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On-top description of the effect of excitation on electron correlation with quasiparticles
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A spectrum of �-correlon quasiparticles is proposed to describe the excitation effect on electron correlation.
The proposed quasiparticle description is based on the comparison of the pair-correlation functions of the excited
and ground states at the special coalescence points of the configurational space. The complex form of the
�-correlon wave function allows us to naturally separate regions with the excitation suppression of correlation
(ESC �-correlon), where correlation is stronger in the ground state, from those with the excitation enhancement
of correlation (EEC �-correlon), where correlation is stronger in the excited state. The proposed �-correlon
approach is applied to characterize the important single excitations with the competition of “anticorrelation
squeezing” and “enhanced-correlation spreading” of the two-electron distribution. The former feature character-
izes single valence excitations of the ionic nature and this leads to the prevailing of the ESC effect in this type of
excitations. In turn, the enhanced-correlation spreading characterizes single Rydberg excitations, which leads to
the prevailing of the EEC effect in this type of excitations. The proposed �-correlon quasiparticles are studied
both analytically and numerically. The analytical expressions for the on-top correlation functions are obtained
with the two-determinantal two-electron model of the active site of an excitation. The two-dimensional contour
plots of the ESC and EEC �-correlons obtained for the lowest vertical valence ionic and Rydberg excitations
in the prototype molecules H2, N2, and C2H4 from the highly correlated wave functions confirm, in general, the
trends in the relative correlation strength deduced from the model.
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I. INTRODUCTION

One of the important goals of conceptual many-electron
theory is a systematic description of trends in electron corre-
lation in various types of many-electron states. In theoretical
spectroscopy this goal can be reformulated as a comparative
description of electron correlation in different types of excited
states. Such a description would provide yet another criterion
for a meaningful systematization of, otherwise, a veritable
“zoo” of molecular electronic excitations.

In our previous work [1] we proposed to employ a type of
the quasiparticles, the correlons, as kinematic descriptors of a
local effect of electron correlation in individual many-electron
states. The term “kinematic” means that a descriptor does not
contain the particle interaction or external potential operators,
being solely constructed in terms of the generic wave function
and the corresponding reduced quantities, such as the reduced
density matrices (RDMs). In this paper the differential cor-
relons, �-correlons, are proposed to describe the excitation
effect on electron correlation. Compared to the correlons of
Ref. [1], they accumulate the information from both ground
and excited states, thus introducing the important comparative
aspects of the excitation description (see below).

In general, quasiparticles offer an efficient conceptual kine-
matic approach to describe the distributions of electrons and
holes in many-electron systems. For excited states a canonical
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example is the description of the excitation effect on the one-
electron quantity, the electron density ρ(r), with the exciton
quasiparticles [2]. A change of the density �ρP(r1) due to a
single-electron excitation

�ρP(r1) = ρP(r1) − ρ0(r1) = N
∫

· · ·
∫

|�P
N (x1, . . . , xN )|2

× dσ1 · · · dσN dr2 · · · drN − N
∫

· · ·
∫

× |�0
N (x1, . . . , xN )|2dσ1 · · · dσN dr2 · · · drN (1)

is represented as the density ρP
exc(r1) of the zero-charge exci-

ton quasiparticle

�ρP(r1) = ρP
exc(r1) = ρP

p (r1) + ρP
h (r1). (2)

In Eq. (1) �0
N and �P

N are the N-electron ground- and excited-
state (P > 0) wave functions, with xi = {ri, σi} being the
combination of individual spatial ri and spin σi electron co-
ordinates. In Eq. (2) ρP

p (r1) and ρP
h (r1) are the “particle”

and “hole” densities. Depending on the type of the system,
excitons can greatly differ in a degree of their localization.
Atomic and molecular excitons are the short-range limit of
the Frenkel excitons [3], while the long-range Wannier-Mott
excitons describe excitations in semiconductors [4].

