εQ1 + εQ2 − εP1 − εn
[IP2P3nδQ3(�P3Q3)IP1nQ1Q2(�Q1P1)

+ IP2P3nQ3(�P3Q3)IP1nδQ1Q2(�Q1P1) + IP2P3nQ3(�P3Q3)IP1nQ1δQ2(�Q1P1)], (43)

�g3el
ir,en =

∑
PQ

(−1)P+Q
∑

n

′
[

− (VQ1Q1 + VQ2Q2 − VP1P1)
IP2P3nQ3(�P3Q3)IP1nQ1Q2(�Q1P1)

(εQ1 + εQ2 − εP1 − εn)2

+ (VP3P3 − VQ3Q3)I ′
P2P3nQ3(�P3Q3)IP1nQ1Q2(�Q1P1) + (VQ1Q1 − VP1P1)IP2P3nQ3(�P3Q3)I ′

P1nQ1Q2(�Q1P1)

εQ1 + εQ2 − εP1 − εn

]
, (44)

�g3el
ir,ver =

∑
PQ

(−1)P+Q
∑
n1n2



IP2P3n1Q3(�P3Q3)Vn1n2 IP1n2Q1Q2(�Q1P1)

(εQ1 + εQ2 − εP1 − εn1 )(εQ1 + εQ2 − εP1 − εn2 )
, (45)

where the operator 
 acts on energy denominators �1 and �2 as follows:



X

�1�2
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X
�1�2

for �1 �= 0, �2 �= 0

− X
�2

1
for �1 �= 0, �2 = 0

− X
�2

2
for �1 = 0 �2 �= 0

0 for �1 = 0 �2 = 0.

(46)

The three-electron reducible correction to the Lamb shift is given by Eq. (19) of Ref. [20],

�E3el,red = 1

2

∑
PQ

(−1)P+Q
∑

μn
εn=εQ1+εQ2−εP1

[I ′
P2P3nQ3(�P3Q3)IP1nQ1Q2(�Q1P1) + IP2P3nQ3(�P3Q3)I ′

P1nQ1Q2(�Q1P1)]. (47)

The corresponding corrections to the g factor arise as perturbations of the wave functions and energies,

�g3el,red =
∑
PQ

(−1)P+Q
∑

μn
εn=εQ1+εQ2−εP1

{I ′
P2P3nQ3(�P3Q3)IP1nδQ1Q2(�Q1P1) + IP2P3nQ3(�P3Q3)I ′

P1nδQ1Q2(�Q1P1)

+ I ′
P2P3nQ3(�P3Q3)IP1nQ1δQ2(�Q1P1) + IP2P3nQ3(�P3Q3)I ′

P1nQ1δQ2(�Q1P1)
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+ I ′
P2P3nδQ3(�P3Q3)IP1nQ1Q2(�Q1P1) + IP2P3nδQ3(�P3Q3)I ′

P1nQ1Q2(�Q1P1)

+ I ′
P2P3nQ3(�P3Q3)IP1δnQ1Q2(�Q1P1) + IP2P3nQ3(�P3Q3)I ′

P1δnQ1Q2(�Q1P1)

+ (VP3P3 − VQ3Q3)[I ′′
P2P3nQ3(�P3Q3)IP1nQ1Q2(�Q1P1) + I ′

P2P3nQ3(�P3Q3)I ′
P1nQ1Q2(�Q1P1)]

+ (VQ1Q1 − VP1P1)[I ′
P2P3nQ3(�P3Q3)I ′

P1nQ1Q2(�Q1P1) + IP2P3nQ3(�P3Q3)I ′′
P1nQ1Q2(�Q1P1)]}. (48)

III. MANY-BODY PERTURBATION THEORY
APPROXIMATION

In this section we obtain formulas for the two-photon-
exchange correction to the g factor in the approximation
of the relativistic many-body perturbation theory (MBPT).
The corresponding formulas can be obtained from the QED
expressions by (i) using the Coulomb gauge in the photon
propagators and neglecting the energy dependence, I (ω) →

ICoul(0), and (ii) restricting the summations over the Dirac
spectrum to the positive-energy part. Under these assump-
tions, all reducible contributions vanish and the integrals over
ω can be performed by the Cauchy theorem. The ω integral
for the crossed contribution vanishes, so the total two-electron
correction comes only from the ladder irreducible part. Per-
forming the ω integrations in Eqs. (21) and (25), we obtain
the two-electron contribution in the MBPT approximation as

