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We report a theoretical study on the long-range additive and nonadditive potentials for a three-body hybrid
atom-atom-ion system composed of one ground-S-state Li atom, one excited-P-state Li atom, and one ground-S-
state Li+ ion, Li(2 2S)-Li(2 2P)-Li+(1 1S). The interaction coefficients are evaluated with highly accurate wave
functions calculated variationally in Hylleraas coordinates. For this hybrid system the three-body nonadditive
interactions (appearing in second order) induced by the energy degeneracy and enhanced by the induction effect
of the Li+ ion through the internal electric field can be strong and even stronger than the two-body additive
interactions at the same order. We find that for particular geometries the two-body additive interactions of the
system sum to zero, leaving only three-body nonadditive interactions, thus making the present system potentially
a platform to explore quantum three-body effects. We also extract by first principles the leading coefficients of
the long-range electrostatic, induction, and dispersion energies of Li2

+ electronic states correlating to Li+(1 1S)-
Li(2 2P). The results should be especially valuable for the exploration of schemes to create trimers with ultracold
atoms and ions in optical lattices.
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I. INTRODUCTION

This paper provides detailed results for the long-range
interactions between three atomic systems, specifically, a
ground-state atom, a (low-lying) excited-state atom, and a
ground-state ion, for the particular case of lithium, specif-
ically, Li(2 2S)-Li(2 2P)-Li+(1 1S). Most studies of hybrid
systems consisting of ground- or low-lying-state atoms have
been concerned with pairwise cases, i.e., an atom and an ion
(reviewed in Ref. [1]) or a diatomic molecule and an ion [2–4].
Recently, properties of low-lying states of triatomic cations
were systematically studied [5]. Also, some studies, while
considering excitation of atoms, do not consider ions. For
three atoms, with at least one atom in a Rydberg state, there
are a number of studies, such as Refs. [6,7]. Other studies have
considered three-body interactions of diatomic molecules in a
trapping potential [8,9].

We explore another possibility: three atomic systems that
are in the long-range domain (sufficiently separated such that
electron exchange is small) with one constituent charged and
one constituent electronically excited. There are two main
results. First, we give expressions for the long-range potentials
as expansions in inverse powers of separation distances and
corresponding precisely evaluated coefficients for two-body
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(dipole-dipole and van der Waals) and three-body (van der
Waals) long-range additive and nonadditive interactions, in a
manner similar to but extending our previous work on three
atoms [10,11] and on two atoms and a ground state ion [12].
While in the present work the derived formulas are generally
applicable to the hybrid A(n0S)-A(n′

0L)-AQ+(n′′
0S) systems,

even involving Rydberg states, we choose the particular states
of lithium because we can evaluate the coefficients precisely
using accurate wave functions. We discuss applications for
quantum chemical studies of Li3+ and, as a consequence of
our formulation, for long-range potential energies of Li2+
electronic states correlating to Li+(1 1S)-Li(2 2P). Second,
different from previous studies on the weak nonadditive inter-
actions for three-body systems composed of atoms [10,11,13–
19] or of two atoms and an ion [12], here we find theoretical
evidence of a new pure quantum three-body effect that might
have influence on constructing accurate potential surfaces.
Specifically, for the Li(2 2S)-Li(2 2P)-Li+(1 1S) system, we
find that at particular geometries the two-body additive inter-
actions disappear, leaving only three-body nonadditive inter-
actions. These net effects of two- and three-body interactions
are quite similar to those for two- and three-body interactions
in the case of polar molecules confined in lattice traps [8,9]
or three Rydberg atoms under the influence of an external
electric field [7], where the same goal, removal of two-body
interactions, was pursued. To provide necessary context, we
begin with some general contextual background from molec-
ular (chemical) physics and from ultracold science.
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A. General aspects of triatomic systems

The intrinsic complexity of triatomic molecules1 produces
interesting phenomena such as conical intersections and geo-
metric phases [23,24] and the Renner-Teller effect [25], while
consideration of three atoms at ultralow energies leads to
Efimov [26,27], Borromean [9], and Pfaffian [8,28] states
and makes the description of collisional processes such as
atom-diatom collisions [29,30] and three-body recombination
loss [31–33] challenging. The demands for understanding
the spectroscopy and collisional processes of specific impor-
tant triatomic molecules at thermal collisional energies also
continue to drive progress. For example, ozone (O3) is a
vital atmospheric constituent of the planet, with quantum-
mechanical collisional cross sections recently reported (see
Ref. [34] and references therein), tricarbon (C3) is promi-
nent in comets and other astrophysical [35] and laboratory
realms [36], and H3, H3

+, and their isotopologues serve as
long-standing theoretical benchmark systems [23,37] and are
important in astrophysical applications such as the cooling of
hydrogen gas in molecular clouds [38] and the evolution of
the early universe [39].

Detailed procedures for calculating and constructing po-
tential energy surfaces (and other properties) of triatomic
systems have been developed, as exemplified (for the repre-
sentative molecules discussed above) by recent works such
as for tricarbon [40], for ozone [41–43], and for H3 [44]. A
successful strategy to construct three-atom potential energy
surfaces using semiempirical methods requires input calcu-
lations of atom-dimer and three-atom long-range potentials
[45–47]. To understand the dynamics of low-energy (ultra-
cold) collisions, consideration of the long-range potentials is
paramount; see, for example, [2,3,48–50] for atom-molecule
systems and [51–53] for atom-molecular-ion systems. Next
we provide an overview of the lithium dimer and trimer
cations.

B. Homonuclear lithium dimer and trimer cations:
Excited electronic states

We provide a brief overview of relevant work on the
lithium homonuclear systems Li2+ and Li3+ in order to
demonstrate the contrast between the data provided by the
present work and those available in the literature.

For the diatomic lithium cation Li2+, four electronic
states (ignoring fine structure) correlate to the separated
pair Li+(1 1S)-Li(2 2P), namely, 2 2�g, 2 2�u, 1 2�g, and
1 2�u. Model potential method calculations were given by
Magnier et al. [54] and by Rabli and McCarroll [55]; a
complete active space self-consistent field, multireference
configuration-interaction calculation was reported in Ref. [56]
(see also references therein for earlier work). Magnier et al.
[54] calculated long-range potential curves as functions of

1A widely known aphorism, attributed to Schawlow, warns atomic
physicists that “a diatomic molecule is one atom too many” [20],
but it may be predated by an earlier observation attributed to Her-
schbach: “The trouble with triatomic molecules is, they have one
atom too many!” [21]. Recently, Gao [22] emphasized the emergence
of chemical complexity beginning with three atoms.

FIG. 1. Configuration of the Li(2 2S)-Li(2 2P)-Li+(1 1S) system.
The three particles define the x-y plane with the two neutral atoms
labeled 1 and 2 and the ion labeled 3, the RIJ are the internuclear
distances, and α, β, and γ are the interior angles.

internuclear distance R, including the exchange energies and
electrostatic, induction, and dispersion terms up to O(R−8),
but did not give the long-range potential coefficients. The
emphasis of the present paper is on the three-body system,
but because the two-body interactions are available from our
calculations, as will be shown in Secs. II G–II I, we will ex-
tract the values of the long-range potential coefficients of the
four states of Li2+.

For the triatomic lithium cation Li3+, because we have
found no previous quantum chemical studies of the excited
electronic states corresponding to those reported here, we
present a summary of calculations on the ground electronic
state of Li3+. In a series of works, Dunne and co-workers
[57–60] calculated the ground-state potential energy and
dipole moment surfaces, which were utilized to calculate
rovibrational spectra [61,62]. Surprisingly, we have found
few subsequent studies on the Li3+ ground electronic state
[63], although very recently, as part of a systematic study ex-
ploring alkali-metal and alkaline-earth-metal hybrid ion-atom
diatomic and triatomic systems, Śmiałkowski and Tomza [5]
calculated equilibrium properties of the ground 1A1 and lowest
triplet 3B2 states of Li3+. Our previous paper [12] supplies the
long-range interactions for the ground and lowest triplet states
of Li3+. In advance of awaited ab initio quantum chemical
calculations, in the present work we calculate the long-range
interaction potentials of Li3+ when one Li atom is Li(2 2P).

C. Similarity to lattice studies

Büchler et al. derived a Hubbard model for cold polar
molecules trapped in an optical lattice [64], with the intent of
realizing a system that could be used to model Hamiltonians
that exhibit exotic ground-state properties [8,9]. In terms of
the intermolecular interactions within the lattice, they write

Ui j = U0a3|Ri − R j |−3 + U1a6|Ri − R j |−6 (1)

and

Wi jk = W0a6|Ri − R j |−3|Ri − Rk|−3, (2)

where U0, U1, and W0 are certain energy scales; a is a length
scale; i, j, and k label the particles; the indices i, j, and k
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are cyclically permuted; and Ri are certain position vectors
of the lattice site (see Ref. [64] for the complete definitions).
By appropriate dressing of the cold molecules by an external
static electric field and a microwave field, they show that
the two-body interactions may be tuned “from repulsive to
attractive, and even switched off, while the three-body terms
remain repulsive and strong.” We will derive two equations for
the present system, Eqs. (21) and (33), respectively, that are of
the same form, but with additional terms, as Eqs. (1) and (2).
We will show that at specific geometries we recover exactly
Eqs. (1) and (2). The anisotropies of the interactions in the
present system due to the ion charge and the excited Li(2 2P)
atom are similar to the anisotropies due to the intermolecular
dipole-dipole interactions in the optical-lattice-trapped cold
polar molecular system [65–68]. Further discussion will be
given in Sec. III E.

II. THEORETICAL FORMULATION

The geometry of the three-body system is shown in Fig. 1,
in which the three particles define a plane with the two neutral

atoms labeled as 1 and 2 and the ion labeled as 3. It is
important to note that due to the degeneracy of atoms 1 and 2
we cannot specify which one is in the ground state or excited
state. The interior angles of the configuration are α, β, and γ .