In our development we use the full advantage of the
quasiparticle approach to provide the effective one-particle
description of many-electron effects. This description is given
by considering electron correlation at special coalescence
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points of the many-electron configurational space, in which
the coordinates of two electrons coincide, r1 = r2 = r. At
these points, electron correlation is represented with the on-
top pair density �P(r), which is defined as the pair density
function ρP

2 (r1, r2) evaluated at r [5],

�P(r) = ρP
2 (r, r) = N (N − 1)

∫
· · ·

∫
|�P

N (x1, . . . , xn)|2

× dσ1 · · · dσN dr3 · · · drN |r1=r2=r. (3)

Importantly, the coalescence points appear to be represen-
tative for the description of both main modes of electron
correlation, which are dynamic and nondynamic correlation.
Because of this, the on-top function �P(r) is employed to con-
nect wave function theory (WFT) [6] and density functional
theory (DFT) [7–10] in the ongoing development of efficient
combined methods of the electronic structure calculations
[11–17]. In particular, left-right nondynamic correlation of
electrons of a two-electron bond [18] is reflected in relatively
low values of �P(r) for the coalescence points r in the corre-
sponding bonding region. This feature allows one to employ
�P(r) in the description of instantaneous spin polarization
of electrons of dissociating bonds due to their nondynamic
(strong) correlation [12]. Naturally the coalescence points are
also representative for the description of short-range dynamic
correlation. Because of this, the on-top function �P(r) is
used to model pair-correlation functions describing this effect
[15,19,20] .

In our recent WFT + DFT development both above men-
tioned features are utilized to describe finer correlation effects,
such as the local suppression of dynamic correlation (SDC)
with nondynamic correlation as well as enhancement of dy-
namic correlation (EDC) in the cases of “squeezing” of
the two-electron distribution at the initial level of a few-
determinantal wave function [17]. The modeling of the SDC
and EDC effects became the basis of the recent WFT-DFT
method CAS�DFT [14,16,17,21–24]. It efficiently combines
the WFT complete active space (CAS) method with the DFT
correlation energy functional of Lee, Yang, and Parr (LYP)
[25] corrected for SDC and EDC.

In this paper the on-top quasiparticle description is applied
to describe the excitation effect on electron correlation for the
important lowest single ψ → φ excitations of singlet symme-
try, where ψ is the bonding molecular orbital (MO), which is
occupied in the reference Slater determinant representing the
ground state, while φ is one of the lowest virtual MOs. The
nature of the latter MO determines the type of the ψ → φ

excitation. If φ is the antibonding MO corresponding to the
bonding MO ψ , then we have a valence excitation of the
ionic nature [17,26,27]. A promotion to a delocalized Rydberg
MO φ determines the Rydberg character of the corresponding
excitation. Below, it will be shown that qualitative trends of
electron correlation in these types of excitations can be under-
stood already in the minimal two-determinantal two-electron
representation of the active wave function �act

e ,

�act
e = 1

2 [ψ (r1)φ(r2) + φ(r1)ψ (r2)][α(1)β(2) − β(1)α(2)],

(4)

a part of the total excited state �P
N ,

�P
N ≈ A(�core

N−2�
act
e ), (5)

In Eq. (4) α and β are the spin functions, i.e., functions
describing the z component of electron spin, corresponding,
respectively to sz = 1/2 and sz = −1/2. In Eq. (5) �core

N−2 is
the “core” part of �P

N , which is not involved in the excitation,
while A is the antisymmetrization and normalization operator.
The present inclusion of the Rydberg type excitations and the
analytic study of the excitation effect on electron correlation
constitute an important advance compared to our previous
work [1].

In Sec. II of this paper, a spectrum of �-correlon quasi-
particles is proposed to describe a local excitation effect on
the electron Coulomb correlation for various excited states. A
wave function of a delta-correlon is constructed from the dif-
ference between the excited- and ground-state pair-correlation
functions. In Sec. III the trends of electron correlation in
valence ionic and Rydberg excitations are analyzed with the
two-determinantal two-electron model. Section IV presents
�-correlons constructed numerically for the valence ionic and
Rydberg excitations in prototype molecules H2, N2, and C2H4.
In Sec. V general trends in electron correlation in the consid-
ered types of excitations are discussed and the conclusions are
drawn.

II. �-CORRELON QUASIPARTICLES

In this section a spectrum of �-correlon quasiparticles
is proposed based on the on-top approach, which has been
characterized in Sec. I. Note, first of all, that this approach
naturally separates out the leading effect of the Coulomb cor-
relation of electrons with the opposite spins. Indeed, due to the
antisymmetry of the fermionic wave function, the same-spin
component of the on-top pair density is zero, �P(↑↑)(r) = 0,
so �P(r) is identically equal to its opposite-spin component
�P(↑↓)(r),

�P(r) ≡ �P(↑↓)(r). (6)