�gMBPT
2el =

∑
n1n2

εn1 ,εn2 >0

′
[
δFlad,dir (0, n1n2) + δFlad,ex(0, n1n2)

εv + εc − εn1 − εn2

+ δ1Flad,dir (0, n1n2) + δ2Flad,dir (0, n1n2) + δ1Flad,ex(0, n1n2) + δ2Flad,ex(0, n1n2)

(εv + εc − εn1 − εn2 )2

]
. (49)

Here the prime on the sum means that the terms with the
vanishing denominator should be omitted, and the summation
over n1 and n2 is performed over the positive-energy part
of the Dirac spectrum. We note that Eq. (49) can also be
obtained directly by perturbing the two-photon MBPT cor-
rection for the Lamb shift, given by Eq. (43) of Ref. [20]. The
three-electron MBPT correction is immediately obtained from
Eqs. (42)–(45), after the substitution I (ω) → ICoul(0) and the
restriction of the summations to the positive-energy part of the
spectrum.

We note that the standard formulation of MBPT assumes
the restriction of all summations over the Dirac spectrum
to the positive-energy part. The consistent treatment of the
negative-energy spectrum is possible only within the QED
theory. However, it can be easily observed that one can include
some negative-energy contributions already in the MBPT for-
mulas, namely, in those cases when it does not lead to the
so-called continuum dissolution, i.e., vanishing energy de-
nominators. Specifically, one can include the negative-energy
spectrum in the three-electron contributions [Eqs. (42)–(45)]
and in the magnetic perturbations of the wave functions
[Eq. (9)]. We will refer to this variant of the MBPT as MBPT-
neg. We will demonstrate that such partial inclusion of the
negative-energy spectrum within MBPT is crucially important
to approximately reproduce the QED results in the region of
small nuclear charges, whereas the standard MBPT yields
a very much different result, even in the limit of Z → 0.
Previously, the same conclusion was drawn by Volotka and
co-workers [21,22].

The connection between the QED and MBPT formulas was
extensively used in this work to check the numerical proce-
dure for the ω integrations. Specifically, after neglecting the
energy dependence of the photon propagators in the Coulomb

gauge, we checked that the numerical ω integration yields
the same result as the analytical integration by the Cauchy
theorem.

IV. NUMERICAL EVALUATION

We now turn to the numerical evaluation of the two-
photon-exchange corrections. Since the calculation of the
three-electron contributions is relatively straightforward, we
concentrate mainly on the two-electron terms. The direct and
exchange irreducible contributions given by Eqs. (21) and (25)
represent the main computational difficulty. It is advantageous
to deform the contour of the ω integration in them, in order
to escape strong oscillations of the photon propagators pro-
portional to ei|ω|r12 for large real values of ω. Deforming the
contour, one needs to take into account the branch cuts of
the photon propagators and the pole structure of the Dirac
propagators. The analytical structure of the integrand as a
function of complex ω is shown in Fig. 3 for the direct part
and in Fig. 4 for the exchange part.

For the evaluation of the direct irreducible contribution,
we use two different choices of the ω-integration contour.
The first choice is the standard Wick rotation ω → iω, which
splits the correction into the pole contribution and the integral
along the imaginary ω axis. This contour was used in previous
Lamb-shift calculations [20,23]. The advantage of this choice
is that the analysis of the pole terms is the simplest. There
are, however, also some drawbacks. The first problem is the
rapidly varying structure of the integrand in the vicinity of
ω = 0, due to poles of the electron propagators lying near the
imaginary axis. The second difficulty is that the contributions
with n2 = v in Eq. (21) contain singular terms ∼1/ω2, which
need to be integrated by parts before the numerical evaluation.
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(a) (b)

FIG. 3. Singularities of the integrand in the complex ω plane and the integration contour CD for (a) the ladder direct contribution and (b) the
crossed direct contribution.

In order to achieve a more regular behavior of the integrand
for small ω, we adopt the contour CD, shown in Fig. 3. This
contour is convenient for the numerical evaluation, especially
for low values of Z . Its disadvantage is the presence of a pole
on the low-energy part of the integration contour and thus the
need to evaluate the principal value of the integral. We find,
however, that the contour CD is very similar to the contour
CX used in the evaluation of the exchange contribution and
discussed in detail below. Because of this similarity, we are
able to use essentially the same numerical procedure for both
the direct and the exchange part. We have checked that our nu-
merical evaluation of the integral along the contour CD leads
to the same results as the integration along the Wick-rotated
contour.

