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We present a systematic study of the anisotropy and polarization of x-ray line emissions in KLL dielectronic
recombination of hydrogenlike Fe25+ ions. For the KLL dielectronic recombination considered, it consists of a
resonant electron capture plus a two-step radiative decay. While the anisotropy and polarization of the first-step
decay photons are calculated by using the flexible atomic code, those of the second-step decay photons are
obtained with two methods, i.e., the formalism of the deorientation factor and density matrix theory. Resonance
strengths are presented as well to synthesize the dielectronic satellite line spectra. The synthetic spectra
including the correction of anisotropy and polarization effects show better agreement with existing experiments
than previous calculations. This indicates that these effects are important for the intensity distribution of the
dielectronic satellite lines.
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I. INTRODUCTION

The Kα lines of highly charged Fe ions are of great interest
and importance in the fields of astrophysics and astronomy.
Owing to their high relative abundance, high transition rate,
and low intergalactic absorption, the Fe Kα lines constitute
the most prominent feature of astrophysical x-ray spectra.
They are encoded with a variety of rich physical dynamics
information and are often used to study x-ray binaries [1] and
active galactic nuclei [2–4]. From their generation to being ob-
served, they usually travel a long journey in the universe, i.e.,
passing by massive celestial objects and/or passing through
interstellar dust, all of which will leave imprints on their
feature. Therefore, the Fe Kα lines are also often used to study
gravitational lenses [5], interstellar polarization [6], and other
effects [7,8].

The x-ray lines observed in the field of astrophysics may be
polarized, especially when emitted from anisotropic plasmas.
Anisotropic plasmas exist widely in solar flares [9], pulsars
[10], and neutron stars [11], as well as around accreting black
holes [12]. Polarization can provide insight into the geometric
information on the direction in which x-ray lines are gener-
ated. Therefore, it can be used to reveal the orientation of
electron or ion beams and magnetic field in plasmas. It is also
closely related to some interesting astronomical phenomena
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[13,14]. Since its first observation streaming from the Crab
Nebula [15], polarization of x rays has always attracted a great
deal of attention from astronomers. For example, it can be
used to determine the axis of a spinning pulsar [16]. Moreover,
most of the mysterious fast radio bursts [17] are also strongly
linearly polarized.

To explain polarized spectral lines, a profound understand-
ing of the population mechanism of excited states is required.
Usually, directional particle-beam collision excitation [18,19],
dielectronic recombination (DR) [20], etc., may generate po-
larized lines.

Dielectronic recombination is one of the important
electron-ion collision processes in hot plasmas. As a domi-
nant recombination process, DR possesses large total cross
sections which are several orders of magnitude larger than
other recombination processes. Therefore, it can significantly
affect the ionization balance and energy-level population of
hot plasmas. Furthermore, the doubly excited states formed
in the DR process are mainly stabilized by radiative decay
rather than Auger decay, especially for highly charged heavy
ions. As a consequence, the line emissions due to DR strongly
affect the Kα spectral lines in hot plasmas. In addition, due to
a strong sensitivity of dielectronic satellite lines to tempera-
ture and density, they have been intensively used in diagnosing
the properties of hot plasmas in astrophysics [21], tokamaks
[22,23], and inertial confinement fusion [24].

Recently, anisotropy and polarization of dielectronic satel-
lite lines have attracted attention due to the potential
applications in both atomic collisions and plasma diagnosis.
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For instance, anisotropy measurement of spectral lines has
been used to study the details of electron-electron interactions
in DR. A dominant contribution of the Breit interaction was
theoretically predicted by Fritzsche et al. [25], which was
soon demonstrated by Hu et al. [26,27]. To understand the
underlying mechanism of the unexpected effect caused by the
Breit interaction, polarization and anisotropy measurements
of spectral lines following DR into highly charged ions were
also made by Jörg et al. [28], Shah et al [29], and Amaro
et al. [30]. Moreover, Tong et al. [31] and Li et al. [32]
performed detailed theoretical analyses on this issue, and a
comprehensive review was presented by Nakamura [33]. Be-
sides the Breit interaction, Shah et al. [34] also investigated
higher-order resonant contributions to x-ray line polarization
and claimed that polarization measurement could be a useful
approach to diagnose the electron temperature of hot plasmas.
Furthermore, Shah et al. [35] stated that polarization of DR
satellite lines could be used in diagnosing anisotropies of hot
celestial plasmas.

Note that all the studies mentioned above are only for
heliumlike and higher-Z-like ions. In addition, Zakowicz et al.
[36] calculated the angular distribution and correlation of the
two-step decay photons emitted in the KLL DR of hydro-
genlike ions, in which only the electric dipole (E1) channel
was taken into account. Later on, Fritzsche et al. and Matula
et al. performed a series of calculations of this kind [37–39]
within the framework of the density matrix theory [40].
These calculations show that a multipole mixing between the
dominant E1 and higher-order radiative decay channels can
significantly change the angular distribution and polarization
properties for high-Z ions. Up to the present, however, there
are no experimental measurements to confirm these theo-
retical calculations. Furthermore, DR resonance strengths of
hydrogenlike ions have been measured for argon [41], tita-
nium [42,43], krypton [44], and uranium [45]. Apart from
the measurement for hydrogenlike uranium [45], the others
need an anisotropy correction in simulating the corresponding
DR resonance strengths because the x rays were observed
at specific angles. A highly-spectra-resolved measurement of
dielectronic satellite lines of hydrogenlike iron has been done
by Nakamura et al. [46]. Nevertheless, the anisotropy and
polarization effects could not be considered at that time and
thus a large deviation between experiment and theory was
shown.