Then the natural reference valid for all states is the uncorre-
lated counterpart �P(↑↓)

u (r) of �P(↑↓)(r),

�P(↑↓)
u (r) = 1

2 [ρP(r)]2, (7)

a half of the square of the electron density ρP(r). In �P(↑↓)
u (r)

correlation only implicitly affects ρP(r). Thus, the ratio of
�P(↑↓)(r) to �P(↑↓)

u (r), the on-top pair-correlation function
X P(r),

X P(r) = �P(↑↓)(r)

�
P(↑↓)
u (r)

= 2�P(r)

[ρP(r)]2
, (8)

gives the explicit effect of electron Coulomb correlation. Typ-
ically it is the reduction of the pair density in the vicinity of the
coalescence point compared to its uncorrelated counterpart
[ρP(r)]2/2, due to which X P(r) becomes a fraction X P(r) < 1.
In addition, excited states of the ionic nature treated with the
restricted account of, predominantly, nondynamic correlation
are characterized with regions, in which the ratio Eq. (8)
exceeds the value 1, X P(r) > 1, due to the instantaneous
squeezing of electrons in the configurational space [14,17,24].
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In our previous work [1], based on the correlation ampli-
tude cP(r), the square root of X P(r) − 1,

cP(r) =
√

X P(r) − 1, (9)

the correlon quasiparticles were introduced to describe the
local correlation effect in the individual states �P

N . Our present
goal is the comparative description of electron correlation
in the excited and ground states, in order to analyze the
excitation effect on correlation. To this end, in an analogy
with the exciton approach of Eqs. (1) and (2), we consider
the difference �X P(r) between the excited- and ground-state
on-top pair-correlation functions

�X P(r) = X P(r) − X 0(r). (10)

To convert this difference to the quasiparticle picture, we in-
troduce the differential correlation amplitude cP

�(r), the square
root of �X P(r),

cP
�(r) =

√
�X P(r). (11)

The amplitude cP
�(r) naturally separates the spatial regions,

in which the on-top pair-correlation function is smaller in
the ground state [�X P(r) > 0], from those in which it is
smaller in the excited state [�X P(r) < 0]. Indeed, the former
regions are represented with the nonvanishing real part of the
amplitude Re[cP

�(r)], while the latter regions are represented
with its nonvanishing imaginary part Im[cP

�(r)]. Based on
the definition Eq. (8) of the pair-correlation function, one
can consider the regions of location of Re[cP

�(r)] as those
with the excitation suppression of correlation (ESC), in which
excitation results in a weaker correlation strength at the coa-
lescence points. The regions of location of Im[cP

�(r)] can be
considered in turn as those with the excitation enhancement
of correlation (EEC), in which excitation results in a higher
correlation strength.

By its definition, the differential correlation amplitude
cP
�(r) does not necessarily vanish in the energetically unim-

portant regions of low electron density ρP(r). Because of
this, it is not normalizable by itself, so it cannot be directly
employed as a quasiparticle wave function. Then, in order
to turn it into a normalizable function, which would describe
electron correlation in the important spatial regions, we apply
the density cutoff to the on-top pair-correlation functions

X̃ P(r) = X P(r)
ρ0(r)

a + ρ0(r)
. (12)

With a sufficiently small parameter a of the cut-off Padé
approximant in Eq. (12), the function X̃ P(r) is approximately
equal to the original function X P(r), X̃ P(r) ≈ X P(r) in the en-
ergetically important regions of typical atomic and molecular
energy densities. On the other hand, X̃ 0(r), X̃ P(r), and their
difference �X̃ P(r),

�X̃ P(r) = X̃ P(r) − X̃ 0(r) = [X P(r) − X 0(r)]
ρ0(r)

a + ρ0(r)
,

(13)

all decay exponentially with ρ0(r) in the regions of low
density. The use of the common cutoff for all states, which
employs the ground-state density ρ0(r), would preserve the

most important information, the local ESC or the EEC char-
acter of the differential on-top pair-correlation �X P(r).

With this cutoff, we propose a quasiparticle description of
excitation effect on electron correlation. To this end, we intro-
duce for each excited state �P

N (x1, . . . , xN ) the corresponding
�-correlon quasiparticle represented with the one-electron
wave function ψP

�c(r),

ψP
�c(r) = 1√

NP
�c

√
X̃ P(r) − X̃ 0(r), (14)

where NP
�c is its normalization

NP
�c =

∫
|X̃ P(r) − X̃ 0(r)|dr. (15)

Just as the differential correlation amplitude cP
�(r) of Eq. (11),

the �-correlon wave function ψP
�c(r) of Eq. (14) provides a

natural separation of regions, in which the local correlation is
either stronger or weaker in the excited state. Specifically, the
real part of the �-correlon wave function Re[ψP

�c(r)] repre-
sents ESC. Then, this part can be called an ESC �-correlon,

Re[ψP
�c(r)] ≡ ψ

P(ESC)
�c (r), (16)

a kinematic local index describing the magnitude and location
of ESC. In turn, the imaginary part Im[ψP

�c(r)] represents
EEC. So this part can be called an EEC �-correlon,

Im[ψP
�c(r)] ≡ ψ

P(EEC)
�c (r). (17)

With the overall normalization as in Eq. (15), the amplitudes
of the �-correlons Eqs. (16) and (17) show a relative promi-
nence of the corresponding ESC and EEC effects.