For the numerical evaluation of the exchange irreducible
part, we use the contour CX depicted in Fig. 4. This contour

was suggested in Ref. [23] for the Lamb shift and later used
for the g factor and hyperfine structure in Refs. [15,24]. As
can be seen from Fig. 4, the deformation of the contour from
(−∞,∞) to CX leads to the appearance of pole terms at ω =
0 and ω = �. In the case of the Lamb shift, the pole terms are
identified, for the ladder contribution, as

i

2π

∫ ∞

−∞
dω

F (ω)

(�̃1 − ω)(�̃2 + ω)
=

�1 �=−�2

F (�1)

�1 + �2
δ(�1 − �)

+ F (−�2)

�1 + �2
δ(�2) + i

2π

∫
CX

dω
F (ω)

(�̃1 − ω)(�̃2 + ω)
, (50)

where �̃i denotes �i with the infinitesimal imaginary addition
according to Eqs. (21) and (25). For the crossed contribution,

(a) (b)

FIG. 4. Contour CX and singularities of the integrand in the complex ω plane for (a) the ladder exchange contribution and (b) the crossed
exchange contribution.
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the corresponding equation reads

i

2π

∫ ∞

−∞
dω

F (ω)

(�̃1 − ω)(�̃2 − ω)
=

�1 �=�2

F (�1)

�2 − �1
δ(�1 − �)

+ F (�2)

�1 − �2
δ(�2 − �) + i

2π

∫
CX

dω
F (ω)

(�̃1 − ω)(�̃2 − ω)
.

(51)

For the g factor, formulas with squared energy denominators
are required, which can be obtained by a formal differentiation
of the above formulas over �1 and �2.

For a numerical evaluation, the integral over CX is repre-
sented as a sum of three terms

i

2π

∫
CX

dω
I (ω)I (ω − �)

(�̃1 − ω)(�̃2 ± ω)

= − 1

π

∫ δ

0
dω

Im[I (ω)]I (� − ω)

(�̃1 − ω)(�̃2 ± ω)

− 1

π

∫ �

δ

dω
I (ω)Im[I (� − ω)]

(�̃1 − ω)(�̃2 ± ω)

− 1

π
Re

∫ ∞

0
dω

I (δ + iω)I (δ + iω − �)

(�1 − δ − iω)[�2 ± (δ + iω)]
,

where δ is a free parameter 0 < δ < �. A typical value of
δ = �/2 is used. An advantage of the contour CX is that the
integrand has a more regular behavior at the end points of
the intervals, ω = 0 and ω = �, because Im[I (ω)] ∝ ω as
ω → 0. There are, however, singularities inside the intervals
along the real axis, and thus the infinitesimal imaginary terms
i0 should be retained for them. For the g factor, we encounter
single, double, and even triple poles on the integration
contour. Specifically, for the v = 2s reference state, the
singularities arise from the intermediate states n1 and/or
n2 = 2p1/2, whose energy ε2p1/2 < ε2s is separated from
the reference-state energy by the finite-nuclear-size effect.
To deal with these singularities, we introduce subtractions
obtained by expanding the numerator of the integrand in the
Taylor series in the vicinity of the poles. The subtractions
remove singularities and make the integrand a regular and
smooth function suitable for the numerical integration. The
subtracted terms are then readded, with the principal-value
integrals calculated analytically. The corresponding formulas
are summarized in Appendix A.

In order to check our numerical procedure, we performed
calculations also by using a different integration contour,
namely, the contour Cirr suggested in Ref. [20] (shown in
Fig. 5 of that work). The very good agreement of numerical
results obtained with two different contours was used as a
confirmation of the internal consistency of the numerical
procedure.

For the numerical evaluation of the reducible direct and
exchange contributions, we used the ω-integration contour
consisting of three sections: (−δ − i∞,−δ), (−δ, δ), and
(δ, δ + i∞). The parameter δ of the contour was taken to be
δ > �, which allowed us to evaluate the principal value of the
integrals at points ω = 0 and ω = ±�.

The summations over the Dirac intermediate states were
performed by using the dual kinetic balance basis-set method
[25], with the basis set constructed with the B splines. The

TABLE I. Convergence study for the direct irreducible contribu-
tion �gir,dir for Z = 14 as a function of the number of B splines in
the basis set, in the Feynman gauge, in units of 10−6.