In the present work we study the KLL DR spectra of
hydrogenlike iron. We focus on the anisotropy and polar-
ization of the DR spectral lines. To do so, DR resonance
strengths are calculated using the flexible atomic code (FAC)
[47]. The anisotropy and polarization are calculated taking
into account both the multipole effect and the relativistic
effect due to the Breit interaction in order to compare with
the experimental line intensity measured by a polarization-
sensitive crystal spectrometer at an electron beam ion trap.
The present theoretical line intensity is given by multiplying
the DR resonance strength, anisotropy, and correction factor
of crystal diffraction. The synthetic spectrum is obtained by
convolving the theoretical line intensity with the experimental
resolution and the natural width of lines, which generally
reproduces experimental spectrum within the experimental
uncertainty.

II. THEORY

In general, DR is considered as a two-step resonant radia-
tive recombination process, i.e., resonant dielectronic capture
plus subsequent radiative stabilization. To be specific, a free
electron with appropriate kinetic energy is captured by an ion
Aq+ with charge state q along with an excitation of an inner-
shell electron, resulting in the ion being in a doubly excited
state A(q−1)+∗∗. Subsequently, the ion in the doubly excited
state decays into a singly excited state by first-step radiative
transition and it decays further by second-step transition if
there is still an inner-shell vacancy left. For the KLL DR of
hydrogenlike ions considered herein, it can be expressed as

e + Aq+(1s) → A(q−1)+∗∗(2l2l ′)

→ A(q−1)+∗(1s2l ′) + h̄ν

→ A(q−1)+(1s2) + h̄ν + h̄ν ′. (1)

Two photons with slightly different energies are emitted in this
process, in which the first-step photon h̄ν is emitted from the
transition between the doubly excited state |d〉 and the singly
excited state |s〉, and the second-step one (h̄ν ′) is emitted in
the decay from the singly excited state |s〉 to the ground state
|g〉.

A. Resonance strength

The resonance strength of an isolated DR from an initial
state |i〉 via a doubly excited state |d〉 to a singly excited state
|s〉 can be expressed as

Sids =
∫ ∞

0
σids(E )dE = gd

2gi

π2h̄3Aa
di

meEr

Ar
ds∑

Ar + ∑
Aa

, (2)

where Er is the resonant energy, h̄ is the reduced Plank con-
stant, me is the electron mass, gd and gi are the statistical
weights of the states |d〉 and |i〉, respectively, Ar

ds is the Ein-
stein coefficient for spontaneous emission from the state |d〉
to the state |s〉, and Aa

di is the autoionization rate from the state
|d〉 to |i〉. The summation runs over all the possible autoion-
ization and radiative decay channels from the doubly excited
state |d〉.

B. Alignment and its transfer in cascade decay

Alignment parameters are often used to describe the mag-
netic sublevel population of excited ions, which determine
the polarization and angular distribution of the spectral lines
emitted in the radiative decay of the ions. The alignment
parameters are angle dependent, but only the values at the
direction perpendicular to the electron beam (ϑ = 90◦ and
ϕ = 0) are discussed in this work. Specifically, the alignment
parameters of the doubly excited state can be expressed in
terms of the population density of the magnetic sublevels [48]

Ad
k =

∑
Md

(−1)Jd +Md [(2k + 1)(2Jd + 1)]1/2

×
(

Jd Jd k
−Md Md 0

)
σMd . (3)

Here k is the rank, Jd is the total angular momentum of the
intermediate doubly excited state |d〉, σMd is the population
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density of the sublevel |Jd Md〉 normalized with
∑

Md
σMd = 1,

Md is the magnetic quantum number ranging from −Jd to Jd

with an interval 1, and (· · ·· · ·) denotes the Wigner 3 j symbol.

The singly excited state |s〉 would be still aligned if its
angular momentum is greater than one after the first-step ra-
diative decay. In this case, the alignment of the singly excited
state |s〉 is determined by the first-step radiative decay from
the doubly excited state |d〉, and the corresponding alignment
transfer can be described by the deorientation factor [48]

Uk (Jd , Js, L) = (−1)Jd +Js+k+L[(2Jd + 1)(2Js + 1)]1/2

×
{

Jd Jd k
Js Js L

}
. (4)

Here Jd and Js are the total angular momenta of the doubly and
singly excited states, respectively. L = 1 for E1 and magnetic
dipole (M1) transitions, while L = 2 for magnetic quadrupole

(M2) transitions. {· · ·· · ·} denotes the Wigner 6 j symbol. With

the use of the deorientation factor (4), the alignment parame-
ters of the singly excited state |s〉 can be written as

As
k = Ad

kUk (Jd , Js, L), (5)

where Ad
k is the alignment parameters (3) of the doubly ex-

cited state |d〉.
Alternatively, within the framework of the density matrix

theory, the alignment parameters of the singly excited state |s〉
following the first-step radiative decay can also be given by
[39]

As
k2q2

= W −1
1st

∑
k1k

gds
k1k2kAd

k

×〈k1 − q2k2q2|k0〉Yk1,−q2

(π

2
, 0

)
. (6)

Here W1st is the angular distribution coefficient of the first-step
decay photons, 〈k1 − q2k2q2|k0〉 is the Clebsch-Gordan coef-
ficient, Yk1,−q2 ( π

2 , 0) are the spherical harmonics, and gds
k1k2k is

the so-called generalized structure function [39], which for a
particular radiative transition |d〉 → |s〉 can be expressed as

gds
k1k2k = 1

4
√

π
[Jd , Js]

1/2(−1)L+1[1 + (−1)k1 ][k2, L, L]1/2

×〈L1L − 1|k10〉
⎧⎨
⎩

Jd Jd k
Js Js k2

L L k1

⎫⎬
⎭. (7)

Here [a, b, c, . . .] ≡ (2a + 1)(2b + 1)(2c + 1) · · · , {· · ·· · ·· · ·} is

the Wigner 9 j symbol, k2 (=2, 4, . . .) is the multipole order
corresponding to the second-step decay photons, and the k1

are even integers restricted by |k − k2| � k1 � k + k2.