III. ANALYTICAL EXPRESSIONS FOR �-CORRELONS IN
A TWO-DETERMINANTAL TWO-ELECTRON MODEL

The expressions for the �-correlons derived in this section
within the two-determinantal two-electron active part model
allow one to compare the effective correlation in the singly
excited state �act

e of Eq. (4) with the canonical electron corre-
lation in the partially doubly excited ground state �act

g ,

�act
g = 1√

2
[c1ψ (r1)ψ (r2) − c2φ(r1)φ(r2)][α(1)β(2)

−β(1)α(2)]. (18)

The optimization of Eq. (18) according to the variational
principle produces the minus sign between two spatial terms
with the positive coefficients c1 and c2, and the normalization
condition for the wave function imposes that c2

1 + c2
2 = 1. In

Eq. (18) ψ (r) is the bonding MO,

ψ (r) = 1√
2

[χa(r) + χb(r)], (19)

while orthogonal φ(r) orbital is the antibonding MO,

φ(r) = 1√
2

[χa(r) − χb(r)]. (20)

In Eqs. (19) and (20), χa(r) and χb(r) are orthonormal atomi-
clike orbitals (AOs) localized on atoms A and B, respectively,
of a two-center two-electron bond A–B.
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The magnitude of the on-top functions �act
e (r) and X act

e (r),
pertaining to the wave function in Eq. (18), is determined by
the competition of two opposing effects of “anticorrelation
squeezing” and “enhanced-correlation spreading” of the two-
electron distribution due to a single excitation. Anticorrelation
squeezing, which tends to higher values of the on-top func-
tions, stems from the plus sign in the spatial part of the generic
wave function �act

e of Eq. (4), which is opposite to the minus
sign in the genuinely correlated ground state �act

g of Eq. (18).
This plus sign produces a relatively high numerical prefactor
4 of the corresponding on-top pair density �act

e (r),

�act
e (r) = 4ψ (r)2φ(r)2. (21)

Enhanced-correlation spreading, which tends to lower values
of the on-top functions, stems from the degree or the region
of localization of the orbital φ(r), which accommodates the
excited electron. Specifically, as was already mentioned in
Sec. I, Rydberg excitations are characterized by the diffuse
character of the MO φ(r). This causes relatively low values of
the differential overlap of the MO squares ψ (r)2φ(r)2, which
counter the high numerical prefactor 4 in Eq. (21).

After this general characterization of single excitations, we
turn to valence excitations of the ionic nature. In this case,
�act

e of Eq. (4) consists of the MOs given in Eqs. (19) and
(20), with the localized AOs χa(r), χb(r) as for the ground

state. Thus, valence ionic excitations are characterized just
with the above mentioned anticorrelation squeezing. Then, in
the energetically important regions in the vicinity of the nuclei
the on-top pair-correlation function X act

e (r),

X act
e (r) = 2χa(r)4 + 2χb(r)4 − 4χa(r)2χb(r)2

χa(r)4 + χb(r)4 + 2χa(r)2χb(r)2
(22)

attains relatively high values X act
e (r) > 1, for the region

around the nucleus A, where χb(r)2 � χa(r)2. This can be
shown with the expansion of X act

e (r) with respect to the ratio
χb(r)2/χa(r)2,

X act
e (r)|χb(r)2/χa(r)2<<1 ≈ 2 − 8

χb(r)2

χa(r)2
> 1. (23)

The proposed �-correlon approach compares X act
e (r) of

Eq. (22) with the corresponding ground-state function X act
g (r),

defined in analogy to Eq. (8) by using the on-top pair density
�act

g (r) obtained from Eq. (18),

�act
g (r) = 1

2 {(c1 − c2)[χa(r)2 + χb(r)2]