A. Coulomb potential expansion

In the present work we take the electrostatic
interaction V123 between pairs of particles for the
Li(n0 S)-Li(n0 L)-Li+(n′

0 S) system as a perturbation,

V123 = V12 + V23 + V31, (3)

where V12, V23, and V31 are the two-body mutual electrostatic
interactions between atoms 1 and 2 and ion 3. For three well-
separated atoms or ions, the mutual interaction energy VIJ can
be expanded with the same method as used in Refs. [10–12];
thus,

VIJ =
∑
lI lJ

∑
mI mJ

TlI − mI (σ)TlJ mJ (ρ)W mI −mJ
lI lJ

(IJ ), (4)

where the geometry factor is

W mI −mJ
lI lJ

(IJ ) = 4π (−1)lJ

RlI +lJ +1
IJ

(lI + lJ − mI + mJ )!(lI , lJ )−1/2

[(lI + mI )!(lI − mI )!(lJ + mJ )!(lJ − mJ )!]1/2
PmI −mJ

lI +lJ
(cos θIJ ) exp[i(mI − mJ )	IJ ], (5)

where RIJ = RJ − RI is the relative position vector from particle I to particle J , the notation (lI , lJ , . . .) = (2lI + 1)(2lJ + 1) . . .,
and PmI −mJ

lI +lJ
(cos θIJ ) is the associated Legendre function with θIJ representing the angle between RIJ and the z axis. The 2
-pole

transition operator of an atom consisting of n + 1 charged particles in the laboratory frame is defined as in Ref. [69],

T
m(ρ) =
n∑

i=0

qiρ


i Y
m(ρ̂i ), (6)

where qi is the charge of the ith subparticle of the atom. In the center-of-mass frame [69], ρi becomes

ρi =
n∑

j=1

εi jr j, (7)

where ri = ρi − ρ0, εi j = δi j − mj/MT , i = 0, 1, 2, . . . , n, j = 1, 2, . . . , n, and MT represents the total mass of the system.
Using the formula

Y
m(r̂) =
√

3

4π


−1∏
i=1

(√
2i + 3

i + 1

)
(r̂ ⊗ r̂ ⊗ · · · ⊗ r̂︸ ︷︷ ︸




)(
)
m , (8)

where ⊗ denotes the coupling between two irreducible tensor operators, the 2
-pole transition operator can be simplified as

T
 =
√

3

4π


−1∏
m=1

(√
2m + 3

m + 1

) ∑
j1,..., j


(
n∑

i=0

qiεi j1εi j2 · · · εi j


)
(r̂ j1 ⊗ r̂ j2 ⊗ · · · ⊗ r̂ j
︸ ︷︷ ︸




)(
)
0 . (9)

For a four-body system, the explicit forms of transition operators T
 with 
 up to 3 can be found in Ref. [70].

B. Hylleraas basis set

The nonrelativistic Hamiltonian of the Li atom in the center-of-mass frame [71] can be written as

H = − 1

2μ

3∑
i=1

∇2
i − 1

m0

3∑
i> j�1

∇i · ∇ j + q0

3∑
i=1

qi

ri
+

3∑
i> j�1

qiq j

ri j
, (10)

where μ = mem0/(me + m0) is the reduced mass between an electron me and the nucleus m0. The basis set is constructed in
Hylleraas coordinates

φ(r1, r2, r3) = r j1
1 r j2

2 r j3
3 r j12

12 r j23
23 r j31

31 e−αr1−βr2−γ r3Y (LM )
(
1
2 )
12,
3

(r̂1, r̂2, r̂3)X (1, 2, 3), (11)
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where

Y (LM )
(
1
2 )
12,
3

(r̂1, r̂2, r̂3) =
∑

mi

〈
1m1; 
2m2|
1
2; 
12m12〉〈
12m12; 
3m3|
12
3; LML〉Y
1m1 (r̂1)Y
2m2 (r̂2)Y
3m3 (r̂3) (12)

is a vector-coupled product of spherical harmonics to form an
eigenstate of the total angular momentum L and component
ML, and X (1, 2, 3) is the three-electron spin- 1

2 function. The
variational wave function of the Li atom is a linear com-
bination of basis functions φ antisymmetrized. With some
truncations to avoid the numerical linear dependence, all
terms in Eq. (11) are included such that

j1 + j2 + j3 + j12 + j23 + j31 � �, (13)

where � is an integer, and the convergence for the energy
eigenvalue is studied by increasing � progressively. The re-
duced matrix elements for various transition operators can be
evaluated with the basic integral∫

dr1dr2dr3r j1
1 r j2

2 r j3
3 r j12

12 r j23
23 r j31

31 e−αr1−βr2−γ r3

×Y ∗

′

1m′
1
(r1)Y ∗


′
2m′

2
(r2)Y ∗


′
3m′

3
(r3)Y
1m1 (r1)Y
2m2 (r2)Y
3m3 (r3).

(14)

The details of the computational method for this integral are
developed in Refs. [71,72]. Similarly, for the Li+ ion, we
also use the Hylleraas variational method to obtain the en-
ergies, wave functions, and transition matrix elements. The
detailed Hylleraas method for a two-electron atom is given in
Ref. [73].

C. Zeroth-order wave function

For the degenerate Li(n0S)-Li(n0L)-Li+(n′
0S) system with

energy E (0)
n0n0n′

0
= E (0)

n0S + E (0)
n0L + E (0)

n′
0S , the zeroth-order wave

function can be written as∣∣� (0)〉 = a|n0L; n00; n′
00〉 + b|n00; n0L; n′

00〉, (15)

where a and b are the expansion coefficients of
the zeroth-order wave function in the basis set
{|n0L; n00; n′

00〉,|n00; n0L; n′
00〉}, with |n00〉, |n0L〉, and

|n′
00〉 the initial states for Li(n0S), Li(n0L), and Li+(n0S),

respectively. The corresponding zeroth-order wave functions
(or the values of a and b) depend on the geometrical
configuration formed by the three particles and are determined
by diagonalizing the perturbation in this basis set. Then
using the degenerate perturbation theory, we can obtain
the long-range part of the interaction potential for the
Li(2 2S)-Li(2 2P)-Li+(1 1S) system, which can be written as

�E = �E (1)
add + �E (2)

add + �E (2)
non, (16)

where �E (1)
add and �E (2)

add are the first-order and second-order
additive interactions, respectively, and �E (2)

non is the second-
order nonadditive interaction.

D. First-order additive interactions

The first-order additive interaction �E (1)
add is given by

�E (1)
add = −C(12)

3 (1, M )

R3
12

− C(23)
3 (1, M )

R3
23

− C(31)
3 (1, M )

R3
31

,

(17)

where C(12)
3 (1, M ) describes the dipole-dipole interaction

between two neutral atoms. In addition, C(23)
3 (1, M ) and

C(31)
3 (1, M ) describe the electrostatic interaction between the

charge of the ion labeled as 3 and the quadrupole moments
of atom 2 and atom 1, respectively; the quadrupole mo-
ment comes from the excited Li(2 2P) atom, which can be
atom 1 or atom 2 due to the degeneracy of the three-body
system. These leading long-range interaction coefficients are
given by

C(12)
3 (1, M )

= (a∗b + b∗a)
4π (−1)1+M

9(1 − M )!(1 + M )!
|〈n00‖T1‖n01〉|2, (18)

C(23)
3 (1, M )

= |b|2Q(−1)1+M

√
π

5

(
1 2 1

−M 0 M

)
〈n01‖T2‖n01〉, (19)

C(31)
3 (1, M )

= |a|2Q(−1)1+M

√
π

5

(
1 2 1

−M 0 M

)
〈n01‖T2‖n01〉, (20)

where Q is the charge of the ion, M represents the mag-
netic quantum number of the excited Li(2 2P) atom, and
T
 is the 2
-pole transition operator, which is defined
in Sec. II A.

E. Second-order additive interactions

The second-order additive interaction �E (2)
add is given by

�E (2)
add = − C(23)

4 (1, M )

R4
23

− C(31)
4 (1, M )

R4
31

− C(12)
6 (1, M )

R6
12

− C(23)
6 (1, M )

R6
23

− C(31)
6 (1, M )

R6
31

− · · · , (21)

where C(23)
4 (1, M ) and C(31)

4 (1, M ) describe the induction
interactions between ion 3 and neutral atoms 2 and 1, re-
spectively. The dispersion interaction coefficient between
the neutral atoms 1 and 2 is given by C(12)

6 (1, M ), while
C(23)

6 (1, M ) and C(31)
6 (1, M ) describe the interactions between

ion 3 and the two neutral atoms 2 and 1, respectively, in-
cluding both the induction and the dispersion interaction
coefficients. The corresponding expressions for the additive
coefficients are

C(23)
4 (1, M ) = |a|2T1 + |b|2T3(M ), (22)
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C(31)
4 (1, M ) = |a|2T3(M ) + |b|2T1, (23)

C(12)
6 (1, M ) = |a|2T4(M ) + |b|2T4(M ), (24)

C(23)
6 (1, M ) = |a|2T2 + |b|2T5(M ), (25)

C(31)
6 (1, M ) = |a|2T5(M ) + |b|2T2, (26)

where

T1 = 4πQ2

9

′∑
nt

|〈n00‖T1‖nt 1〉|2
Ent 1 − E (0)

n00

, (27)

T2 = 4πQ2

25

′∑
nt

|〈n00‖T2‖nt 2〉|2
Ent 2 − E (0)

n00

+ 32π2

27

′∑
nt nu

|〈n00‖T1‖nt 1〉|2|〈n′
00‖T1‖nu1〉|2

(Ent 1 − E (0)
n00) + (Enu1 − E (0)

n′
00)

, (28)

T3(M ) = Q2

4π

∑
nt Lt

G1(Lt , 0; 1, 1; 1, M )|〈n01‖T1‖nt Lt 〉|2
Ent Lt − E (0)

n01

, (29)

T4(M ) =
∑

nt nuLt

G1(Lt , 1; 1, 1; 1, M )|〈n01‖T1‖nt Lt 〉|2〈n′
00‖T1‖nu1〉|2

(Ent Lt − E (0)
n01) + (Enu1 − E (0)

n′
00)

, (30)

T5(M ) =
∑

nt nuLt

G1(Lt , 1; 1, 1; 1, M )|〈n01‖T1‖nt Lt 〉|2〈n′
00‖T1‖nu1〉|2

(Ent Lt − E (0)
n01) + (Enu1 − E (0)

n′
00)

+ Q2

4π

∑
nt Lt

{
G1(Lt , 0; 2, 2; 1, M )|〈n01‖T2‖nt Lt 〉|2

Ent Lt − E (0)
n01

+G1(Lt , 0; 1, 3; 1, M )〈n01‖T1‖nt Lt 〉∗〈n01‖T3‖nt Lt 〉
Ent Lt − E (0)

n01

+ G1(Lt , 0; 3, 1; 1, M )〈n01‖T3‖nt Lt 〉∗〈n01‖T1‖nt Lt 〉
Ent Lt − E (0)

n01

}
, (31)

with the G1 function defined by

G1(Li, Lj ; 
k, 

′
k ; L, M ) = 16π2(
k, 


′
k )−1/2

(2Lj + 1)2

∑
MiMj mk

(
L 
k Li

−M mk Mi

)(
L 
′

k Li

−M mk Mi

)

×
(Lj + 
k − Mj + mk )!(Lj + 
′

k − Mj + mk )!PMj−mk

L j+
k
(0)PMj−mk

L j+
′
k

(0)

(Lj + Mj )!(Lj − Mj )![(
k + mk )!(
k − mk )!(
′
k + mk )!(
′

k − mk )!]1/2
. (32)

The detailed derivations are given in the Supplemental Material [74]. We note that these formulas can also be used to calculate
long-range interaction coefficients for other two-body or three-body systems such as the two-body Li(2 2S)-Li(2 2P) system, the
two-body Li(2 2S)-Li+(1 1S) system, the two-body Li(2 2P)-Li+(1 1S) system, and the three-body Li(2 2S)-Li(2 2S)-Li+(1 1S)
system. We will provide specific examples below in Secs. II G–II I.