N �gir,dir Increment

55 −9.442 31
70 −9.442 86 −0.000 55
85 −9.443 08 −0.000 22
105 −9.443 20 −0.000 12
130 −9.443 26 −0.000 06
extrapolation −9.443 31 −0.000 06

standard two-parameter Fermi model was used to represent
the nuclear charge distribution, with the nuclear radii taken
from Ref. [26]. The infinite partial-wave summation over the
relativistic angular momentum quantum number κ was per-
formed up to |κmax| = 25, with the remaining tail estimated
by the polynomial fitting of the expansion terms in 1/|κ|.
The largest numerical uncertainty was typically induced by
convergence in the number of basis functions N . Our final val-
ues were typically obtained by performing calculations with
N = 85 and N = 105 B splines and extrapolating the results to
N → ∞ as δg = δgN=105 + 0.93(δgN=105 − δgN=85), where
the numerical coefficient was obtained by analyzing the con-
vergence pattern of our numerical results. An example of the
convergence study with respect to N is presented in Table I.

In the present work we perform calculations in the Feyn-
man and the Coulomb gauge. The expressions for the matrix
elements of the electron-electron interaction in the Coulomb
gauge are summarized in Appendix B. We note that in the
present work (unlike, e.g., in Ref. [20]) we use the expres-
sion for the Coulomb-gauge matrix element [Eq. (B3)] that
does not rely on commutator relations for the wave functions.
This expression is valid for the general case when the wave
functions in the matrix element are not eigenfunctions of the
Dirac Hamiltonian, in particular, when they are the magnetic
perturbations of the Dirac wave functions. Another advantage
of this expression is that it allows a numerical evaluation of
the Coulomb-gauge radial integrals and their derivatives for
very small but nonvanishing photon energies ω. The region of
small but nonzero ω is usually numerically unstable for the
expressions based on the commutator relations, especially for
the second derivative of the photon propagator I ′′(ω).

V. RESULTS AND DISCUSSION

Numerical results of our calculations of the two-photon-
exchange corrections for the ground state of Li-like ions are
presented in Tables II and III. Table II contains a breakdown
of our calculations in two gauges for Z = 14 and 83 and
demonstrates the gauge invariance of our numerical results.
Table III presents the final results of our calculations for Z =
6–92. It also compares results of the QED calculation with
those obtained within the standard MBPT and the MBPT with
the partial inclusion of the negative-energy spectrum. We ob-
serve that the standard MBPT yields a two-photon-exchange
correction about three times larger than the complete QED
results. The disagreement is evidently present even in the
limit of Z → 0. In contrast, the MBPT-neg approach closely
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TABLE II. Individual two-photon-exchange contributions to the g factor of the ground state of Li-like ions, in the Feynman and Coulomb
gauges. Units are 10−6.

Direct Exchange Three-electron

Z Gauge Irreducible Reducible Irreducible Reducible Irreducible Reducible Total

14 Feynman −9.4433 0.0015 −0.0739 0.0302 2.6352 −0.0285 −6.8787(1)
14 Coulomb −9.4417 0.0000 −0.0457 0.0020 2.6320 −0.0253 −6.8787(2)
83 Feynman −16.6698 −0.0053 −3.4213 1.0489 11.0343 −1.0481 −9.0613(6)
83 Coulomb −16.6175 −0.0631 −2.8158 0.4425 10.8548 −0.8621 −9.0612(6)

reproduces the QED treatment in the region of low values of
Z . Previously, the same conclusion was reached by Volotka
and co-workers [21,22].

For low values of the nuclear charge Z , the results of our
QED and MBPT-neg calculations can be compared with the
prediction of the nonrelativistic QED (NRQED) theory based
on the explicitly correlated three-electron wave function [17].
According to Ref. [17], the two-photon-exchange correction
in the limit Z → 0 is given by [see Eq. (16) of that work]

�g2ph(Z = 0) = −0.128 204(9)α2 = −6.8270(5) × 10−6.

(52)

Figure 5 shows the comparison of the QED, MBPT-neg, and
NRQED results. We observe that all three methods yield
results converging with each other in the limit Z → 0. The
difference between the results by different methods scales
as (Zα)2 as expected. It is interesting that the MBPT-neg
approach does not yield any significant improvement over the
NRQED treatment for low- and medium-Z ions.

The QED calculation of the two-photon-exchange correc-
tion for the g factor of Li-like ions was previously carried
out in Refs. [15,16]. Unfortunately, the numerical results
were presented only for four ions and mostly in the form

of the total electron-electron interaction correction. The only
ion for which the calculations are directly comparable is
silicon, Z = 14, for which we find some tension. Our calcu-
lation yields −6.8787(1) × 10−6, whereas Ref. [16] reported
−6.876 × 10−6. As an additional cross-check, we performed
calculations for the two-photon-exchange correction to the
ground-state hyperfine splitting of Li-like bismuth (which is
another example of a magnetic perturbation potential) and
found agreement with results listed in Table I of Ref. [15].