+ 2(c1 + c2)χa(r)χb(r)}2, (24)

and the density ρact
g (r),

ρact
g (r) = χa(r)2 + χb(r)2 + 2(c2

1 − c2
2 )χa(r)χb(r), (25)

which reads

X act
g (r) = {(c1 − c2)[χa(r)2 + χb(r)2] + 2(c1 + c2)χa(r)χb(r)}2

[χa(r)2 + χb(r)2 + 2(c2
1 − c2

2 )χa(r)χb(r)]2
. (26)

At variance with X act
e (r) of Eq. (23), the on-top function

X act
g (r) of Eq. (26) is relatively low, X act

g (r) < 1 in the vicinity
of the nuclei. This can be also shown with the expansion of
X act

g (r) with respect to the ratio χb(r)2/χa(r)2. Retaining the
two leading terms in this expansion yields

X act
g (r)|χb(r)2/χa(r)2�1 ≈ ρact

g (r)2 − 2c1c2χa(r)4

ρact
g (r)2

< 1. (27)

Finally, from the comparison of Eq. (23) with Eq. (27) fol-
lows, that their difference �X act(r) is positive in the vicinity
of the nuclei. This means, that for valence excitations of the
ionic nature the ESC correlon Eq. (16) is located in this region.
Bearing in mind the energetical importance of this region, one
can conclude that the strength of correlation in the active part
of the wave function varies in the order

valence ionic excitations < ground state.

Next, we turn to Rydberg single excitations. In this case, as
was already mentioned above, the diffuse nature of the termi-
nal MO φ(r), leads to reduction of �act

e (r) given in Eq. (21)
as well as of the on-top pair correlation function X act

e (r),

X act
e (r) = 8ψ (r)2φ(r)2

ψ (r)4 + 2ψ (r)2φ(r)2 + φ(r)4
. (28)

Furthermore, the denominator of the formula Eq. (28) for
X act

e (r) contains, besides the small term ψ (r)2φ(r)2, also

a relatively large term ψ (r)4 with the localized MO ψ (r).
Consequently, one can expect that, contrary to valence ionic
excitations, X act

e (r) can attain for Rydberg excitations rather
low values X act

e (r) < 1.
Comparing the trends established above, one can conclude

that the strength of effective correlation in active part varies in
the order

valence ionic excitations < ground state

< Rydberg excitations.

The qualitative trends established in this section for the two-
determinantal two-electron model will serve as a guiding line
in the analysis of the spatial distribution of the ESC and EEC
�-correlons obtained in the next section.

IV. �-CORRELONS FOR VALENCE IONIC AND RYDBERG
EXCITATIONS IN PROTOTYPE MOLECULES

In this section the spatial behavior is analyzed of the �-
correlons obtained for the prototype molecules H2, N2, and
C2H4 described at a rather highly correlated level with the
self-consistent field CAS method CASSCF(n, m), which in-
cludes all possible distributions of n electrons in the active
orbital space of m orbitals of the reference determinants. Ver-
tically excited states are studied and the assumed ground state
geometries for the molecules read: H2: RH2 = 1.40 bohr, N2:
RN2 = 2.08 bohr, C2H4: RCC = 2.53 bohr, RCH = 2.05 bohr,
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FIG. 1. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �−
u (π → π∗)

state of N2. The XY plane is perpendicular to the axis of the molecule and includes the position of one of the N nuclei located in the center.

∠HCH = 116.6 deg. The comparative behavior of the ESC and
EEC �-correlons is described as their “competition” for the
energetically important regions in the vicinity of the nuclei.

In all calculations of �-correlons functions, the value of
the parameter a of the cut-off Padé function in Eq. (12) was
set to 0.01 in agreement with our previous work [1].

A. Valence ionic excitations

First, we consider �-correlons obtained for the lowest
singly excited valence states of the ionic nature. The states
considered in this subsection are the �−

u (π → π∗) states of
N2 and C2H4 as well as the �g(σ → π∗) state of C2H4. In
the case of N2 the generic excited- and ground-state wave
functions are obtained with the CAS(6,14) in the augmented
correlation-consistent valence double-zeta (plus polarization
functions) aug-cc-pVDZ basis [28,29], while in the case of the
C2H4 the wave functions are obtained with the CAS(10,14) in
the aug-cc-pVTZ basis.