F. Second-order nonadditive potentials

Due to the degeneracy of the three-body system, the nonadditive potential �E (2)
non starts at the second order and is given by

�E (2)
non = − C(12,23)

3,3 (1, M )

R3
12R3

23

− C(23,31)
3,3 (1, M )

R3
23R3

31

− C(31,12)
3,3 (1, M )

R3
31R3

12

− C(12,23)
4,2 (1, M )

R4
12R2

23

− C(31,12)
2,4 (1, M )

R2
31R4

12

− · · · , (33)

where C(23,31)
3,3 (1, M ) represents the dispersion nonadditive interaction coefficient. The remaining terms are the nonadditive

induction interactions. The detailed expressions are given by

C(23,31)
3,3 (1, M ) =

∑
Mu

(−1)Mu+MG4(1, Mu; 1, M ){(a∗b) exp[i(Mu − M )γ ] + (b∗a) exp[−i(Mu − M )γ ]}

×
∑

nu

[ |〈n01‖T1‖n00〉|2|〈n′′
00‖T1‖nu1〉|2

(Enu1 − En′′
00) + (En00 − En01)

+ |〈n00‖T1‖n01〉|2|〈n′′
00‖T1‖nu1〉|2

(Enu1 − En′′
00) + (En01 − En00)

]
, (34)

C(12,23)
4,2 (1, M ) = |a|2

∑
Mt

(−1)Mt +MG5(1, Mt ; 2; 1, M; Q) cos(Mtβ )
∑

nt

〈n01‖T2‖n01〉|〈n00‖T1‖nt 1〉|2
Ens1 − En00

+
∑
Mt m′

2

G6(2, Mt ; 1, m′
2; 1, M; Q){(a∗b) exp[−i(m′

2)β] + (b∗a) exp[i(m′
2)β]}
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×
∑

nt

〈n00‖T1‖n01〉〈n00‖T2‖nt 2〉∗〈n01‖T1‖nt 2〉
Ent 2 − En01

−
∑
Mt

G7(1, Mt ; 2; 1, M; Q){(a∗b) exp[i(Mt )β] + (b∗a) exp[−i(Mt )β]}

×
∑

nt

〈n00‖T1‖n01〉∗〈n01‖T2‖nt 1〉∗〈n00‖T1‖nt 1〉
Ent 1 − En00

, (35)

C(31,12)
2,4 (1, M ) = |b|2

∑
Ms

(−1)Ms+MG5(1, Ms; 2; 1, M; Q) cos(Msα)
∑

ns

〈n01‖T2‖n01〉|〈n00‖T1‖ns1〉|2
Ens1 − En00

+
∑
Msm′

1

G6(2, Ms; 1, m′
1; 1, M; Q){(a∗b) exp[i(m′

1)α] + (b∗a) exp[−i(m′
1)α]}

×
∑

ns

〈n00‖T1‖n01〉〈n00‖T2‖ns2〉∗〈n01‖T1‖ns2〉
Ens2 − En01

−
∑
Ms

G7(1, Ms; 2; 1, M; Q){(a∗b) exp[i(Ms)α] + (b∗a) exp[−i(Ms)α]}

×
∑

ns

〈n00‖T1‖n01〉∗〈n01‖T2‖ns1〉∗〈n00‖T1‖ns1〉
Ens1 − En00

, (36)

C(12,23)
3,3 (1, M ) =

∑
Mt m′

2

G6(1, Mt ; 2, m′
2; 1, M; Q){(a∗b) exp[−i(m′

2)β] + (b∗a) exp[i(m′
2)β]}

×
∑

nt

〈n00‖T1‖n01〉〈n00‖T1‖nt 1〉∗〈n01‖T2‖nt 1〉
Ent 1 − En01

−
∑
Mt

G7(2, Mt ; 1; 1, M; Q){(a∗b) exp[i(Mt )β] + (b∗a) exp[−i(Mt )β]}

×
∑

nt

〈n00‖T1‖n01〉∗〈n01‖T1‖nt 2〉∗〈n00‖T2‖nt 2〉
Ent 2 − En00

, (37)

and

C(31,12)
3,3 (1, M ) =

∑
Msm′

1

G6(1, Ms; 2, m′
1; 1, M; Q){(a∗b) exp[i(m′

1)α] + (b∗a) exp[−i(m′
1)α]}

×
∑

ns

〈n00‖T1‖n01〉〈n00‖T1‖ns1〉∗〈n01‖T2‖ns1〉
Ens1 − En01

−
∑
Ms

G7(2, Ms; 1; 1, M; Q){a∗b exp[i(Ms)α] + b∗a exp[−i(Ms)α]}

×
∑

ns

〈n00‖T1‖n01〉∗〈n01‖T1‖ns2〉∗〈n00‖T2‖ns2〉
Ens2 − En00

, (38)

where the functions G4, G5, G6, and G7 are defined by

G4(Li, Mi; L, M ) = 16π2

[
PMi−M

Li+L (0)(Li + L − Mi + M )!(Li, L)−1
]2

(Li + Mi )!(Li − Mi )!(L + M )!(L − M )!
, (39)

G5(Li, Mi; 
k; L, M; Q) = 8
√

π3QPMi

k+Li

(0)PMi
Li

(0)(
k + Li − Mi )!

(2Li + 1)2
√

2
k + 1(l1)!(Li + Mi )!

(
L 
k L

−M 0 M

)
, (40)

G6(Li, Mi; 
k, mk ; L, M; Q) = 8
√

π3Q(
k )−1/2

(2L + 1)(2Li + 1)

(
L 
k Li

−M −mk Mi

)

× P−M+Mi
L+Li

(0)Pmk

k

(0)(L + Li + M − Mi )!(
k − mk )!

[(L + M )!(L − M )!(Li + Mi )!(Li − Mi )!(
k + mk )!(
k − mk )!]1/2
, (41)

022807-6



LONG-RANGE ADDITIVE AND NONADDITIVE … PHYSICAL REVIEW A 104, 022807 (2021)

G7(Li, Mi; 
k; L, M; Q) = 8
√

π3Q(
k )−1/2

(2L + 1)(2Li + 1)

∑
mk

(
L 
k Li

−M mk Mi

)

× PM−mk
L+
k

(0)PMi
Li

(0)(L + 
k − M + mk )!(Li − Mi )!

[(L + M )!(L − M )!(Li + Mi )!(Li − Mi )!(
k + mk )!(
k − mk )!]1/2
. (42)

The detailed derivations are given in the Supplemental
Material [74]. From Eqs. (18)–(38) we see that all of these
coefficients depend on the atomic states of the three-body
system because they include a and b. In other words, these
additive and nonadditive coefficients show a dependence on
the configurations of the three-body system. This is clearly a
kind of quantum three-body collective effect. In the following
section we show that these three-body nonadditive interac-
tions significantly influence the total interaction potentials.
Because of the enhancement through the induction effect, the
nonadditive interactions are large enough to be comparable to
(or even stronger than) the additive interactions at the same
order.

In the present paper we only consider long-range interac-
tion for the Li(2 2S)-Li(2 2P)-Li+(1 1S) system up to O(R−6),
since the next terms are C7/R7, which come from the third-
order perturbation theory.

G. Specific results extracted from the general expressions

With the zeroth-order wave functions as shown in Eq. (15),
the present work can be easily related to the calculations
of long-range interactions for other two-body or three-body
systems. For example, if we set a = 1 and b = 0 and remove
the terms involving the Li+(1 1S) ion, the formulas can be
used to describe the long-range interactions for the two-body
Li(2 2S)-Li(2 2S) system; if we set a = 1√

2
and b = ± 1√

2
and

remove the terms involving the Li+(1 1S) ion, the formulas
can be used to describe the long-range interactions for the
two-body Li(2 2S)-Li(2 2P) system; if we set a = 1 and b = 0
and remove the terms involving the Li(2 2P) atom, the for-
mulas can be used to describe the long-range interactions
for the two-body Li(2 2S)-Li+(1 1S) system; if we set a = 1
and b = 0 and remove the terms involving the Li(2 2S) atom,
the formulas can be used to describe the long-range inter-
actions for the two-body Li(2 2P)-Li+(1 1S) system; and if
we set a = 1, b = 0, and L = 0, the formulas can be used
to describe the long-range interactions for the three-body
Li(2 2S)-Li(2 2S)-Li+(1 1S) system. For these long-range ad-
ditive interaction coefficients, we have arranged the formulas
to show these connections,

C(12)
3 (1, M ) = C(P-S)

3,dip , (43)

C(23)
3 (1, M ) = |b|2C(P-S+ )

3,elst , (44)

C(31)
3 (1, M ) = |a|2C(P-S+ )

3,elst , (45)

C(23)
4 (1, M ) = |a|2C(S-S+ )

4,ind + |b|2C(P-S+ )
4,ind (M ), (46)

C(31)
4 (1, M ) = |a|2C(P-S+ )

4,ind (M ) + |b|2C(S-S+ )
4,ind , (47)

C(12)
6 (1, M ) = C(P-S)

6,disp(M ), (48)

C(23)
6 (1, M ) = |a|2{C(S-S+ )

6,ind + C(S-S+ )
6,disp

}
+|b|2{C(P-S+ )

6,ind (M ) + C(P-S+ )
6,disp (M )

}
, (49)

and

C(31)
6 (1, M ) = |a|2{C(P-S+ )

6,ind (M ) + C(P-S+ )
6,disp (M )

}
+|b|2{C(S-S+ )

6,ind + C(S-S+ )
6,disp

}
, (50)

where C(P-S)
3,dip and C(P-S)

6,disp represent the dipolar and dispersion
interaction coefficients for the two-body Li(2 2S)-Li(2 2P)
system, respectively, which have been given in the Ref. [10]
[also see Eqs. (51) and (52) in the Supplemental Mate-
rial [74]]. In addition, C(S-S+ )