C. Anisotropy and polarization of x-ray line emissions

The anisotropy of emitted x-ray lines can be described by
the corresponding angular distribution coefficient, which is
generally expressed as

W = 1 +
∑

k=2,4,...

k∑
q=−k

√
4π

2k + 1
βkqYk,q(ϑ, ϕ), (8)

with

βkq = fkAkq. (9)

Here fk is the structure function of the corresponding radiative
transition and is given by [39]

fk =
√

4π
√

2k + 1gk0k . (10)

For the first-step radiative decay, due to an axial symmetry
of the decay system, only Ad

k0 with a zero component is non-
vanishing. Therefore, the corresponding angular distribution
coefficient at the direction perpendicular to the electron beam
can be simplified to be

W1st = 1 − 1
2αds

2 Ad
2 + 3

8αds
4 Ad

4 . (11)

Here αk is the intrinsic anisotropy parameter [49,50]

αk (Ji, Jf , L) = (−1)Ji+Jf −1
√

(2k + 1)(2Ji + 1)(2L + 1)

×
(

L L k
1 −1 0

){
L L k
Ji Ji Jf

}
. (12)

It should be noted that αk is nonvanishing only when k is less
than twofold the total angular momentum of the upper level
of the transition, i.e., k � 2Ji.

For the second-step radiative decay, the calculation of the
corresponding angular distribution coefficient is similar to that
for the first-step one if the deorientation factor (4) is used and
the parameters Ad

k and αds
k are replaced with As

k and α
sg
k ,

respectively. Moreover, the angular distribution coefficient
corresponding to the second-step decay can be calculated also
by using the density matrix theory, although such a calculation
becomes relatively complex. For this case, all the alignment
parameters As

kq with both zero and nonzero components are
required as the decay system loses its axial symmetry due to
the first-step radiative decay and therefore the corresponding
angular distribution coefficient at the direction perpendicular
to the electron beam reads

W2nd = W1st

{
1 + α

sg
2

√
4π

5

2∑
q=−2

As
2qY2q

(π

2
, 0

)

+α
sg
4

√
4π

9

4∑
q=−4

As
4qY4q

(π

2
, 0

)}
. (13)

It should be noted that for transitions with Jd < 2 or via dipole
channels, the third term in Eqs. (11) and (13) disappears.

Apart from the angular distribution coefficient, the degree
of linear polarization of the first-step photons can be expressed
as

P = ∓ 3αds
2 Ad

2

2 − αds
2 Ad

2

, (14)

where the minus (plus) sign corresponds to E1 (M1) tran-
sitions. Moreover, for quadrupole radiative transitions, the
degree of linear polarization is given by

P = ± 12αds
2 Ad

2 + 5αds
4 Ad

4

8 − (
4αds

2 Ad
2 − 3αds

4 Ad
4

) . (15)

Here the plus (minus) sign corresponds to E2 (M2) transi-
tions.
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For the second-step radiative decay, the calculation of the
degree of linear polarization is similar to that for the first-step
one if the deorientation factor is used, but it is relatively
complex if using density matrix theory. Specifically, for dipole
photons it can be expressed as [50]

P = ∓
√

3
2α

sg
2

∑
qAs

2q

[
D2∗

q2

(
0, π

2 , 0
) + D2∗

q−2

(
0, π

2 , 0
)]

1 + α
sg
2

√
4π
5

∑
qAs

2qY2q
(

π
2 , 0

) .

(16)
In this expression, Dk

mn denotes the Wigner D function and
the minus (plus) sign corresponds to E1 (M1) transitions. For
quadrupole decay photons, moreover, their degree of linear
polarization is given by

P = ±
{√

3

2
α

sg
2

2∑
q=−2

As
2q

[
D2∗

q2

(
0,

π

2
, 0

)
+ D2∗

q−2

(
0,

π

2
, 0

)]

−
√

5

8
α

sg
4

4∑
q=−4

As
4q

[
D4∗

q2

(
0,

π

2
, 0

)
+ D4∗

q−2

(
0,

π

2
, 0

)]}

× 1

W
. (17)

Again, the plus (minus) sign corresponds to E2 (M2) transi-
tions and W is given by Eq. (13).

III. CALCULATION

A. Configuration-interaction method and Breit interaction

The present calculation is implemented by using the FAC

package based on the configuration-interaction method. In
this method, an atomic-state function (ASF) with parity 	,
total angular momentum J , magnetic quantum number M, and
additional quantum numbers γ for a unique specification of
the state is expressed as a linear combination of configuration-
state functions (CSFs) with the same 	JM as follows:

�(γ	JM ) =
n∑

r=1

cr�(γr	JM ). (18)

Here n is the number of CSFs used for constructing the ASF;
cr denotes the configuration mixing coefficients, which are
obtained by diagonalizing the model Hamiltonian matrix. The
CSFs are constructed as an antisymmetrized sum of the prod-
ucts of one-electron Dirac spinors. In the present calculation,
all the configurations nlnl with n and n′ up to 7 are taken into
account.