Figures 1–3 display the two-dimensional (2D) contour
plots of the �-correlons for the above mentioned states in
the XY plane perpendicular to the A–A bond axis, which
passes through one of the A nuclei depicted with the circle
in the center of the plot. For C2H4 two small circles on the
Y axis of Figs. 2 and 3 indicate the projections of the H
nuclei on the plot plane. The behavior of the ESC and EEC
�-correlons confirms the predictions of the two-determinantal
two-electron model of Sec. III for this type of excitations.
Indeed, in all cases the ESC �-correlon “wins” an energet-
ically favorable position in the vicinity of the nucleus [see
Figs. 1(a)–3(a)]. Its shape clearly reflects the difference [com-
pare Figs. 2(a) and 3(a) with Fig. 1(a)] between the C2H4 and
N2 molecules with a single and double π bonds, respectively.
Indeed, in the former case the ESC �-correlon has a p-AO
like shape perpendicular to the molecular plane [see Figs. 2(a)
and 3(a)], while in a more symmetrical N2 case the ESC
�-correlon forms a circle around the N nucleus [see Fig. 1(a)].

In turn, the EEC �-correlon is pushed outwards in all cases
and it forms a “halo” around the ESC �-correlon, as it can
be seen in Figs. 1(b)–3(b). Understandably, the halo shape is
most symmetrical in the case of N2, where it forms a circular
ring [see Fig. 1(b)]. In the case of C2H4 it has an elliptic ring
shape for the �g state [see Fig. 3(b)], while for the �−

u state
the halo is concentrated, mainly, at two peaks around the Y
axis of the molecular plane [see Fig. 2(b)].

Overall, the established behavior of the ESC �-correlon
indicates that (in the agreement with the prediction in Sec. III)
the strength of correlation varies in the order

valence ionic excitations < ground state.

In order to understand this agreement, one can represent the
accurate wave function of the singly excited state �e as a
combination of the two determinants extending the active part
model plus the rest of possible excitations

�e = cφ

ψ (|�coreψαφβ | + |�coreφαψβ |) + · · · , (29)

where �core is the core configuration of both determinants.
Similarly, the extension of the active part model for the accu-
rate ground state wave function �g reads

�g = c1|�coreψαψβ | − c2|�coreφαφβ | + · · · . (30)

One can say, that in the case of valence ionic excitations the
build-up of the excited state �e starts with anticorrelation
squeezing in the active part of the two-determinantal reference
Eq. (29), while that of the ground state �g starts with the two-
determinantal reference in Eq. (30) with the genuine electron
correlation. Then, electron correlation included with the rest
of excitations reduces the magnitude of the corresponding
on-top functions Xe(r) and Xg(r), so that the former drops
below 1. Yet, this does not change their qualitative relation
Xe(r) > Xg(r) in the vicinity of the nuclei, so that their differ-
ence determines the localization of the ESC �-correlon in this
region.
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(a) (b)

FIG. 2. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �−
u (π → π∗)

state of C2H4. The XY plane is perpendicular to the axis of the molecule and includes the position of one of the C nuclei located in the center.

B. Rydberg excitations

Next, we consider �-correlons obtained for Rydberg ex-
citations. The states considered in this subsection is the
�+

g (σ → 2s) state of H2 as well as the �u(π → 3s) states
of N2 and C2H4. For H2 and N2 the generic wave functions
are obtained with the CAS(2,32) and CAS(6,19), respec-
tively, in the aug-cc-pVTZ (H2) or aug-cc-pVDZ (N2) basis
sets [28,29]. In the case of the C2H4 the wave function is
obtained with CAS(10,14) in the aug-cc-pVTZ basis. The
present augmentation of the basis with the additional diffuse
functions is a prerequisite for the adequate description of a
diffuse electron distribution in the active parts of Rydberg
states.

Figures 4–6 display the 2D contour plots of the �-
correlons for the above mentioned states. At variance with the
setting of the 2D plots for C2H4 characterized in Sec. IV A,
for H2 the XZ plane of the plot passes through the bond

and two small circles on the Z axis indicate the positions of
the H nuclei. In agreement with the model of Sec. III, for
the considered Rydberg states the behavior of the ESC and
EEC �-correlons is totally reversed, compared to that for the
valence ionic states analyzed above. This time, the EEC �-
correlon wins in all cases the energetically important regions.
Specifically, it occupies both interior and near exterior regions
of the H–H bond [see Fig. 4(b)] as well as the regions in the
vicinity of the C and N nuclei [see Figs. 5(b) and 6(b)]. In
all cases the ESC �-correlon is pushed outwards, forming
a halo around the EEC �-correlon [compare Figs. 4(a)–6(a)
with Figs. 4(b)–6(b)]. The halo has a circular ring shape in the
case of H2 [see Fig. 4(a)], while in other two cases it forms two
crescent shapes [see Figs. 5(a) and 6(a)]. In the case of N2 the
ESC �-correlon crescents form two pockets in the distribution
of the EEC �-correlon, which occupies also the outermost
region [see Fig. 6(b)].