2n,ind and C(S-S+ )
2n,disp represent the

long-range induction and dispersion coefficients for the
Li(2 2S)-Li+(1 1S) system, which have been given in the
Ref. [12] [also see Eqs. (48)– (50) in the Supplemental Ma-
terial [74]]. For the two-body Li(2 2P)-Li+(1 1S) system, we
provide more details below in Sec. II I. In short, C(P-S+ )

3,elst rep-
resents the electrostatic interaction between the charge of the
ion and the quadrupole moment of the neutral atom; C(P-S+ )

2n,ind

and C(P-S+ )
2n,disp represent the long-range induction and disper-

sion coefficients for the Li(2 2P)-Li+(1 1S) system, where
the formulas of these coefficients are given by Eqs. (56)–
(60) in Sec. II I. Clearly, with these formulas, we can easily
relate the long-range additive interactions of the three-body
Li(2 2S)-Li(2 2P)-Li+(1 1S) system to those of other two-
body or three-body systems. On the other hand, the nonaddi-
tive interactions of the three-body Li(2 2S)-Li(2 2P)-Li+(1 1S)
system are induced by the degeneracy and cannot be decom-
posed in terms of diatomic subsystems. This is in contrast
to the nondegenerate Li(2 2S)-Li(2 2S)-Li+(1 1S) system [12],
where the nonadditive interactions start from the third-order
energy correction and may still be used to predict contri-
butions to the long-range potentials between the Li(2 2S)
atom and the excited-state dimer Li2+(2 2�g,u

+, 1 2�g,u)
or between the Li(2 2P) atom and the ground-state dimer
Li2+(1 2�g,u

+). We note that C(12,23)
4,2 (1, M ) [see Eq. (35)] and

C(31,12)
2,4 (1, M ) [see Eq. (36)] may be very important in the

study of the interactions between the cation Li+(1 1S) and the
excited dimer Li2+(2 2�g,u

+, 1 2�g,u).

H. Orientation dependence

In this section we describe the orientation dependence of
the long-range interactions due to the anisotropic charge dis-
tribution of the excited Li atom. To illustrate the orientation
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FIG. 2. Simple illustration of the rotation of the two-body system
from the z axis to the x axis. Here p1, p2, and p3 represent positions
1, 2, and 3, respectively.

dependence, we use the two-body Li(2 2S)-Li(2 2P) system as
an example. The rotation of the two-body system is illustrated
in Fig. 2, where the two-body system is rotated from the z axis
to the x axis (or one of the two atoms is rotated from p1 to p3).
In this process, we find that the zeroth-order wave functions
of the two-body system �

(0)
S−P(M ) and the corresponding long-

range interaction coefficients change. Thus we can easily get
the inequality relation

C(S-P)
n,p1

(M ) 
= C(S-P)
n,p2

(M ) 
= C(S-P)
n,p3

(M ). (51)

In our previous work we have given the numerical values
of the long-range interaction coefficients for the two atoms
lying on the z axis (see Table IX in Ref. [70]), which would
correspond to p3 in Fig. 2. In the present work we use the
coordinates of Fig. 1, represented as p1 in Fig. 2, which corre-
sponds to the two atoms lying on the x axis. The comparison
of these long-range interaction coefficients is given in Table I,
where the present values were obtained using highly accurate
variational wave functions for the Li atom in Hylleraas co-
ordinates with finite nuclear mass effects [70]. For these two
specific situations (p1 and p3), we also find the relations

C(S-P)
n,p3

(M = 0) = C(S-P)
n,p1

(M = ±1), (52)

which are obeyed by our numerical values of these coefficients
shown in Table I.

In general, the long-range interaction coefficients are given
by

C(S-P)
n,pi

(M ) = C(S-P)
n,p1

(M, cos θi ), (53)

where pi is the position i of the atom as shown in Fig. 2 and θi

is the corresponding polar angle. For the leading coefficients
C3, the formulas are simplified as

C(S-P)
3,pi

(M ) = C(S-P)
3,p1

(M )P2(cos θi ), (54)

where P2(cos θi ) is the Legendre polynomial. For the other
coefficients Cn with n > 3, the parts containing the polar angle
θi would be coupled with the virtual states, which cannot be
separated. However, we can still utilize the present formulas
(calculated at the p1 orientation) to give the general formu-
las by changing the Legendre polynomial from PmI

lI
(0) to

PmI
lI

(cos θi ). For example, we can use the formula of Eq. (52)
in the Supplemental Material [74] to get the general leading
dispersion coefficient C(S-P)

6,pi
(M ) at orientation pi. Similarly,

for other excited Li dimer and trimers, the long-range interac-
tions also contain such orientation dependences. In the next
section we will apply these ideas to derive the long-range
potentials for the Li(2 2P)-Li+(1 1S) system in the p3 orien-
tation. In Sec. III we will consider the three-body system in
detail.

I. Long-range potentials for the Li(2 2P)-Li+(1 1S) system

In this section we use our results to calculate the long-range
potentials of the four states of Li2+, 1 2�u, 1 2�g, 2 2�g

+, and
2 2�u

+, correlating to the Li(2 2P)-Li+(1 1S) system. We be-
gin by writing down the long-range potential as calculated in
our coordinates (see Fig. 1), with V (P-S+ )(R; M ) corresponding
to the two-body Li(2 2P)-Li+(1 1S) system in the orientation
p3 of Fig. 2, which can be written as

V (P-S+ )(R; M ) = −C3(M )

R3
− C4(M )

R4
− C6(M )

R6
− · · · , (55)

where C3(M ) represents the electrostatic interaction between
the charge of the Li+(1 1S) ion and the quadrupole moment
of the excited Li(2 2P) atom, C4(M ) represents the lead-
ing long-range induction coefficient, which is related to the
dipole polarizability of the Li(2 2P) atom, and C6(M ) is the
sum of long-range induction coefficients C6,ind and disper-
sion coefficients C6,disp. The formulas of these coefficients are

TABLE I. Long-range interaction coefficients (in a.u.) of the ∞Li(2 2S)-∞Li(2 2P) system for the two atoms lying on the z axis and the x
axis, respectively. Here p1 and p3 are as shown in Fig. 2. The numbers in parentheses represent the computational uncertainties.

p1 C (S-P)
3,z (M = 0) C (S-P)

3,z (M = ±1) C (S-P)
6,z (M = 0) C (S-P)

6,z (M = ±1)

�
(0)
S−P,z(β = 1) 11.000221(2) −5.500111(1) 2075.40(3) 1406.68(3)

�
(0)
S−P,z(β = −1) −11.000221(2) 5.500111(1) 2075.40(3) 1406.68(3)

p3 C (S-P)
3,x (M = 0) C (S-P)

3,x (M = ±1) C (S-P)
6,x (M = 0) C (S-P)

6,x (M = ±1)

�
(0)
S−P,x (β = 1) −5.500111(1) 2.750054(1) 1406.68(3) 1741.06(5)

�
(0)
S−P,x (β = −1) 5.500111(1) −2.750054(1) 1406.68(3) 1741.06(5)
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given by

C3(M ) = C(P-S+ )
3,elst (M ) = Q(−1)1+M

√
π

5

(
1 2 1

−M 0 M

)
〈n01‖T2‖n01〉, (56)

C4(M ) = C(P-S+ )
4,ind (M ) = Q2

4π

∑
nt Lt

G1(Lt , 0; 1, 1; 1, M )|〈n01‖T1‖nt Lt 〉|2
Ent Lt − E (0)

n01

, (57)

C6(M ) = C(P-S+ )
6,disp (M ) + C(P-S+ )

6,ind (M ), (58)

where

C(P-S+ )
6,disp (M ) =

∑
nt nuLt

G1(Lt , 1; 1, 1; 1, M )|〈n01‖T1‖nt Lt 〉|2〈n′
00‖T1‖nu1〉|2

(Ent Lt − E (0)
n01) + (Enu1 − E (0)

n′
00)

(59)

and

C(P-S+ )
6,ind (M ) = Q2

4π

∑
nt nuLt

{
G1(Lt , 0; 2, 2; 1, M )|〈n01‖T2‖nt Lt 〉|2

Ent Lt − E (0)
n01

+ G1(Lt , 0; 1, 3; 1, M )〈n01‖T1‖nt Lt 〉∗〈n01‖T3‖nt Lt 〉
Ent Lt − E (0)

n01

+G1(Lt , 0; 3, 1; 1, M )〈n01‖T3‖nt Lt 〉∗〈n01‖T1‖nt Lt 〉
Ent Lt − E (0)

n01

}
(60)

and the G1 function is defined in Eq. (32).
The molecular states for Li2+ correlating to the Li(2 2P)-

Li+(1 1S) system are the 2 2�g
+, 2 2�u

+, 1 2�g, and 1 2�u

states (we do not consider fine structure). We calculated
the long-range interaction coefficients using Eqs. (56)–(60),
which include electrostatic, induction, and dispersion energies
up to O(R−6). These correspond to position p3 of the Li(2 2P)
atom as indicated in Fig. 2. Convergence studies of these
long-range interaction coefficients C(P-S+ )

3,x (M ), C(P-S+ )
4,x (M ),

and C(P-S+ )
6,x (M ) are given in Tables II, III, and IV, respectively.

In these tables, NP denotes the size of the basis for the P state
of the ∞Li atom and NL denotes the size of the basis for the
corresponding intermediate states of symmetry L. Similarly,
N+

S and N+
P denote the sizes of the bases for the ground state

and the intermediate states of symmetry P of the ∞Li+ ion,
respectively.

In order to apply the results to the � and � molecular
states of standard molecular nomenclature, where the z axis
joins the atom and ion, we must first apply the considerations
of Sec. II H to express our results in terms of position p1 of
Fig. 2. The analysis yields the coefficients, with the numerical
values given in Table V and the corresponding long-range po-

TABLE II. Convergence of the long-range interaction coeffi-
cients C (P-S+ )

3,x (M ) for the ∞Li(2 2P)-∞Li+(1 2S) system, where two
particles lie on the x axis (p3) as shown in Fig. 2. Here NP denotes
the size of the basis for the P state of the ∞Li(2 2P) atom.