Moreover, the Hamiltonian of an atomic or ionic system
with N electrons can be expressed in atomic units as

H =
N∑

i=1

HD(i) +
N∑

i< j

V ee
i j , (19)

where HD(i) is the Dirac Hamiltonian of the ith electron and
V ee

i j is the interaction potential between the ith and jth elec-
trons. Usually, the Coulomb interaction V C

i j = 1/ri j between
electrons dominates V ee

i j . However, for highly charged ions the
well-known Breit interaction could greatly modify the inter-
electronic interaction, resulting in a drastic change of atomic

structure and properties [51]. The Breit interaction consists of
two parts, i.e., the magnetic interaction

V mag
i j = −αi · α j

cos(ωi j ri j )

ri j
(20)

and the retardation interaction

V ret
i j = (αi · ∇i )(α j · ∇ j )

cos(ωi j ri j ) − 1

ω2
i j ri j

, (21)

where αi are the Dirac matrices, ri j is the interelectronic
distance, and ωi j denotes the frequency of the exchanged
virtual photon. By including the Breit interaction in the in-
terelectronic interaction, the so-called Dirac-Coulomb-Breit
Hamiltonian can be obtained as

HDCB =
N∑

i=1

HD(i) +
N∑

i< j

(
V C

i j + V mag
i j + V ret

i j

)
, (22)

which is used in the present calculations to include the contri-
bution of the Breit interaction.

B. Relative intensity of x-ray line emission

For the first-step radiative decay, the intensity I1st of emis-
sion line is related to the resonance strength Sidf as

I1st ∝ Sids · W1st, (23)

where W1st is the angular distribution coefficient of the first-
step photons at the direction perpendicular to the electron
beam. However, for the second-step decay the intensity I2nd

of the associated emission line is given by

I2nd ∝ Sids · B · W2nd, (24)

where W2nd is the angular distribution coefficient of the
second-step photons at the direction perpendicular to the elec-
tron beam, which is calculated by taking the cascade effect
into account, and B is the branching ratio of the transition
from the singly excited state |s〉 to the ground state |g〉 and
can be expressed as

B = Ar
sg∑
Ar

. (25)

Since the emitted x-ray lines may be anisotropic and polar-
ized, the observed spectra should be adjusted by accounting
for the efficiency dependence of the crystal spectrometer used
on polarization. The intensity of x-ray spectral lines observed
with the crystal spectrometer at 90◦ relative to the electron
beam direction is given by [48]

Iobs = R‖I‖ + R⊥I⊥. (26)

Here I‖ and I⊥ are intensity components of the lines defined
by the electric field vector parallel and perpendicular to the
electron beam, respectively, and R‖ and R⊥ are the integrated
reflectivity of crystal for x rays polarized parallel and per-
pendicular to the plane of dispersion (note that this plane is
perpendicular to the electron beam), respectively. By means
of the intensity components I‖ and I⊥, the degree of linear
polarization of the x-ray lines emitted at 90◦ relative to the
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electron beam can be also defined as

P = I‖ − I⊥
I‖ + I⊥

, (27)

while the total intensity of the emission lines is given by

I = I‖ + I⊥. (28)

Therefore, the observed intensity of x-ray lines with the crys-
tal spectrometer can be obtained as

Iobs = I

2
[1 + P + R(1 − P)]R‖, (29)

where R = R⊥/R‖ and it depends on the Bragg angle θB (or,
equivalently, on the photon energy E ). For the energy range
that we are interested in, the following linear dependence of R
on the Bragg angle θB is considered:

R = 1.393 96 − 0.030 85 · θB. (30)

This dependence is obtained by linearly fitting the calculated
values with x-ray oriented program software [52] at some data
points, which is in good agreement with that from Beiersdor-
fer et al. [48].

C. Synthesis of spectra

For comparing with experimental spectra, the theoreti-
cal intensities of x-ray lines obtained herein are convolved
with the experimental resolution. Moreover, since the higher-
multipole decay channels in radiative transitions can interfere
with the E1 one and thus may cause a strong anisotropy
for some x-ray lines in high-Z ions but less pronounced in
medium-Z ions [39], only the contributions of higher mul-
tipole are incorporated in obtaining synthetic spectra. After
considering the discussion above, the synthetic spectra can be
given by

L(E ) =
∑

all lines

Iobs · V (E ), (31)

where the summation runs over all the lines involved and
V (E ) is the Voigt profile function

V (E ) = 2 ln 2

π
√

π

�

w2

∫ ∞

−∞

e−t2

(x − t )2 + a2
dt . (32)

In this function, a =
√

ln2�
w

, x = 2
√

ln2(E−E0 )
w

, and � is the nat-
ural width of transition lines,

� = h̄(A1 + A2). (33)

Moreover, w is the energy resolution of the crystal spectrom-
eter and is given as

w = �θB

tan(θB)
E ≈ �x · E

D tan(θB)
, (34)

where �x is the source size and D is the work distance of the
crystal spectrometer.

IV. RESULTS AND DISCUSSION

The capture of a free electron in initially hydrogenlike
Fe25+ ions is the first step of the DR process, which brings the
ions into heliumlike Fe24+ ions in doubly excited states. The

0.0

6635.2

6663.9

6680.7

6699.0

13544.8

13568.2

13589.8

13617.3

13652.9

0.176 two-photon
decay

En
er

gy
 (e

V)

0.824

FIG. 1. Diagram of energy levels and dominant radiative tran-
sitions. The solid red arrows represent the transitions from doubly
excited states to singly excited states and the solid blue arrows
indicate those from singly excited states to ground states directly or
via some intermediate states. The dash-dotted black arrows label a
two-photon decay.

Fe24+ ions in doubly excited states decay radiatively to the
ground state via various singly excited states, leading to the
emission of two-step Kα photons. The dominant transitions
involved in the two-step radiative decay are diagramed in
Fig. 1. The red arrows indicate the first-step radiative decays
from doubly excited states to singly excited states, while the
blue arrows represent the second-step ones from the singly
excited states to the ground state directly or via some in-
termediate states. Moreover, the dash-dotted arrows indicate
two-photon decays, which will be discussed in Sec. IV B.