Having obtained results for the two-photon-exchange cor-
rection, we are now in a position to update the theoretical
predictions for the ground-state g factor of Li-like ions. Ta-
ble IV presents a compilation of all known binding corrections
to the g factor of the ground state of four Li-like ions, C3+,
O5+, Si11+, and Ca17+. As compared to the analogous com-
pilation in our previous investigation [17], we introduced
several improvements. The two-photon-exchange correction
(i.e., the electronic-structure contribution of relative order
1/Z2) is computed in the present work. Besides this, we in-
cluded the radiative one-loop 1/Z and 1/Z2+ QED effects
from our recent work [28] and the nuclear recoil corrections of
relative orders 1/Z0, 1/Z1, and 1/Z2+ calculated by Shabaev
et al. [29]. Furthermore, in addition to the two-loop (Zα)4

TABLE III. Numerical results for the two-photon-exchange correction to the g factor of the ground state of Li-like ions, in units of 10−6. The
QED results are obtained in the Feynman gauge. Here MBPT labels results obtained within the standard relativistic many-body perturbation
theory and MBPT-neg labels results obtained within MBPT supplemented by the correction from the negative-continuum part of the Dirac
spectrum.

Z Direct Exchange Three-electron Total QED MBPT-neg MBPT

6 −9.3333 −0.0068 2.5038 −6.8363(3) −6.8262 −22.243
8 −9.3524 −0.0128 2.5216 −6.8436(2) −6.8257 −22.250
10 −9.3769 −0.0209 2.5447 −6.8531(3) −6.8251 −22.258
12 −9.4066 −0.0312 2.5730 −6.8648(2) −6.8245 −22.268
14 −9.4418 −0.0437 2.6067 −6.8787(1) −6.8239 −22.280

−6.876a

18 −9.5287 −0.0755 2.6909 −6.9133(2) −6.8229 −22.309
20 −9.5808 −0.0949 2.7417 −6.9341(3) −6.8227 −22.327
24 −9.7031 −0.1408 2.8615 −6.9824(3) −6.8231 −22.367
28 −9.8512 −0.1962 3.0073 −7.0401(3) −6.8252 −22.414
32 −10.0273 −0.2612 3.1813 −7.1072(3) −6.8299 −22.468
40 −10.4743 −0.4213 3.6250 −7.2706(4) −6.8508 −22.594
54 −11.6370 −0.8099 4.7900 −7.6569(5) −6.9540 −22.856
70 −13.8228 −1.4897 7.0179 −8.2945(5) −7.2907 −23.193
82 −16.4083 −2.2884 9.7062 −8.9905(6) −7.8666 −23.490
83 −16.6750 −2.3725 9.9863 −9.0613(6) −7.9348 −23.519
92 −19.5455 −3.3111 13.0311 −9.8254(7) −8.7545 −23.837

aReference [16].
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FIG. 5. Two-photon-exchange correction to the g factor of the
ground state of Li-like ions in different approaches (QED, MBPT
with the negative continuum contribution, and NRQED). The dotted
line is a polynomial fit to the numerical data, to guide the eye.

effects from Refs. [30,31] we included the two-loop (Zα)5

corrections calculated recently by Czarnecki et al. [32,33] and
by us [34]. The two-loop (Zα)5 results in those studies were
reported for the 1s hydrogenic state. We here convert them to
the 2s state by assuming the 1/n3 scaling. Having in mind that
the result for the nonlogarithmic (Zα)5 term is not complete,

we ascribe the uncertainty of 20% to the 2s two-loop (Zα)5

correction. The uncertainty due to higher-order two-loop ef-
fects was evaluated on the basis of available one-loop results,
with the extension factor of 2.

One of the largest uncertainties of the theoretical pre-
dictions comes from the higher-order electronic-structure
correction ∼1/Z3+. The values in Table IV for this correction
are obtained within NRQED in Ref. [17]. Theoretical esti-
mates for their uncertainties are obtained by taking the relative
deviation of the NRQED and full QED results for the 1/Z2

correction and multiplying it by the extension factor of 2.
The comparison presented in Table IV shows agreement of

the present theoretical g-factor values with previous theoreti-
cal predictions. In particular, for C3+ and O5+, our results are
in excellent agreement with but five to ten times more precise
than our earlier results in Ref. [17]. For Si11+ and Ca17+,
our total g-factor values are in agreement with the previous
theoretical results of Volotka and co-workers [5,16]. We note,
however, that some tension exists between the calculations
on the level of individual contributions. Specifically, the total
electron-electron interaction correction for silicon in Ref. [5]
is reported as 314.812(3) × 10−6, whereas our calculation
yields 314.806(2) × 10−6. This deviation disappears when the
electron-structure correction is combined with the 1/Z QED
contribution.