NP C (P-S+ )
3,x (M = 0) C (P-S+ )

3,x (M = ±1)

1174 −5.409965844 2.704982922
2091 −5.409968720 2.704984360
3543 −5.409969427 2.704984713
5761 −5.409969563 2.704984781
extrapolated −5.4099696(1) 2.7049847(1)

tentials given in Fig. 3. The corresponding general coefficients
are defined by

C(P-S+ )
3,pi

(M ) = C(P-S+ )
3,p1

(M )P2(cos θi ), (61)

C(P-S+ )
4,pi

(M = 0) = 1
2αpi

zz = 1
2

[
α1 − 2αT

1,p1
P2(cos θi )

]
, (62)

and

C(P-S+ )
4,pi

(M = ±1) = 1
2αpi

xx = 1
2

[
α1 + αT

1,p1
P2(cos θi )

]
, (63)

where α
pi
zz and α

pi
xx are the polarizability components along

the z and x directions of an applied electric field [75–78],
respectively, α1 and αT

1 are the principal scalar and tensor
polarizabilities of the Li(2 2P) atom [70], and P2(cos θi ) is the
Legendre polynomial. The comparison of the polarizability
components α

p1
zz and α

p1
xx , and α

p3
zz and α

p3
xx is given in Table VI.

In the present configuration (as shown in Fig. 1), these com-
ponents can be related to the leading induction coefficients
C4,x(M ) (as shown in Table V) by α

p3
zz = 2C4,x(M = 0) and

α
p3
xx = 2C4,x(M = ±1). According to the symmetry of the de-

generate system [75–78], we can connect the polarizability

FIG. 3. Long-range potentials (in a.u.) of the Li(2 2P)-Li+(2 1S)
system calculated in the coordinate system of Fig. 1, which corre-
sponds to p3 of Fig. 2.

022807-9



YAN, TANG, YAN, AND BABB PHYSICAL REVIEW A 104, 022807 (2021)

TABLE III. Convergence of the long-range interaction coefficients C (P-S+ )
4,x (M ) for the ∞Li(2 2P)-∞Li+(1 2S) system, where two particles

lie on the x axis (p3) as shown in Fig. 2. Here NP denotes the size of basis for the P state of the ∞Li atom. In addition, NS , N(pp)P, and ND

denote the sizes of the bases for the corresponding intermediate states of symmetries S, P, and D, respectively, and (pp)P stands for the
main configuration of two p electrons coupled to form a total angular momentum of P [since the contribution from the (pp)P configuration
converges at N(pp)P = 3413, we did not increase N(pp)P any further [70]].

(NP, NS, N(pp)P, ND ) C (P-S+ )
4,x (M = 0) C (P-S+ )

4,x (M = ±1)

(1174,1589,1106,1174) 64.282596 63.061604
(2091,2625,2002,2091) 64.283174 63.066184
(3543,4172,3413,3543) 64.283498 63.067033
(5761,6412,3413,5761) 64.283634 63.067338
extrapolated 64.2838(2) 63.0676(3)

components α
p3
zz and α

p3
xx with the principal polarizabilities,

scalar (α1) and tensor (αT
1 ), of the Li(2 2P) atom by α1 =

1
3 (αp3

zz + 2α
p3
xx ) and αT

1 = 2
3 (αp3

zz − α
p3
xx ). For example, using

the present data from Table VI, we find α1 = 126.9460 and
αT

1 = 1.6216 in agreement with Table VIII in Ref. [70]. Fur-
ther details concerning the polarizability components α

p1
zz and

α
p1
xx for the two particles lying on the z axis are given in, for

example, Refs. [75–78]. For the coefficient C6, we can use
the formula of Eq. (58) by changing the Legendre polynomial
from PmI

lI
(0) to PmI

lI
(cos θi ) to get the general C(P-S+ )

6,pi
(M ) at

orientation pi.
The long-range potential energy functions expressed rela-

tive to p1 follow from Table V. For example, for the 2 2�g,u

states of the ∞Li2 we have

V (P-S+ )(R; �)

= −10.819 939 2

R3
− 61.8515

R4
− 9811.485

R6
− · · · , (64)

and for the 1 1�g,u states we have

V (P-S+ )(R; �)

= 5.409 969 6

R3
− 64.2838

R4
+ 1820.6261

R6
− · · · . (65)

Similar expressions may be written for 6Li2+ and 7Li2+ using
Table V.

Magnier et al. [54] calculated the long-range potentials
with the inclusion of exchange, electrostatic, induction, and
dispersion interactions up to O(R−8); the results were pre-
sented graphically. While a direct comparison of long-range

coefficients is not possible, we can calculate the exchange
energies using the expressions given by Magnier et al. and
add those to our long-range potentials to compare with their
total potentials for each of the four molecular states. When
the exchange energy and the long-range potential energy have
opposite signs, a long-range well or barrier results; these
singular features provide good quantitative checks between
the calculations of Magnier et al. and the present work. From
Figs. 8–10 in [54] it is evident that the exchange energies are
positive for the 2 2�u

+ and 1 2�g states and negative for the
2 2�g

+ and 1 2�u states, while the exchange splitting for the
pair of 2 2�+ states is larger by a factor of R/2 compared to
the pair of 1 2� states, where R is the internuclear distance.
Calculations show that the two � states and the 1 2�u state
form potential wells, while the 1 2�g state is purely repulsive
[55]. It is evident from the data in Eq. (65) that the net
positive long-range potential and positive exchange energy
completely account for the repulsive 1 2�g state. Of the three
states with potential wells, the 2 2�u

+ state well exists at the
greatest internuclear distance, about 25a0, with a depth of only
127 cm−1 according to a recent model potential calculation
[55]. With our long-range expansion of Table V evaluated
for ∞Li as in Eq. (64) and using Eq. (8) of Ref. [54], to
estimate the contribution of the exchange energy2 we find a

2By a close comparison of Eqs. (2.13) and (3.7) of Ref. [82], we
believe that the factor 2 in the denominator of D given in Eq. (8)
of Ref. [54] should be replaced by m!. We evaluated the exchange
energy splittings with this evident correction included.

TABLE IV. Convergence of the long-range interaction coefficients C (P-S+ )
6,x (M ) for the ∞Li(2 2P)-∞Li+(1 2S) system, where two particles

lie on the x axis (p3) as shown in Fig. 2. Here NP denotes the sizes of bases for the P state of the ∞Li atom. In addition, NS , N(pp)P, and
ND are the sizes of basis for the corresponding intermediate states of symmetries S, P, and D, respectively, and (pp)P stands for the main
configuration of two p electrons coupled to form a total angular momentum of P [since the contribution from the (pp)P configuration converges
at N(pp)P = 3413, we did not increase N(pp)P any further [70]]. Further, N+

S and N+
P denote the sizes of the bases for the ground state and the

intermediate states, respectively, of symmetry P of ∞Li+.

(N+
S , N+

P ; NP, NS, N(pp)P, ND ) C (P-S+ )
6,x (M = 0) C (P-S+ )

6,x (M = ±1)

(504,728,1174,1589,1106,1174) −1820.631774 3995.37910
(744,1120,2091,2625,2002,2091) −1820.627179 3995.40911
(1050,1632,3543,4172,3413,3543) −1820.626701 3995.42357
(1430,2280,5761,6412,3413,5761) −1820.626499 3995.42669
extrapolated −1820.6261(3) 3995.429(3)
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TABLE V. Long-range interaction coefficients (in a.u.) of the Li(2 2P)-Li+(1 2S) system for the two particles lying on the z axis and the x
axis, respectively. Here p1 and p3 are as shown in Fig. 2. Position p1 corresponds to standard molecular � and � nomenclature where the z
axis joins the atom and the ion. The numbers in parentheses represent the computational uncertainties.

p1 C (P-S+ )
3,z (M = 0) C (P-S+ )

3,z (M = ±1) C (P-S+ )
4,z (M = 0) C (P-S+ )

4,z (M = ±1) C (P-S+ )
6,z (M = 0) C (P-S+ )

6,z (M = ±1)

∞Li 10.8199392(2) −5.4099696(1) 61.8515(2) 64.2838(2) 9811.485(6) −1820.6261(3)
7Li 10.8192592(2) −5.4096296(1) 61.8385(2) 64.2911(2) 9811.274(6) −1820.7205(2)
6Li 10.8191462(2) −5.4095731(1) 61.8364(2) 64.2925(2) 9811.239(6) −1820.7362(3)

p3 C (P-S+ )
3,x (M = 0) C (P-S+ )

3,x (M = ±1) C (P-S+ )
4,x (M = 0) C (P-S+ )

4,x (M = ±1) C (P-S+ )
6,x (M = 0) C (P-S+ )

6,x (M = ±1)

∞Li −5.4099696(1) 2.7049847(1) 64.2838(2) 63.0676(3) −1820.6261(3) 3995.429(3)
7Li −5.4096296(1) 2.7048148(1) 64.2911(2) 63.0648(2) −1820.7205(2) 3995.276(3)
6Li −5.4095731(1) 2.7047866(1) 64.2925(2) 63.0643(3) −1820.7362(3) 3995.251(3)

well of depth 119 cm−1 at R = 25.8a0 to be compared to the
depth 124 cm−1 at 25.7a0 obtained by Magnier et al. using
a long-range expansion and the exchange energy. We also
obtain for the 1 2�u state using Eq. (65) a potential barrier of
36 cm−1 at R = 23.9a0, compared to 40 cm−1 at 23.4a0 found
by Magnier et al. The agreement of the well and the barrier
positions and energies calculated using Eqs. (64) and (65)
with the similar calculations of Magnier et al. is satisfactory.
The 2 2�u

+ state is an example of a long-range molecular
state [83]. Moreover, we do not attempt to reproduce the
wells of the 2 2�u

+ or 1 2�u states, because it is evident
from Figs. 8 and 9 in Ref. [54] that these potential wells are
fully realized with the inclusion of charge overlap (i.e., in
quantum-chemical calculations [54,55]).

Having thus demonstrated that two-body long-range inter-
action potentials can be extracted from our results, as well
as providing the coefficients from Table V and Eqs. (64) and
(65), we return to the three-body system.

TABLE VI. Comparison of the polarizability components αp1
zz

and αp1
xx , and αp3

zz and αp3
xx (in a.u.) for the excited state 2 2P of

∞Li. For the two coordinate systems, we have αp1
xx = α1 + αT

1 or
αp1

zz = α1 − 2αT
1 (see Refs. [75–78]) and αp3

zz = α1 + αT
1 or αp3

xx =
α1 − 1

2 αT
1 , respectively, where the electric field lies in the z or x di-

rection, expressed in terms of the principal polarizabilities α1 (scalar)
and αT

1 (tensor).