The DR resonance strengths of hydrogenlike Fe25+ ions are
obtained using the atomic data generated by the FAC package.
In the calculations, each of the DR processes for individual
channels is dealt with separately and the contributions from
higher multipoles are included. By considering the anisotropy
and polarization as well as the correction of polarization-
sensitive diffraction efficiency of the crystal spectrometer, the
synthetic spectra are obtained for comparison with the exper-
imental spectra [46]. In the experiment, hydrogenlike Fe25+
ions were produced by keeping the electron beam energy at
a 14 keV cooking energy for 300 ms. The electron beam
energy was then quickly switched to 5.5 keV and scanned
with a triangular waveform between 5.5 and 4.3 keV, which
covers the KLL DR resonances of hydrogenlike Fe25+. The
duration of the electron energy scan was 0.5 ms and then the
electron beam energy was quickly switched back to the 14
keV cooking energy and kept there for 7 ms. Every 1.5 s,
all the trapped ions were dumped to prevent accumulation of
unwanted ions.
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TABLE I. Calculated resonance strengths S1st, resonance energies Eres, photon energies h̄ν, branching ratios B from the doubly excited
state |d〉 to the singly excited state |s〉, angular distribution coefficients W at 90◦ relative to the electron beam, and correction factors Kc for the
crystal diffraction efficiency of the first-step photons. The doubly and singly excited states are indexed by the numbers before them. Here S1st

is in units of 10−20 cm2 eV and all the energies are in eV.

|d〉 |s〉 Transition Eres h̄ν B W S1st Kc

8 (2s2)0 6 (1s2p3/2)1 Kαh
1 4718.1 6845.8 0.131 1 1.174 0.798

12 (2p2
1/2)0 Kαh

1 4753.2 6881.0 0.019 1 0.003 0.795
14 (2p1/22p3/2)2 Kαh

2 4769.7 6897.4 0.146 1.130 2.411 0.868
16 (2p2

3/2)2 Kαh
1 4790.6 6918.3 0.531 1.162 18.175 0.881

17 (2p2
3/2)0 Kαh

1 4826.2 6953.9 0.943 1 0.688 0.790
13 (2p1/22p3/2)1 5 (1s2p3/2)2 Kαh

2 4763.1 6909.2 0.415 0.998 0.010 0.792
14 (2p1/22p3/2)2 Kαh

2 4769.7 6915.8 0.422 0.870 5.356 0.698
16 (2p2

3/2)2 Kαh
1 4790.6 6936.7 0.172 0.838 4.246 0.670

10 (2s2p1/2)1 4 (1s2s)0 Kαh
2 4725.8 6886.2 0.033 0.936 0.069 0.750

15 (2s2p3/2)1 Kαh
1 4777.6 6937.9 0.576 1.498 12.276 1.000

8 (2s2)0 3 (1s2p1/2)1 Kαh
2 4718.1 6878.9 0.116 1 1.045 0.795

12 (2p2
1/2)0 Kαh

2 4753.2 6914.1 0.970 1 0.141 0.793
13 (2p1/22p3/2)1 Kαh

1 4763.1 6923.9 0.229 1.009 0.006 0.798
14 (2p1/22p3/2)2 Kαh

1 4769.7 6930.5 0.260 1.130 4.291 0.864
16 (2p2

3/2)2 Kαh
1 4790.6 6951.4 0.001 1.162 0.026 0.877

9 (2s2p1/2)0 1 (1s2s)1 Kαh
2 4721.0 6912.6 0.905 1 0.679 0.793

10 (2s2p1/2)1 Kαh
2 4725.8 6917.4 0.873 1.032 1.987 0.812

11 (2s2p3/2)2 Kαh
1 4741.5 6933.1 0.944 1.174 2.349 0.885

15 (2s2p3/2)1 Kαh
1 4777.6 6969.2 0.023 0.751 0.242 0.584

A. First-step radiative decays

The resonance strengths corresponding to the first-step ra-
diative decays are listed in Table I together with other atomic
parameters. As can be seen from the table, the resonant di-
electronic capture of hydrogenlike Fe25+ ions gives rise to
ten doubly excited states of the resulting heliumlike Fe24+
ions, which decay radiatively to five singly excited states by
emitting the first-step photons. Now we arrive at the obtained
branching ratios (BRs) of these doubly excited states to the
singly excited ones. It is found that except for the doubly
excited state (2s2)0 that has a relatively small total radiative
BR of 0.247 [consisting of 0.116 to (1s2p1/2)1 and 0.131 to
(1s2p3/2)1], the respective total BRs of other doubly excited
states are all larger than 0.5. For example, the total BRs of
the states (2p2

3/2)0 and (2p2
1/2)0 are nearly 1. This indicates

that the great majority of the doubly excited states decay
radiatively instead of nonradiatively. It should be noted that
all radiative transitions from those doubly excited states with
total angular momentum Jd = 0 have an angular distribution
coefficient of 1 as the states with Jd = 0 possess only one
magnetic sublevel. Moreover, both the radiative transitions
(2p2

3/2)2 → (1s2p3/2)1 and (2s2p3/2)1 → (1s2s)0 are found
to have the strongest resonance strengths and thus will con-
tribute dominantly to the x-ray spectra.