Table IV also compares the obtained theoretical predictions
with experimental results available for two Li-like ions, Si11+

and Ca17+. In both cases theoretical values deviate from the

TABLE IV. Binding corrections to the g factor of the ground state of Li-like ions, in units of 10−6. The sum of all binding contributions is
the difference of the atomic g factor and the free-electron g factor, ge = 2.002 319 304 361 5(6) [27].

Effect Contribution 12C3+ 16O5+ 28Si11+ 40Ca17+

electronic structure 1/Z0 −319.6997 −568.6205 −1745.2493 −3573.9891
electronic structure 1/Z1 137.4194 183.3202 321.5908 461.1500
electronic structure 1/Z2 −6.8363(3) −6.8436(2) −6.8787(1) −6.9341(3)
electronic structure 1/Z3+ 0.1478(6) 0.1377(8) 0.0942(15) 0.0695(25)

one-loop QED 1/Z0 0.1978 0.3629 1.2244 2.7349
one-loop QED 1/Z1 −0.0974(7) −0.1329(5) −0.2460(6) −0.3675(6)
one-loop QED 1/Z2+ 0.0091(1) 0.0092(2) 0.0096(6) 0.0100(11)

recoil 1/Z0 0.0219 0.0293 0.0515 0.0742
recoil 1/Z1 −0.0075 −0.0076 −0.0076 −0.0076
recoil 1/Z2+ −0.0005 −0.0004 −0.0003 −0.0002

two-loop QED 1/Z0 −0.0003 −0.0005 −0.0017 −0.0044(3)
two-loop QED 1/Z1 0.0001 0.0002 0.0003(1) 0.0005(4)

finite nuclear size 1/Z0 0.0001 0.0002 0.0026 0.0144
finite nuclear size 1/Z1 −0.0001 −0.0005 −0.0020(1)

radiative recoil 1/Z0 −0.0001

total theory g − ge −188.8455(10) −391.7458(10) −1429.4107(17) −3117.2515(27)
total theory g 2 002 130.4588(10) 2 001 927.5585(10) 2 000 889.8937(17) 1 999 202.0529(27)

previous theory g 2 002 130.457(5)a 2 001 927.558(10)a 2 000 889.8944(34)b 1 999 202.041(13)c

experiment g 2 000 889.888 45(14)b 1 999 202.0406(11)d

experiment 2 000 889.8884(19)e

aReference [17].
bReference [5].
cReference [16].
dReference [2].
eReference [22].
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experimentally observed g factors, by 3.1σ for silicon and
4.2σ for calcium. The discrepancy grows with the increase
of Z . Such an effect could be caused by some unknown con-
tribution missing in theoretical calculations.

The largest uncertainty in the theoretical predictions for
Li-like silicon and calcium presently comes from the higher-
order electron correction ∼1/Z3. This contribution cannot be
calculated rigorously to all orders in Zα but needs to be treated
by approximate methods or within the Zα expansion. It should
be pointed out that our calculations and those by Volotka and
co-workers [5,16] use different approaches for handling this
correction. Our result is based on the Zα expansion, whereas
Volotka and co-workers used screening potentials in the two-
photon-exchange calculations and explicitly computed the
three-photon-exchange contribution within the Breit approxi-
mation [5]. The Zα-expansion approach is most suitable in the
low-Z region, whereas the screening-potential method is ad-
vantageous for high-Z ions. For light ions, the Zα-expansion
results can be improved further, by performing the NRQED
calculation of the next-order terms in the α expansion.

Summarizing, we performed calculations of the two-
photon-exchange corrections to the g factor of the ground state
of Li-like ions without an expansion in the nuclear binding
strength parameter Zα. The calculations were carried out in
two gauges, the Feynman and the Coulomb ones, thus al-
lowing an explicit test of the gauge invariance. In the low-Z
region, the obtained results were checked against those de-
livered by two different and independent methods, namely,
the relativistic many-body perturbation theory with a partial
inclusion of the negative-energy states and the nonrelativistic
quantum electrodynamics. It was demonstrated that all three
methods yield consistent results in the limit of small nuclear
charges.