αp1
zz = 2C (P-S+ )

4,z αp1
xx = 2C (P-S+ )

4,z

Reference (M = 0) (M = ±1)

Pipin and Bishop [79] 123.634 128.449
Rérat et al. [77] 131 129
Cohen and Themelis [80] 122.94 128.13
Johnson et al. [81] 123.81 128.580
this work 123.703(4) 128.5676(4)

Reference αp3
zz = 2C (P-S+ )

4,x αp3
xx = 2C (P-S+ )

4,x

(M = 0) (M = ±1)

Pipin and Bishop [79] 128.449 126.0415
Rérat et al. [77] 129 131
Cohen and Themelis [80] 128.13 125.535
Johnson et al. [81] 128.580 126.195
this work 128.5676(4) 126.1352(6)

III. RESULTS AND DISCUSSION

As in Secs. II H and II I, we use highly accurate varia-
tional wave functions for lithium atoms and ions in Hylleraas
coordinates with finite nuclear mass effects to evaluate the
numerical values [70]. We note that in general the zeroth-order
wave functions are obtained by using degenerate perturba-
tion theory through Eq. (10) in the Supplemental Material
[74] and there are intrinsic geometrical dependences that
complicate the analysis. In particular, the zeroth-order wave
functions change with the geometry (interior angles and
interatomic separations) of the three-body system. How-
ever, when R23 = R31 = R, we have the matrix elements
�12 = �21 [see Eq. (10) in the Supplemental Material [74]]
and the geometrical dependences do not appear in the
zeroth-order wave functions, simplifying the analysis of the
three-body system. Therefore, in this section we consider
the Li(2 2S)-Li(2 2P)-Li+(1 1S) system for the configurations
where R23 = R31 = R.

In Sec. III A we introduce the zeroth-order wave functions
and in Sec. III B provide the numerical values of these additive
coefficients. In Sec. III C we focus on the two specific arrange-
ments of the three particles, collinear and in an equilateral
triangle, providing the nonadditive coefficients.

A. Additive coefficients: Wave functions

With respect to the p1 orientation as shown in Fig. 2, we
calculate the long-range additive potentials for the three-body
system lying collinearly on the z axis. According to degener-
ate perturbation theory, the corresponding zeroth-order wave
functions are

�
(0)
1,z = 1√

2
[|n01z; n00; n′

00〉 + |n00; n01z; n′
00〉], (66)

�
(0)
2,z = 1√

2
[|n01z; n00; n′

00〉 − |n00; n01z; n′
00〉], (67)

where the symbol z indicates the three-particles lying on the z
axis for the configurations of R23 = R31 = R.

For three particles lying in the x-y plane as shown in Fig. 1,
the corresponding zeroth-order wave functions are

�
(0)
1,⊥ = 1√

2
[|n01; n00; n′

00〉 + |n00; n01; n′
00〉], (68)
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TABLE VII. Long-range additive interaction coefficients (in a.u.) of the Li(2 2S)-Li(2 2P)-Li+(2 1S) system for two different types of the
zeroth-order wave functions, where the three particles lie collinearly on the z axis (similar to the p1 orientation of the two-body system shown
in Fig. 2). The numbers in parentheses represent the computational uncertainties.

∞Li 7Li 6Li

Coefficients �
(0)
1,z �

(0)
2,z �

(0)
1,z �

(0)
2,z �

(0)
1,z �

(0)
2,z

C (12)
3,z (1, M = 0) 11.000221(2) −11.000221(2) 11.001853(2) −11.001853(2) 11.002125(2) −11.002125(2)

C (23)
3,z (1, M = 0) 5.4099696(1) 5.4099696(1) 5.4096296(1) 5.4096296(1) 5.4095731(1) 5.4095731(1)

C (31)
3,z (1, M = 0) 5.4099696(1) 5.4099696(1) 5.4096296(1) 5.4096296(1) 5.4095731(1) 5.4095731(1)

C (23)
4,z (1, M = 0) 71.9539(4) 71.9539(4) 71.9594(4) 71.9594(4) 71.9604(4) 71.9604(4)

C (31)
4,z (1, M = 0) 71.9539(4) 71.9539(4) 71.9594(4) 71.9594(4) 71.9604(4) 71.9604(4)

C (12)
6,z (1, M = 0) 2075.40(3) 2075.40(3) 2076.08(7) 2076.08(7) 2076.19(7) 2076.19(7)

C (23)
6,z (1, M = 0) 5263.218(3) 5263.218(3) 5263.151(3) 5263.151(3) 5263.140(3) 5263.140(3)

C (31)
6,z (1, M = 0) 5263.218(3) 5263.218(3) 5263.151(3) 5263.151(3) 5263.140(3) 5263.140(3)

C (12)
3,z (1, M = ±1) −5.500111(1) 5.500111(1) −5.500926(1) 5.500926(1) −5.501062(1) 5.501062(1)

C (23)
3,z (1, M = ±1) −2.7049847(1) −2.7049847(1) −2.7048148(1) −2.7048148(1) −2.7047866(1) −2.7047866(1)

C (31)
3,z (1, M = ±1) −2.7049847(1) −2.7049847(1) −2.7048148(1) −2.7048148(1) −2.7047866(1) −2.7047866(1)

C (23)
4,z (1, M = ±1) 73.1701(4) 73.1701(4) 73.1859(4) 73.1859(4) 73.1885(4) 73.1885(4)

C (31)
4,z (1, M = ±1) 73.1701(4) 73.1701(4) 73.1859(4) 73.1859(4) 73.1885(4) 73.1885(4)

C (12)
6 (1, M = ±1) 1406.68(3) 1406.68(3) 1407.15(5) 1407.15(5) 1407.20(2) 1407.20(2)

C (23)
6,z (1, M = ±1) −552.8371(7) −552.8371(7) −552.8460(5) −552.8460(5) −552.8472(7) −552.8472(7)

C (31)
6,z (1, M = ±1) −552.8371(7) −552.8371(7) −552.8460(5) −552.8460(5) −552.8472(7) −552.8472(7)

�
(0)
2,⊥ = 1√

2
[|n01; n00; n′

00〉 − |n00; n01; n′
00〉], (69)

where the symbol ⊥ indicates specificity to the x-y planar con-
figuration with R23 = R31 = R. Note that Eqs. (68) and (69)
include the special case of the three particles lying collinearly
on the x axis, i.e., the orientation p3.

B. Additive coefficients: Evaluation

Using the degenerate perturbation theory, we find that dif-
ferent from the ground-state Li3

+ trimer (where there is no
analogous quantum three-body effect for these long-range
additive coefficients [12]), the atomic states a and b and
the corresponding additive coefficients are changing with

TABLE VIII. Long-range additive interaction coefficients (in a.u.) of the Li(2 2S)-Li(2 2P)-Li+(2 1S) system for two different types of the
zeroth-order wave functions, where the three particles lie in the x-y plane with R23 = R31 = R as shown in Fig. 1. Note that this includes the
special case of the three particles collinear on the x axis. The numbers in parentheses represent the computational uncertainties.

∞Li 7Li 6Li

Coefficients �
(0)
1,⊥ �

(0)
2,⊥ �

(0)
1,⊥ �

(0)
2,⊥ �

(0)
1,⊥ �

(0)
2,⊥

C (12)
3 (1, M = 0) −5.500111(1) 5.500111(1) −5.500926(1) 5.500926(1) −5.501062(1) 5.501062(1)

C (23)
3 (1, M = 0) −2.7049847(1) −2.7049847(1) −2.7048148(1) −2.7048148(1) −2.7047866(1) −2.7047866(1)

C (31)
3 (1, M = 0) −2.7049847(1) −2.7049847(1) −2.7048148(1) −2.7048148(1) −2.7047866(1) −2.7047866(1)

C (23)
4 (1, M = 0) 73.1701(4) 73.1701(4) 73.1859(4) 73.1859(4) 73.1885(4) 73.1885(4)

C (31)
4 (1, M = 0) 73.1701(4) 73.1701(4) 73.1859(4) 73.1859(4) 73.1885(4) 73.1885(4)

C (12)
6 (1, M = 0) 1406.68(3) 1406.68(3) 1407.15(5) 1407.15(5) 1407.20(2) 1407.20(2)

C (23)
6 (1, M = 0) −552.8371(7) −552.8371(7) −552.8460(5) −552.8460(5) −552.8472(7) −552.8472(7)

C (31)
6 (1, M = 0) −552.8371(7) −552.8371(7) −552.8460(5) −552.8460(5) −552.8472(7) −552.8472(7)

C (12)
3 (1, M = ±1) 2.750054(1) −2.750054(1) 2.750462(1) −2.750462(1) 2.750530(1) −2.750530(1)

C (23)
3 (1, M = ±1) 1.3524924(1) 1.3524924(1) 1.3524074(1) 1.3524074(1) 1.3523932(1) 1.3523932(1)

C (31)
3 (1, M = ±1) 1.3524924(1) 1.3524924(1) 1.3524074(1) 1.3524074(1) 1.3523932(1) 1.3523932(1)

C (23)
4 (1, M = ±1) 72.5620(5) 72.5620(5) 72.5727(5) 72.5727(5) 72.5745(5) 72.5745(5)

C (31)
4 (1, M = ±1) 72.5620(5) 72.5620(5) 72.5727(5) 72.5727(5) 72.5745(5) 72.5745(5)

C (12)
6 (1, M = ±1) 1741.06(5) 1741.06(5) 1741.59(4) 1741.59(4) 1741.68(4) 1741.68(4)

C (23)
6 (1, M = ±1) 2355.190(2) 2355.190(2) 2355.152(2) 2355.152(2) 2355.146(2) 2355.146(2)

C (31)
6 (1, M = ±1) 2355.190(2) 2355.190(2) 2355.152(2) 2355.152(2) 2355.146(2) 2355.146(2)
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TABLE IX. Long-range nonadditive interaction coefficients (in a.u.) of the Li(2 2S)-Li(2 2P)-Li+(2 1S) system for two different types of
the zeroth-order wave functions, where the three particles form an equally spaced collinear configuration with the ion in the middle lying on
the x axis. The numbers in parentheses represent the computational uncertainties.