Figure 2 shows the first-step synthetic spectra obtained
herein together with the contributions from individual
transition components. As seen clearly from the figure,
there are seven peaks in the synthetic spectra. Except
for the two peaks centered at 1.787 and 1.792 Å, almost
every other peak corresponds to a single transition. It is
found that the peak at 1.787 Å consists of four transitions
(2p1/22p3/2)2 → (1s2p1/2)1, (2s2p3/2)2 → (1s2s)1,
(2p2

3/2)2 → (1s2p3/2)2, and (2s2p3/2)1 → (1s2s)0, while

the one at 1.792 Å mainly consists of five other
transitions (2p2

3/2)2 → (1s2p3/2)1, (2s2p1/2)0 → (1s2s)1,
(2s2p1/2)1 → (1s2s)1, (2p1/22p3/2)2 → (1s2p3/2)2, and
(2p2

1/2)0 → (1s2p1/2)1 and the contribution of other
transitions to this peak is almost negligible. For the two
peaks, the energies of their respective transition components
are too close to be resolved. Nevertheless, the contributions
from each individual transition component to these two peaks
are listed in Table II for further reference.

FIG. 2. The DR spectra obtained corresponding to the first-step
decay photons. The colored lines show the spectra associated with in-
dividual transitions, while the black line indicates the overall spectra.
For a clear display, the black line is shifted up by 0.05.
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TABLE II. Contribution of each individual transition to the two
main peaks centered at 1.787 and 1.792 Å

|d〉 |s〉 S1st Contribution

Peak at 1.787 Å (6938.11 eV)
14 (2p1/22p3/2)2 3 (1s2p1/2)1 4.291 18.53%
11 (2s2p3/2)2 1 (1s2s)1 2.349 10.14%
16 (2p2

3/2)2 5 (1s2p3/2)2 4.246 18.33%
15 (2s2p3/2)1 4 (1s2s)0 12.276 53.00%

Peak at 1.792 Å (6918.75 eV)
16 (2p2

3/2)2 6 (1s2p3/2)1 18.175 68.96%
9 (2s2p1/2)0 1 (1s2s)1 0.679 2.57%
10 (2s2p1/2)1 1 (1s2s)1 1.987 7.54%
14 (2p1/22p3/2)2 5 (1s2p3/2)2 5.356 20.33%
12 (2p2

1/2)0 3 (1s2p1/2)1 0.141 0.53%
others 0.016 0.07%

B. Second-step radiative decays

Due to the fact that there is still a vacancy left in the K
shell after the first-step radiative decay, a second photon will
be emitted in the second-step radiative decay from the singly
excited states to the ground state. As discussed above, ten
doubly excited states decay to five singly excited states, while
only four singly excited states decay to the ground state with
the emissions of the second-step x-ray photons. A special case
is that the singly excited state (1s2s)0 is strictly forbidden due
to the angular momentum and parity selection rules, although
it can decay to the ground state by simultaneously emitting
two E1 photons [53,54],

(1s2s)0 → (1s2)0 + h̄ν1 + h̄ν2. (35)

The two photons share the transition energy between the
states (1s2s)0 and (1s2)0, which have no contribution to the
second-step synthetic spectra. Another special case in the
second-step radiative decay is that the state (1s2p3/2)2 can
decay directly to the ground state or via the intermediate state
(1s2s)1 with a BR of 0.176 to the ground state (1s2)0, as
shown in Fig. 1. In the latter case, only the photons from the
transition (1s2s)1 → (1s2)0 contribute the second-step syn-
thetic spectra, but the photons emitted from the former step
[i.e., (1s2p3/2)2 → (1s2s)1] have no contribution to the spec-
tra since their much lower energy is out of the energy range
of the second-step spectra. Nevertheless, in the calculation of
the alignment parameters of the state (1s2s)1, the alignment
transfer from this transition should be considered.

For the alignment transfer from the doubly excited states to
the singly excited states, as well as from the transition men-
tioned above (1s2p3/2)2 → (1s2s)1, two methods are used
in the present calculations as discussed above. For the first
method, the alignment parameters of the singly excited states
are calculated by using the deorientation factor Uk [Eq. (4)]
and are listed in Tables III and IV. For some of the transitions
involved, only As

2 is not enough to obtain the corresponding
angular distribution coefficients W2nd. For the singly excited
states with total angular momentum J � 2, for instance, the
corresponding intrinsic anisotropy parameter α

sg
4 �= 0 and thus

As
4 is also required for the calculation of the angular distribu-

tion coefficients W2nd. The alignmentsAs
4 of the singly excited

TABLE III. Calculated alignment parameters for the doubly ex-
cited states |d〉 and the singly excited states |s〉. HereAd

2 is calculated
with Eq. (3), As

2 is calculated with the deorientation factor (5), and
As

2q(q = −2 to 2) is calculated with the density matrix theory (6).
(The parameters As

2±1 are all equal to zero and are not listed in the
table for brevity.)

|d〉 |s〉 Ad
2 As

2 As
2±2 As

20

8 (2s2)0 6 (1s2p3/2)1 0 0 0 0
12 (2p2

1/2)0 0 0 0 0
14 (2p1/22p3/2)2 −0.621 −0.367 −0.002 −0.001
16 (2p2

3/2)2 −0.775 −0.459 0.001 −0.023
17 (2p2

3/2)0 0 0 0 0
13 (2p1/22p3/2)1 5 (1s2p3/2)2 0.050 0.030 0 0.002
14 (2p1/22p3/2)2 −0.621 −0.310 −0.011 −0.047
16 (2p2

3/2)2 −0.775 −0.388 −0.016 −0.052
8 (2s2)0 3 (1s2p1/2)1 0 0 0 0
12 (2p2

1/2)0 0 0 0 0
13 (2p1/22p3/2)1 0.050 −0.025 0.001 −0.001
14 (2p1/22p3/2)2 −0.621 −0.367 −0.002 −0.001
16 (2p2