(a) (b)

FIG. 3. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �g(σ → π∗)
state of C2H4. The XY plane is perpendicular to the axis of the molecule and includes the position of one of the C nuclei located in the center.
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(a) (b)

FIG. 4. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �+
g (σ → 2s)

state of H2. The Z axis passes through both H nuclei.

Overall, the established behavior of the EEC �-correlon
shows that (again, in the agreement with the prediction in
Sec. III) the strength of correlation varies in the order

ground state < Rydberg excitations.

The established trend can be also rationalized with the ex-
pressions Eqs. (29) and (30) for the excited �e and ground
�g state wave functions. This time, the active part of the
two-determinantal reference Eq. (29) embodies enhanced-
correlation spreading, which leads to stronger correlation than
the genuine one in the ground-state two-determinantal ref-
erence in Eq. (30). Again, the additional correlation coming
from the rest of the excitations lowers both on-top functions
Xe(r) and Xg(r). Yet, their relation Xe(r) < Xg(r) qualitatively
holds in the vicinity of the nuclei, so that their difference

determines the localization of the EEC �-correlon in this
region.

Finally, two trends established above can be combined in
the overall trend in the local strength of (effective) electron
correlation, which increases in the series

valence ionic excitations < ground state < Rydberg

excitations.

C. Special cases with a more even competition of the
ESC and EEC �-correlons

Surprisingly, the canonical σ → σ ∗ valence ionic excita-
tion in H2 represents, to some extent, a reversal of the trend
established for other excitations of this type in Sec. IV A.
Figure 7 displays the 2D plots of the �-correlons of the

(a) (b)

FIG. 5. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �u(π → 3s) state
of C2H4. The XY plane is perpendicular to the axis of the molecule and includes the position of one of the C nuclei located in the center.
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(a) (b)

FIG. 6. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �u(π → 3s) state
of N2. The XY plane is perpendicular to the axis of the molecule and includes the position of one of the N nuclei located in the center.

�−
u (σ → σ ∗) state of H2 obtained with the CAS(2,32) in

the cc-pVTZ basis. The plots are made in the plane passing
through the H–H bond.

One can see from Fig. 7(b) that the EEC �-correlon wins
the whole interior of the H–H bond including that in the vicin-
ity of the H nuclei. And the ESC �-correlon is pushed to the
outer region, though it includes also the positions in the outer
vicinity of the H nuclei [see Fig. 7(a)]. In order to provide
the explanation for this reversal, we use the two-determinantal
two-electron model of Sec. III, which is even more realistic
for the two-electron H2 molecule. Specifically, we consider
the analytical expressions of this model at the midpoint rbm of
the bond A–B.

First of all, we note that the excited state function X act
e (r)

of Eq. (22) has the node at rbm, where χa(rbm) = χb(rbm), i.e.,

X act
e (rbm) = 0. (31)

On the other hand, with χa(rbm) = χb(rbm) and c2
2 = 1 − c2

1,
one finds that the ground-state function X act

g (rbm) of (26) ex-
ceeds 1,

X act
g (rbm) = 1

c2
1

> 1, (32)

which is the signature of anticorrelation squeezing. This
shows that the latter is not the exclusive characteristic of
the valence ionic excitation in the minimal model. Rather,
anticorrelation squeezing also emerges locally (around rbm)
for the ground state.

The difference between Eqs. (31) and (32) is negative,
which means that the region around rbm is occupied with the
EEC �-correlon. Since the H–H bond is exceptionally short
and the hydrogenic atomic orbitals are relatively diffuse, the
estimates Eqs. (31) and (32) are valid for the whole interior

(a) (b)

FIG. 7. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �−
u (σ → σ ∗)

state of H2. The Z plane passes through both H nuclei.
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(a) (b)

FIG. 8. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �g(σ → π∗)
state of N2. The XY plane is perpendicular to the axis of the molecule and includes the position of one of the N nuclei located in the center.
CAS(2,2) wave function used.

of the H–H bond. This explains the observed behavior of the
EEC �-correlon for the �−

u (σ → σ ∗) state of H2.
Another special case is the σ → π∗ excitation in the N2,

the analog of which for the C2H4 was considered in Sec. IV A.
Figures 8–10 provide the example of the definite qualitative
changes in the behavior of the ESC and EEC �-correlons with
the level of electron correlation included.