∞Li 7Li 6Li

Coefficients �
(0)
1,⊥ �

(0)
2,⊥ �

(0)
1,⊥ �

(0)
2,⊥ �

(0)
1,⊥ �

(0)
2,⊥

C (12,23)
4,2 (1, M = 0) −1873.904(5) 3205.671(5) −1874.274(5) 3206.351(5) −1874.334(6) 3206.464(5)

C (31,12)
2,4 (1, M = 0) −1873.904(5) 3205.671(5) −1874.274(5) 3206.351(5) −1874.334(6) 3206.464(5)

C (12,23)
3,3 (1, M = 0) 244.58680(3) −244.58680(3) 244.65297(5) −244.65297(5) 244.66399(5) −244.66399(5)

C (23,31)
3,3 (1, M = 0) 1.0592047(2) −1.0592047(2) 1.0597875(3) −1.0597875(3) 1.0598847(2) −1.0598847(2)

C (31,12)
3,3 (1, M = 0) 244.58680(3) −244.58680(3) 244.65297(5) −244.65297(5) 244.66399(5) −244.66399(5)

C (12,23)
4,2 (1, M = ±1) 936.951(3) −1602.836(3) 937.136(3) −1603.176(3) 937.167(3) −1603.231(2)

C (31,12)
2,4 (1, M = ±1) 936.951(3) −1602.836(3) 937.136(3) −1603.176(3) 937.167(3) −1603.231(2)

C (12,23)
3,3 (1, M = ±1) 611.46703(6) −611.46703(6) 611.6324(1) −611.6324(1) 611.6600(1) −611.6600(1)

C (23,31)
3,3 (1, M = ±1) 2.6480119(5) −2.6480119(5) 2.649468(1) −2.649468(1) 2.6497127(6) −2.6497127(6)

C (31,12)
3,3 (1, M = ±1) 611.46703(6) −611.46703(6) 611.6324(1) −611.6324(1) 611.6600(1) −611.6600(1)

different geometries of the three-body system for the excited
Li3

+ trimer. This phenomenon is absolutely a kind of quan-
tum three-body effect, which is caused by the degeneracy
of the excited Li3

+ trimer. In contrast, for the specific ge-
ometries with R23 = R31 = R, we find that the atomic states
and the corresponding additive interaction coefficients would
remain unchanged due to the symmetry of the three-body
system. This feature makes these coefficients useful in the
quantum-chemistry studies. In the present paper we give
the calculations of the long-range coefficients for these spe-
cific configurations. The additive coefficients C(IJ )

n [to be in
Eqs. (17) and (21)] are calculated for the specific three-body
Li(2 2S)-Li(2 2P)-Li+(1 1S) system lying on the z axis or in
the x-y plane. The numerical values are shown in Tables VII
and VIII, where we can also find the orientation dependence
(which is demonstrated in Sec. II H for the two-body system)
of the long-range interaction coefficients for the excited Li3

+
trimer.

For the numerical values of these additive coefficients,
we note that the leading long-range interaction coefficient
between two neutral atoms C(12)

3 (1, M ) can be positive (at-
tractive) or negative (repulsive), corresponding to the different
atomic states related to the symmetry of the system. The
leading terms C(23)

3,z (1, M = ±1) and C(31)
3,z (1, M = ±1) (see

Table VII) and C(23)
3 (1, M = 0) and C(31)

3 (1, M = 0) (see Ta-
ble VIII) are always negative, which represents the repulsive
interactions between the charge of the Li+(1 1S) ion and
the permanent electric quadruple moments of the Li(2 2P)
atom generated by its anisotropic charge distribution along
the z axis for M = ±1 and M = 0 states, respectively. The
leading terms C(23)

3,z (1, M = 0) and C(31)
3,z (1, M = 0) (see Ta-

ble VII) and C(23)
3 (1, M = ±1) and C(31)

3 (1, M = ±1) (see
Table VIII) are always positive (attractive), which is caused
by the induction effect of the Li+(1 1S) atom. Similarly,
the inductive terms C(23)

4,z (1, M ) and C(31)
4,z (1, M ) (see Ta-

ble VII) and C(23)
4 (1, M ) and C(31)

4 (1, M ) (see Table VIII) are
also always positive (attractive). Their numerical values are
the linear combinations of the inductive interactions of the
Li(2 2S)-Li+(1 1S) system and the Li(2 2P)-Li+(1 1S) system

[Eqs. (46) and (47)]. The C(23)
6,z (1, M ) and C(31)

6,z (1, M ) (see

Table VII) and C(23)
6 (1, M ) and C(31)

6 (1, M ) (see Table VIII)
are also the linear combinations of inductive and disper-
sion interactions of the Li(2 2S)-Li+(1 1S) system and the
Li(2 2P)-Li+(1 1S) system [Eqs. (49) and (50)].

C. Nonadditive coefficients: Collinear and equilateral triangle

The nonadditive interaction coefficients of Eq. (33) show a
dependence on the interior angles of the three-body system.
It is not practical to calculate the nonadditive coefficients
for arbitrary cases when R23 = R31 = R. However, for the
collinear and the equilateral triangle configuration, which for-
tunately are probably the most interesting configurations, we
can evaluate specific values. In this section, these coefficients
are given for two geometries: an equally spaced collinear
configuration with the ion in the center (R23 = R31 = R) (see
Table IX) and an equilateral triangle configuration (R23 =
R31 = R12 = R) (see Table X). Different from the ground-state
Li3

+ trimer demonstrated in Ref. [12], the long-range nonad-
ditive interactions of the current excited Li3

+ trimer appear
in the second-order correction, not in the third-order correc-
tion. This phenomenon is caused by the degeneracy of the
three-body system introduced by the presence of the excited
Li(2 2P) atom. From Tables IX and X we can find that most
of the nonadditive coefficients are indeed different from each
other for these two geometries, even with the same atomic
states as shown in Eqs. (68) and (69). This kind of three-body
effect is caused by the different interior angles of the two
geometries associated with the magnetic quantum number M
of the Li(2 2P) atom, which can also be easily figured out from
Eqs. (34)–(38). Also, for the different interior angles of the
geometries and for the different magnetic quantum number
M, these nonadditive terms can be attractive or repulsive.

Due to the induction effect of the Li+(1 1S) cation,
some of these nonadditive coefficients are enhanced. For
example, from Table IX we find that the inductive non-
additive coefficients |C(12,23)

4,2 (1, M = 0)| = |C(31,12)
2,4 (1, M =

0)| = 1873.904(5) a.u. are much larger than the dispersion

022807-13



YAN, TANG, YAN, AND BABB PHYSICAL REVIEW A 104, 022807 (2021)

TABLE X. Long-range nonadditive interaction coefficients (in a.u.) of the Li(2 2S)-Li(2 2P)-Li+(2 1S) system for two different types of the
zeroth-order wave functions, where the three particles form an equilateral triangle. The numbers in parentheses represent the computational
uncertainties.

∞Li 7Li 6Li

Coefficients �
(0)
1,⊥ �

(0)
2,⊥ �

(0)
1,⊥ �

(0)
2,⊥ �

(0)
1,⊥ �

(0)
2,⊥

C (12,23)
4,2 (1, M = 0) −936.951(3) 1602.836(3) −937.136(3) 1603.176(3) −937.167(3) 1603.231(2)

C (31,12)
2,4 (1, M = 0) −936.951(3) 1602.836(3) −937.136(3) 1603.176(3) −937.167(3) 1603.231(2)

C (12,23)
3,3 (1, M = 0) 244.58680(3) −244.58680(3) 244.65297(5) −244.65297(5) 244.66399(5) −244.66399(5)

C (23,31)
3,3 (1, M = 0) 1.0592047(2) −1.0592047(2) 1.0597875(3) −1.0597875(3) 1.0598847(2) −1.0598847(2)

C (31,12)
3,3 (1, M = 0) 244.58680(3) −244.58680(3) 244.65297(5) −244.65297(5) 244.66399(5) −244.66399(5)

C (12,23)
4,2 (1, M = ±1) 468.476(1) −801.417(1) 468.567(2) −801.587(1) 468.584(1) −801.616(2)

C (31,12)
2,4 (1, M = ±1) 468.476(1) −801.417(1) 468.567(2) −801.587(1) 468.584(1) −801.616(2)

C (12,23)
3,3 (1, M = ±1) −214.01346(2) 214.01346(2) −214.07137(3) 214.07137(3) −214.08101(3) 214.08101(3)

C (23,31)
3,3 (1, M = ±1) −0.9268041(2) 0.9268041(2) −0.9273142(2) 0.9273142(2) −0.9273991(2) 0.9273991(2)

C (31,12)
3,3 (1, M = ±1) −214.01346(2) 214.01346(2) −214.07137(3) 214.07137(3) −214.08101(3) 214.08101(3)

nonadditive one [|C(23,31)
3,3 (1, M = 0)| = 1.059 204 7(2) a.u.

from Table IX] and are even larger than some of the ad-
ditive dispersion [|C(12)

6 (1, M = 0)| = 1406.68(3) a.u. from
Table VIII] and additive inductive ones [|C(23)

6 (1, M = 0)| =
552.8371(7) a.u. from Table VIII] at the same order. The
competition between the additive attractive and nonadditive
repulsive terms of C6 for particular geometries will also be
discussed in the following section. These large nonadditive
inductive interactions would be indispensable in constructing
potential surfaces and be very useful in studies of quantum
three-body effect for the excited Li3

+ trimers.

D. Long-range potentials: Results

Evaluating the additive and nonadditive long-range poten-
tials using the coefficients given in Tables VII–X, the potential
functions are displayed for two geometries: an equally spaced
collinear configuration with R23 = R31 = R (see Figs. 4 and 5)
and an equilateral triangle with sides of length R (see Fig. 6).
We should indicate that the nonadditive interactions of the

FIG. 4. Long-range additive interaction potentials (in a.u.) of the
∞Li(2 2S)-∞Li(2 2P)-∞Li+(1 1S) system for two types of the zeroth-
order wave functions, where three particles lie collinearly on the z
axis. For each curve labeled by a wave function, the plotted curve is
the sum of �E (1) and �E (2).

present paper are all evaluated for the geometries lying on the
x-y plane as shown in Fig. 1. Thus, for the three particles lying
on the z axis, only the additive potentials are shown in Fig. 4
with respect to the two-body p1 situation (see Fig. 2). For the
collinear configuration lying on the x-y plane, the total ad-
ditive and nonadditive potentials are displayed in Fig. 5. The
separations between the M = 0 and M = ±1 states are mainly
caused by the leading repulsive or attractive electrostatic inter-
action involving C3 between the ion and the excited atom. In
Fig. 6 we display the total long-range potentials (additive and
nonadditive) for the geometry of equilateral triangle lying on
the x-y plane, where a barrier of about 115 cm−1 at internu-
clear distance of 17a0 is found for the �

(0)
1,⊥(1, M = 0) state.

The barrier results from the interplay of the repulsive leading
terms involving C3 and the attractive induction interaction
involving C4. For the other states, the long-range potentials
are attractive at all internuclear distances. Note that the data
presented in this section do not include exchange energies,

FIG. 5. Long-range interaction potentials (in a.u.) of the
∞Li(2 2S)-∞Li(2 2P)-∞Li+(1 1S) system for two types of the zeroth-
order wave functions, where three particles lie collinearly on the x
axis. The plotted potentials include all electrostatic-, dispersion-, and
induction-type interactions (additive and nonadditive) up to O(R−6).
For each curve labeled by a wave function, the plotted curve is the
sum of �E (1) and �E (2).
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FIG. 6. Long-range interaction potentials (in a.u.) of the
∞Li(2 2S)-∞Li(2 2P)-∞Li+(1 1S) system for two types of the zeroth-
order wave functions, where three particles form an equilateral
triangle on the x-y plane. The plotted potentials include all
electrostatic-, dispersion-, and induction-type interactions (additive
and nonadditive) up to O(R−6). For each curve labeled by a wave
function, the plotted curve is the sum of �E (1) and �E (2).

which may contribute at these internuclear distances. We will
discuss their contributions in the following section.