3/2)2 −0.775 −0.459 0.001 −0.023
9 (2s2p1/2)0 1 (1s2s)1 0 0 0 0
10 (2s2p1/2)1 0.183 −0.091 0.004 −0.004
11 (2s2p3/2)2 −0.830 −0.491 0.003 −0.030
15 (2s2p3/2)1 −1.407 0.704 −0.046 0.037

states obtained herein are listed in Table IV. One can see that
only the alignmentAs

4 of the singly excited state (1s2p3/2)2 is
nonzero, which is transferred from two doubly excited states
(2p1/22p3/2)2 and (2p2

3/2)2 separately. Besides the method of
the deorientation factor, the density matrix theory is also used
to calculate the alignment parameters of the singly excited

TABLE IV. Calculated alignment parameters for the doubly ex-
cited states |d〉 and the singly excited states |s〉. HereAd

4 is calculated
with Eq. (3), As

4 is calculated with the deorientation factor (5), and
As

4q(q = −4 to 4) is calculated with the density matrix theory (6).
(The parameters As

4±4, As
4±3, and As

4±1 are all equal to zero and are
not listed in the table for brevity.)

|d〉 |s〉 Ad
4 As

4 As
4±2 As

40

8 (2s2)0 6 (1s2p3/2)1 0 0 0 0
12 (2p2

1/2)0 0 0 0 0
14 (2p1/22p3/2)2 −0.966 0 −0.026 0.032
16 (2p2

3/2)2 −0.275 0 −0.003 0.004
17 (2p2

3/2)0 0 0 −0.003 0.004
13 (2p1/22p3/2)1 5 (1s2p3/2)2 0 0 0.001 −0.001
14 (2p1/22p3/2)2 −0.966 0.644 −0.026 0.032
16 (2p2

3/2)2 −0.275 0.183 −0.003 0.004
8 (2s2)0 3 (1s2p1/2)1 0 0 0 0
12 (2p2

1/2)0 0 0 0 0
13 (2p1/22p3/2)1 0 0 0 0
14 (2p1/22p3/2)2 −0.966 0 0.001 −0.001
16 (2p2

3/2)2 −0.275 0 −0.026 0.032
9 (2s2p1/2)0 1 (1s2s)1 0 0 0 0
10 (2s2p1/2)1 0 0 0 0
11 (2s2p3/2)2 −0.031 0 0 0
15 (2s2p3/2)1 0 0 −0.026 0.032
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FIG. 3. Same as Fig. 2 but for the second-step decay photons.

states. In the calculations, all tensor components are required
due to a breakage of the axial symmetry of the singly excited
states. In Tables III and IV we list the alignmentsAs

2q andAs
4q

of the singly excited states, respectively. As can be seen from
the tables, the alignment parametersAs

2q of the singly excited
states with zero angular momentum are zero, which are the
same as the results calculated with the deorientation factor.
In contrast, it is different from the case of As

4q. It should be
noted that the alignment parametersAd

2 of the doubly excited
states can affect the parametersAs

4q and this is different from
the case with the deorientation factor used, where As

4 only
depends on Ad

4 . Therefore, As
4q may be nonvanishing even if

Ad
4 is zero, which can be deduced from Eq. (6) and also can

be seen from the results listed in Table IV.
In order to synthesize the second-step spectra as shown

in Fig. 3, the resonance strengths, angular distribution coef-
ficients, and polarizations corresponding to the second-step
radiative decay are also calculated and are listed in Table V.
From this table one can find that the angular distribution
coefficients and polarizations calculated with the two methods
mentioned above are different, especially for the polariza-
tions. This difference intrinsically stems from the different
treatments for these parameters by the two methods. For the
method using the deorientation factor Uk [Eq. (4)], a relatively
simple formula is emplyed to calculate the angular distribu-
tion coefficients and polarizations. For a particular transition,
i.e., a particular intrinsic anisotropy parameter, the angular
distribution coefficient and polarization depend only on the
alignment parameters of the singly excited state. In contrast,
in the framework of the density matrix theory, the two parame-
ters are influenced also by the angular distribution coefficient
W1st of the first-step photon. Only the alignment parameter
with the component q2 = 0 (denoted by As

k to distinguish it
from that obtained by using the density matrix theory) is taken
into account in the first method and other components are ne-
glected. However, due to a lack of axial symmetry of the decay
system, all the components should be considered to describe
the singly excited states. Therefore, it is more appropriate
to use the density matrix theory to calculate the alignment
transfer. Moreover, the two methods treat the alignment trans-
fer in different ways. For the method using the deorientation
factor, a simple proportional relationship is used to describe
the alignment transfer from the doubly excited states to the
singly excited ones. However, in the density matrix theory,
Eq. (6) shows that the alignment transfer depends on both

TABLE V. Similar to Table I but for the second-step radiative decay from the singly excited states |s〉 to the ground state |g〉. Here W (U )
and P(U ) are the angular distribution coefficient and the degree of linear polarization calculated with the deorientation factor, respectively; W
and P have similar meanings but are calculated within the framework of the density matrix theory.

|d〉 |s〉 |g〉 h̄ν ′ B W (U ) W P(U ) P S2nd Kc

8 (2s2)0 6 (1s2p3/2)1 (1s2)0 6699.0 1 1 1 0 0 1.174 0.807
12 (2p2

1/2)0 1 1 1 0 0 0.003 0.807
14 (2p1/22p3/2)2 1 1.130 1.128 0.345 0.038 2.406 0.816
16 (2p2