Our calculation improved the overall accuracy of theo-
retical predictions of the g factor of Li-like ions, especially
in the low-Z region. Agreement with previous theoretical
calculations has been found. However, the theoretical predic-

tions were shown to deviate from the experimental results
for Li-like silicon and calcium, by approximately three and
four standard deviations, respectively. The reason for these
discrepancies is not known at present, but is likely to be on
the theoretical side. This is indicated by the consistency of
two experimental results for Li-like silicon and also by a
systematic deviation of theoretical predictions from the exper-
imental results for Li-like silicon and calcium. We conclude
that further work is needed in order to find the reasons behind
the observed discrepancies.
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APPENDIX A: POLE TERMS AND SUBTRACTIONS
IN PRINCIPAL-VALUE INTEGRALS

In this Appendix we present explicit formulas used in
the present work to numerically evaluate integrals with
poles separated by the infinitesimal small additions from the
integration contour. The evaluation procedure is as follows.
First, we use the Sokhotsky-Plemelj formula

1

z + i0
= P

1

z
− iπδ(z) (A1)

to convert integrals with poles near the integration contour to
the principal-value integrals. Next we expand the numerator of
the integrand in a Taylor series in the vicinity of the poles and
determine the subtractions that remove singularities from the
integrand. Finally, we readd the subtractions and perform the
principal-value integrals analytically. In the Lamb-shift calcu-
lations, we encounter the integrals of three types, evaluated as

∫ b

a
dω

F (ω)

(�1 − ω + i0)(�2 + ω + i0)
=

�1 �=−�2

−iπ
F (�1)

�1 + �2
δ�1∈(ab) − iπ

F (−�2)

�1 + �2
δ−�2∈(ab)

+ F (�1)

�1 + �2
ln

∣∣∣∣a − �1

b − �1

∣∣∣∣ + F (−�2)

�1 + �2
ln

∣∣∣∣b + �2

a + �2

∣∣∣∣
+

∫ b

a
dω

[
F (ω)

(�1 − ω)(�2 + ω)
− F (�1)

(�1 + �2)(�1 − ω)
− F (−�2)

(�1 + �2)(�2 + ω)

]
,

(A2)∫ b

a
dω

F (ω)

(�1 − ω + i0)(�2 − ω + i0)
=

�1 �=�2

−iπ
F (�1)

�2 − �1
δ�1∈(ab) − iπ

F (�2)

�1 − �2
δ�2∈(ab)

+ F (�1)

�2 − �1
ln

∣∣∣∣a − �1

b − �1

∣∣∣∣ + F (�2)

�1 − �2
ln

∣∣∣∣a − �2

b − �2

∣∣∣∣
+

∫ b

a
dω

[
F (ω)

(�1 − ω)(�2 − ω)
− F (�1)

(�2 − �1)(�1 − ω)
− F (�2)

(�1 − �2)(�2 − ω)

]
,

(A3)∫ b

a
dω

F (ω)

(�−ω+i0)2
= iπF ′(�)δ�∈(ab) + F (�)

[
1

a−�
− 1

b−�

]
+ F ′(�) ln

∣∣∣∣b−�

a−�

∣∣∣∣ +
∫ b

a
dω

F (ω)−F (�)−(ω−�)F ′(�)

(�−ω)2
.

(A4)
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Here δ�∈(ab) is 1 if � ∈ (ab) and 0 otherwise. Note that the
integrals on the right-hand side of the above identities are
regular, without any need to assume the principal value. In
order to determine the subtractions in the integrand, we use,
e.g., for Eq. (A2), that

F (ω)

(�1 − ω)(�2 + ω)
= 1

�1 + �2

(
F (ω)

�1 − ω
+ F (ω)

�2 + ω

)
(A5)

and then expand the numerators on the right-hand side in the
vicinity of the corresponding poles.

Calculations for the g factor require formulas with higher
powers of denominators. Such formulas can be obtained by
formal differentiation of the above identities over the �.