E. Strong nonadditive potentials and switching off the additive
potentials

As we discussed before, the nonadditive collective effect
of the three-body system is caused by its degeneracy, which
is introduced by the presence of the excited Li(2 2P) atom.

Meanwhile, the presence of the Li+(1 1S) ion introduces the
induction effect, which strongly enhances the nonadditive
(collective) interaction, as demonstrated in Sec. III C. In this
section we present a graphical comparison of the additive and
nonadditive potentials for the equilateral triangle and collinear
(R23 = R31 = R) configurations (see Fig. 7).

The figure illustrates that the nonadditive potentials are
significant and can even be stronger than the net contribution
from the additive potentials. For example, for the equilateral
triangle configuration, the magnitude of the additive contribu-
tion [Fig. 7(a)] becomes less than the nonadditive contribution
[Fig. 7(b)] around R ∼ 14a0. Indeed, we find that there are
specific internuclear distances at which the additive contri-
butions sum to zero, leaving only nonadditive contributions.
Denoting these special distances by R̄, for the equilateral
triangle configuration, the additive cancellation occurs at R̄ =
13.58a0 for the �1,⊥(1, M = 0) state with a net energy of
48.42 cm−1. For the collinear configuration the additive can-
cellation occurs at R̄ = 23.68a0 for the �1,⊥(1, M = 0) state
with a net energy of 0.25 cm−1 and at R̄ = 30.69a0 for the
�2,⊥(1, M = 0) state with a net energy of −0.09 cm−1.

We now, as promised in Sec. I C, draw a comparison with
trapped cold polar molecules. When the additive (two-body)
contributions sum to zero at a distance R̄, Eq. (16) reduces to

�E (R̄) = �E (2)
non(R̄). (70)

Comparing Eq. (33) for �E (2)
non with Eq. (2) for the three-body

lattice interaction, we observe that they are precisely the same
form. Since our results are specific to three particles, the
collinear case is most similar to the case of trapped polar

FIG. 7. Comparison of long-range (a) and (c) additive potentials and (b) and (d) nonadditive (collective) potentials (in a.u.) of the
∞Li(2 2S)-∞Li(2 2P)-∞Li+(1 1S) system for two types of the zeroth-order wave functions with R23 = R31 = R: (a) and (b) equilateral triangle
and (c) and (d) equally spaced collinear configurations. At the labeled points, the two-body additive potentials sum to zero, leaving only the
net nonadditive collective potentials.
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molecules in a linear configuration, such as shown in Fig. 1(a)
of Ref. [64]. Our intriguing result deserves further study. In
retrospect, we can understand the appearance of a cancellation
analogous to that found for trapped polar molecules: The
anisotropy of the present system due to the Li(2 2P) atom in
the presence of the Li+(1 1S) ion charge is physically similar
to the dipole-dipole interaction in the presence of an external
electric field in the optical lattice case. To gauge precisely the
physical potential energies at the special distances R̄, treat-
ment of the exchange energy contributions, or equivalently
quantum-chemical calculations, would be desirable. However,
by analogy with the Li+(1 1S)-Li(2 2P) results that we pre-
sented in Sec. II I, we observe that the values of R̄ are probably
sufficiently large so that it is likely that only exchange energies
will contribute. Nevertheless, the present result suggests an
intriguing similarity between the Li(2 2S)-Li(2 2P)-Li+(1 1S)
system and the trapped cold polar molecule scenario.

IV. CONCLUSION

The long-range additive and nonadditive interaction po-
tentials for the Li(2 2S)-Li(2 2P)-Li+(1 1S) system were
calculated by using degenerate perturbation theory. We found
that all the first-order and second-order additive and non-
additive interaction coefficients show a dependence on the
geometrical configurations of the system. The nonadditive
interactions depend on both the atomic states and the interior
angles of the configurations. The degeneracy of the system
caused by the presence of the Li(2 2P) atom leads to the
three-body collective effect. The presence of the Li+(1 1S) ion
was found to enhance this collective effect, which makes the

three-body nonadditive collective interactions of the system
even stronger than the two-body additive interactions for some
specific configurations of the three-body system. For the two
particular configurations with R23 = R31 = R, the equilateral
triangle configuration and the equally spaced collinear config-
uration, the interaction coefficients were evaluated with highly
accurate wave functions calculated variationally in Hylleraas
coordinates. In addition, for the Li(2 2S)-Li(2 2P)-Li+(1 1S)
system, the two-body additive interaction can be switched
off, leaving only three-body nonadditive interactions for par-
ticular geometries, which makes this three-body system a
prospective platform to study the quantum collective effect.
We demonstrated how two-body interaction potentials can be
extracted from our results and gave explicit expressions for the
long-range potentials of the Li+(1 1S)-Li(2 2P) system. The
present high-precision results can serve as benchmarks for
future quantum-chemical calculations and may be of interest
for constructing precise potential energy surfaces. The gen-
eral formulas for A(n0S)-A(n′

0L)-AQ+(n′′
0S) are listed in the

Supplemental Material.
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Pawlak, L. M. C. Janssen, N. Moiseyev, S. Y. T. van de
Meerakker, A. van der Avoird, C. P. Koch, and E. Narevicius,
Nat. Phys. 13, 35 (2017).

[67] L. Anderegg, S. Burchesky, Y. Bao, S. S. Yu, T. Karman,
E. Chae, K.-K. Ni, W. Ketterle, and J. M. Doyle,
arXiv:2102.04365.

[68] J.-R. Li, W. G. Tobias, K. Matsuda, C. Miller, G. Valtolina,
L. D. Marco, R. R. W. Wang, L. Lassablière, G. Quéméner, J. L.
Bohn, and J. Ye, arXiv:2103.06246.

[69] J. Y. Zhang and Z. C. Yan, J. Phys. B 37, 723 (2004).
[70] L. Y. Tang, Z. C. Yan, T. Y. Shi, and J. F. Babb, Phys. Rev. A

79, 062712 (2009).
[71] Z. C. Yan and G. W. F. Drake, J. Phys. B 30, 4723 (1997).
[72] G. W. F. Drake and Z. C. Yan, Phys. Rev. A 52, 3681 (1995).
[73] Z. C. Yan and G. W. F. Drake, Chem. Phys. Lett. 259, 96 (1996).
[74] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.104.022807 for details of the derivation of
perturbation formulas.

[75] M. Rérat, M. Mérawa, and C. Pouchan, Phys. Rev. A 45, 6263
(1992).

[76] M. Rérat and C. Pouchan, Phys. Rev. A 49, 829 (1994).
[77] M. Rérat, B. Bussery, and M. Frécon, J. Mol. Spectrosc. 182,

260 (1997).
[78] M. Caffarel, M. Rérat, and C. Pouchan, Phys. Rev. A 47, 3704

(1993).
[79] J. Pipin and D. M. Bishop, Phys. Rev. A 47, R4571 (1993).
[80] S. Cohen and S. I. Themelis, J. Phys. B 38, 3705 (2005).
[81] W. R. Johnson, U. I. Safronova, A. Derevianko, and M. S.

Safronova, Phys. Rev. A 77, 022510 (2008).
[82] M. Chibisov and R. Janev, Phys. Rep. 166, 1 (1988).
[83] K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Rev.

Mod. Phys. 78, 483 (2006).

022807-17

https://doi.org/10.1103/PhysRevLett.102.040402
https://doi.org/10.1103/PhysRevLett.102.179902
https://doi.org/10.1038/nature04626
https://doi.org/10.1103/PhysRevX.6.021025
https://doi.org/10.1103/PhysRevA.102.012810
https://doi.org/10.1051/0004-6361/201936538
https://doi.org/10.1063/1.454919
https://doi.org/10.1126/science.abb1564
https://doi.org/10.1086/192164
https://doi.org/10.1088/0953-4075/35/10/201
https://doi.org/10.1021/acs.jpca.9b03194
https://doi.org/10.1063/1.4770054
https://doi.org/10.1063/1.4799915
https://doi.org/10.1063/1.4997169
https://doi.org/10.1063/1.471430
https://doi.org/10.1039/ft9938901511
https://doi.org/10.1103/PhysRevLett.105.203201
https://doi.org/10.1039/c1cp21568j
https://doi.org/10.1103/PhysRevA.101.032705
https://doi.org/10.1126/science.aan4701
https://doi.org/10.1103/PhysRevA.101.012706
https://doi.org/10.1016/S0301-0104(99)00084-1
https://doi.org/10.1016/j.chemphys.2017.02.005
https://doi.org/10.1140/epjst/e2007-00111-2
https://doi.org/10.1016/0584-8539(87)80154-X
https://doi.org/10.1016/0584-8539(88)80038-2
https://doi.org/10.1016/0584-8539(88)80217-4
https://doi.org/10.1063/1.461140
https://doi.org/10.1016/0584-8539(88)80171-5
https://doi.org/10.1016/0584-8539(95)01442-W
https://doi.org/10.1016/S0166-1280(99)00451-0
https://doi.org/10.1038/nphys678
https://doi.org/10.1038/nature08953
https://doi.org/10.1038/nphys3904
http://arxiv.org/abs/arXiv:2102.04365
http://arxiv.org/abs/arXiv:2103.06246
https://doi.org/10.1088/0953-4075/37/3/016
https://doi.org/10.1103/PhysRevA.79.062712
https://doi.org/10.1088/0953-4075/30/21/012
https://doi.org/10.1103/PhysRevA.52.3681
https://doi.org/10.1016/0009-2614(96)00706-3
http://link.aps.org/supplemental/10.1103/PhysRevA.104.022807
https://doi.org/10.1103/PhysRevA.45.6263
https://doi.org/10.1103/PhysRevA.49.829
https://doi.org/10.1006/jmsp.1996.7231
https://doi.org/10.1103/PhysRevA.47.3704
https://doi.org/10.1103/PhysRevA.47.R4571
https://doi.org/10.1088/0953-4075/38/20/007
https://doi.org/10.1103/PhysRevA.77.022510
https://doi.org/10.1016/S0370-1573(98)90002-3
https://doi.org/10.1103/RevModPhys.78.483