Indeed, at the minimally correlated CAS(2,2) level the
EEC �-correlon wins the energetically favorable positions,
forming a sizable p shape in the vicinity of the N nucleus
[see Fig. 8(b)]. As opposed to this, the ESC �-correlon
is pushed outwards, forming a halo around the EEC �-
correlon [see Fig. 8(a)]. Then, at the higher CAS(4,8) level
the ESC �-correlon moves closer to the N nucleus [see

Fig. 9(a)]. As the result, the �-correlons occupy the re-
gions along the different axes in the plane of the plot [see
Fig. 9(b)]. Finally, at the highest CAS(6,20) level, the ESC
�-correlon moves still closer to the N nucleus, localizing in
two ellipse-shape regions at one of the axis [see Fig. 10(a)].
In turn, the EEC �-correlon forms a small p-shape along
another axis as well as a halo around the ESC �-correlon
[see Fig. 10(b)].

The specific feature of the considered excitation is that
the σ and π∗ MOs of N2 are rather localized (more than
the analogous MOs of C2H4) on the different bonds of N2.
Then, their relatively low overlap produces the lowering of the
corresponding on-top functions due to enhanced-correlation
spreading akin to that for the Rydberg excitations considered

(a) (b)

FIG. 9. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �g(σ → π∗)
state of N2. The XY plane is perpendicular to the axis of the molecule and includes the position of one of the N nuclei located in the center.
CAS(4,8) wave function used.
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(a) (b)

FIG. 10. Plots of ESC (left panel) and EEC (right panel) �-correlon functions, cf. Eqs. (16) and (17), respectively, for the �g(σ → π∗)
state of N2. The XY plane is perpendicular to the axis of the molecule and includes the position of one of the N nuclei located in the center.
CAS(6,20) wave function used.

in Sec. IV B. Apparently, at the lowest correlated CAS(2,2)
level a combination of this enhanced-correlation spreading
with anticorrelation squeezing is stronger than the genuine
electron correlation in the ground state. This determines a
favorable energetically position of the EEC �-correlon at this
level mentioned above.

It appears, however, that the additional correlation included
at the higher CASSCF levels is consistently larger in the
ground state compared to that in the excited state. This ex-
plains an increasingly more competitive behavior of the ESC
�-correlon in comparison with EEC �-correlon depicted in
Figs. 9 and 10.

V. CONCLUSIONS

The �-correlon quasiparticles proposed in this paper offer
a condensed description of the interplay of two, arguably,
most interesting electron effects, electron correlation and
electron excitation. The quasi-one-particle description of the
former effect is achieved by considering the pair-correlation
functions at the special coalescence points of the configura-
tional space. Then, the comparison of such a correlation for
a given excited and the ground state within the �-correlon
wave function provides the condensed description of the exci-
tation effect on electron correlation. The complex form of the
�-correlon wave function allows us to naturally separate the
regions with the excitation suppression of correlation (ESC
�-correlon), where correlation is stronger in the ground state,
from those with the excitation enhancement of correlation
(EEC �-correlon), where correlation is stronger in the excited
state.

Application of the proposed �-correlon approach to the
description of the important single excitations allows us to
meaningfully compare correlation in singly excited states
with the canonical correlation in the ground state which is,
mainly, partially doubly excited reference determinant. The
notion of the effective correlation in single excitations is in-
troduced with the competition of anticorrelation squeezing
and enhanced-correlation spreading. The former effect char-
acterizes single valence excitations of the ionic nature and
this leads to the prevailing of the ESC effect in this type of
excitations. Enhanced-correlation spreading characterizes, on
the other hand, single Rydberg excitations, which leads to the
prevailing of the EEC effect.

The proposed �-correlon quasiparticles are studied both
analytically and numerically. The analytical expressions for
the on-top correlation functions are obtained with the two-
electron two-orbital model of the active space of an excitation.
The 2D contour plots of the ESC and EEC �-correlons
obtained for the lowest vertical valence ionic and Rydberg
excitations in the prototype molecules H2, N2, and C2H4

from the highly correlated wave functions confirm, in general,
the trends in the relative correlation strength deduced from
the model. This indicates that, unlike the covalent and ionic
correlons of our previous work [1], the present concept of
�-correlons is robust not only at the multiconfigurational
(MCSCF) level with a restricted account of correlation, but
also at the highly correlated level of many-electron theory.
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