3/2)2 1 1.162 1.173 0.419 0.285 18.344 0.874
17 (2p2

3/2)0 1 1 1 0 0 0.688 0.807
13 (2p1/22p3/2)1 5 (1s2p3/2)2 (1s2s)1 → (1s2)0 45.5 0.176 0.994 0.998 −0.019 −0.016 0.002 0.809

(1s2)0 6680.6 0.824 1.009 1 0.026 0 0.009 0.809
14 (2p1/22p3/2)2 (1s2s)1 → (1s2)0 0.176 1.065 0.874 0.183 0.437 0.947 0.819

(1s2)0 0.824 0.649 0.835 0.234 −0.087 4.233 0.788
16 (2p2

3/2)2 (1s2s)1 → (1s2)0 0.176 1.081 0.840 0.225 0.513 0.750 0.877
(1s2)0 0.824 0.811 0.831 −0.278 −0.671 3.468 0.650

8 (2s2)0 3 (1s2p1/2)1 (1s2)0 6665.9 1 1 1 0 0 1.045 0.809
12 (2p2

1/2)0 1 1 1 0 0 0.141 0.809
13 (2p1/22p3/2)1 1 1.009 1.010 0.026 0 0.006 0.809
14 (2p1/22p3/2)2 1 1.130 1.128 0.345 0.038 4.283 0.819
16 (2p2

3/2)2 1 1.162 1.173 0.419 0.285 0.027 0.877
9 (2s2p1/2)0 1 (1s2s)1 (1s2)0 6635.1 1 1 1 0 0 0.679 0.811
10 (2s2p1/2)1 1 1.032 1.037 −0.094 0 1.997 0.811
11 (2s2p3/2)2 1 1.174 1.189 −0.444 −0.368 2.380 0.722
15 (2s2p3/2)1 1 0.751 0.712 0.993 0 0.229 0.811
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FIG. 4. (a) Comparison of the synthetic spectra using the density
matrix theory with (blue solid line) and without (red dashed line)
taking anisotropy and correction of crystal diffraction into account.
(b) Comparison of the synthetic spectra using two methods, i.e., the
deorientation factor (magenta dotted line) and density matrix theory
(blue solid line). (c) Comparison of the synthetic spectrum using
density matrix theory with the calculation (pink dotted line) and
experimental results (gray solid line with open circles) in Ref. [46].

the observation angles and the angular distribution coefficients
W1st of the first-step photons. In fact, if one takes an integration
over the observation angles, Eq. (6) could be simplified to
Eq. (5) [39,50]. Furthermore, when neglecting the angular
distribution coefficients W1st of the first-step photon and other
q �= 0 components of As

kq, Eqs. (13), (16), and (17) in the
density matrix theory can be reduced to Eqs. (11), (14), and
(15), respectively, for the method using the deorientation fac-
tor. The above discussion suggests that the two methods are
consistent, but the method using the density matrix theory is
more complete, especially for a case where the symmetry is
broken.

By further comparing the angular distribution coefficients
calculated by using the two different methods, it can be found
that the difference is very small except for the singly excited
state (1s2p3/2)2, which is mainly due to a different treatment
of its alignment parameters with k2 = 4, while other singly
excited states are affected by only the alignment parameters
with k2 = 2 but not those with k2 = 4 as their angular mo-

menta are less than 2. Moreover, the polarizations obtained
with the two different methods show a distinct deviation.
Nevertheless, since the polarization correction to the crystal
diffraction efficiency is small, such a distinct deviation will
not cause a significant difference in the spectra obtained with
the two methods.

C. Synthetic spectra

By using the method described in Sec. III C, the over-
all synthetic spectra can be obtained, which are plotted in
Fig. 4. Figure 4(a) presents a comparison of the synthetic
spectra obtained herein using the density matrix theory with
(blue solid line) and without (red dashed line) taking the
anisotropy and correction of crystal diffraction into account.
For the case using the formalism of the deorientation factor,
the results are similar and are not shown in the figure for
clarity. In Fig. 4(b) we show the comparison of the synthetic
spectra obtained by the two methods mentioned above. One
can find that there is no significant difference between the
two theoretical spectra for the system of DR of hydrogenlike
Fe25+ ions. Figure 4(c) displays the final synthetic spectra
(including the anisotropy and correction of crystal diffraction)
together with that calculated by Nakamura et al [46] as well
as the experimental results [46] for comparison. As can be
seen clearly, the present theoretical simulation reproduces
very well the experimental results. It is also found that the
present results with the anisotropy and polarization correction
included agree much better with the experimental results than
the results without the correction [46]. For the first-step decay
photons, the main peaks are perfectly matched. In contrast,
a slight discrepancy is obtained for the second-step photons.
This can be explained partially by the poor statistics of the
experiment and maybe also by the fact that the interference be-
tween the two-step photons [36] is not included in the present
calculations.

V. CONCLUSION

The KLL DR of hydrogenlike Fe25+ ions has been stud-
ied by using the FAC package based on the relativistic
configuration-interaction method. In order to synthesize the
DR spectra and compare with the existing experimental re-
sults, the anisotropy and polarization of x-ray line emissions
were also investigated by considering an alignment transfer
from the doubly excited states to the singly excited states. The
alignment transfer was treated with two different methods,
that is, the formalism of the deorientation factor and the den-
sity matrix theory. It was found that the present DR synthetic
spectra reproduce very well the existing experimental results.
A slight discrepancy obtained between theory and experiment
could be due to the poor statistics of the experiment and the
interference between the two-step decay photons [36]. More
precise experiments are strongly required, in particular, for the
K-shell satellite lines of highly charged Fe ions, which are a
concern of the astrophysical community. The data presented in
this work should be helpful in the analysis and interpretation
of next-generation astronomical observations [55] in which
microcalorimeters with higher-energy resolution will be used.
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