APPENDIX B: MATRIX ELEMENTS OF THE
ELECTRON-ELECTRON INTERACTION IN THE

COULOMB GAUGE

The electron-electron interaction operator in the Coulomb
gauge is given by Eq. (7). The matrix element of this operator

is conveniently expressed in the standard two-body-operator
form that separates the angular and radial parts

〈ab|ICoul(ω)|cd〉 =
∑

L

JL(abcd )RCoul
L (ω, abcd ), (B1)

where JL contains the dependence on the angular momentum
projections and RCoul

L is the radial integral,

JL(abcd ) =
∑
mL

(−1)L−mL+ jc−mc+ jd −md

2L + 1

× CLmL
jama, jc−mc

CLmL
jd md , jb−mb

, (B2)

with Clm
l1m1,l2m2

the Clebsch-Gordan coefficients. Formulas for
the radial integral in the Coulomb gauge were derived in
Ref. [35]. For our purposes it is convenient to express them
in a form similar to the Feynman-gauge radial integrals [36],

RCoul
J (ω, abcd ) =

∫ ∞

0
dx1dx2(x1x2)2

{
(2J + 1)(−1)JCJ (κa, κc)CJ (κb, κd )gJ (0, x1, x2)Wac(x1)Wbd (x2)

−
J+1∑

L=J−1

(−1)LaJLgL(ω, x1, x2)Xac,JL(x1)Xbd,JL(x2) − (−1)J
√

J (J + 1)[gret
J (ω, x1, x2)Xac,JJ+1(x1)Xbd,JJ−1(x2)

+ gret
J (ω, x2, x1)Xac,JJ−1(x1)Xbd,JJ+1(x2)]

}
, (B3)

where gl (ω, x1, x2) = iω jl (ωx<)h(1)
l (ωx>), the coefficients aJL are given by

aJL =

⎧⎪⎨⎪⎩
J + 1 for L = J − 1

2J + 1 for L = J

J for L = J + 1,

(B4)

and

gret
l (ω, x1, x2) =

{
iω jl+1(ωx<)h(1)

l−1(ωx>) for x1 < x2

iω jl−1(ωx<)h(1)
l+1(ωx>) − 2l+1

ω2
xl−1
<

xl+2
>

for x1 > x2.
(B5)

Furthermore,

Xac,ll ′ (r) = ga(r) fc(r)Sll ′ (−κc, κa) + fa(r)gc(r)Sll ′ (κc,−κa), (B6)

Wac(r) = ga(r)gc(r) + fa(r) fc(r), (B7)

and the standard angular coefficients Sll ′ and Cl are defined by Eqs. (A7)– (A10) of Ref. [36].
We note that the function gret

l has a finite limit at ω → 0, as the 1/ω2 term cancels with the first term of the small-argument
expansion of the spherical Bessel functions. The limiting form is

gret
l (0, x1, x2) =

{
0 for x1 < x2

− 1
2

(
xl−1
<

xl
>

− xl+1
<

xl+2
>

)
for x1 > x2.

(B8)

The presence of the spurious singularity at ω → 0 leads to numerical instabilities in the computation gret
l at small ω, especially

when evaluating the derivatives I ′(ω) and I ′′(ω). In order to facilitate computations for small ω, we introduce regularized
functions jl and hl , separating the first term of the small-argument expansion, as

jl (z) ≡ zl

(2l + 1)!!
+ jl (z), (B9)
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h(1)
l (z) ≡ (2l − 1)!!

izl+1
+ h

(1)
l (z). (B10)

We thus obtain a regular representation for gret
l , which is suitable for a numerical evaluation,

gret
l (ω, x1, x2) = iω

{
jl+1(ωx<)h(1)

l−1(ωx>) for x1 < x2

jl−1(ωx<)h(1)
l+1(ωx>) + (ωx< )l−1

(2l−1)!! h
(1)
l+1(ωx>) for x1 > x2.

(B11)

In the computation of the second derivative of gret
l over ω, we had to separate out the first two terms of the small-argument

expansion of the spherical Bessel functions, in order to achieve an explicit cancellation of singular terms.
We note that when the matrix element 〈ab|ICoul(ω)|cd〉 is calculated with eigenfunctions of the one-particle Dirac Hamiltonian

hD, it can be simplified by using the commutator relation −iα · ∇eiωx12 = [hD, eiωx12 ], where [,] denotes the commutator. In this
case, we immediately have

〈ab|ICoul(ω)|cd〉 = α〈ab|
[

1

x12
− α1 · α2

ei|ω|x12

x12
− (εa − εc)(εb − εd )

ω2

ei|ω|x12 − 1

x12

]
|cd〉, (B12)

and thus the Coulomb-gauge matrix element is expressed in terms of the Feynman-gauge matrix elements. The above expression
is convenient by its simplicity but it has a spurious singularity at ω → 0 that might lead to numerical instabilities in practical
calculations. This form of the Coulomb matrix element proved to be very useful for demonstrating the gauge invariance of
photon-exchange corrections [37,38].
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