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Development of the kinetically and atomically balanced generalized pseudospectral method
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The kinetically and atomically balanced conditions have been extensively used in various basis-set expansion
methods to remove the nonphysical spurious states appearing in the numerical calculation of the Dirac equation;
however, they are generally not applicable for methods in discrete variable representation. In this paper we
show that these conditions can be conveniently introduced into the generalized pseudospectral (GPS) method.
Four types of balanced condition, the mono kinetic balance (MKB), dual kinetic balance, mono atomic balance
(MAB), and dual atomic balance, are incorporated into the GPS method to eliminate the spurious states.
Numerical calculations for a variety of bound states of H-like ions in point-charge models are compared with
the analytical solutions to demonstrate the accuracy and efficiency of the developed methods. The application
to highly charged ions with extended nuclear models is performed to show the flexibility of the balanced GPS
methods in practical atomic structure calculations. It is concluded that the MAB-GPS and MKB-GPS methods,
which are both free of any spurious states, show better performance and simpler implementation than the others
in solving the Dirac equation with the potential in point-charge and extended nuclear models, respectively. The
balanced GPS methods developed in this paper provide a useful tool for accurately solving the one-electron
Dirac equation and efficiently constructing the multielectron relativistic wave functions.
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I. INTRODUCTION

Accurate solution of the time-independent and time-
dependent Dirac equation has become of great importance in
the last few decades with fast development of high-precision
measurements in atomic and molecular systems and new
advances in light source technology and strong laser-matter
interaction. Precise treatment of the relativistic one-electron
system not only provides an ideal prototype to test the ac-
curacy of various numerical methods, but also serves as
the foundation in investigating the structure and dynamics
of complex systems; e.g., in the multiconfiguration Dirac-
Fock or relativistic configuration-interaction framework the
multielectron system wave functions are usually constructed
in terms of one-electron Dirac spinors [1–5], and in strong
laser-atom interactions the single active electron approxima-
tion is commonly used so that one only needs to solve the
one-electron time-dependent Dirac equation [6–10]. Unlike
the nonrelativistic Schrödinger equation, the spectrum of the
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Dirac equation does not have a lower bound due to the exis-
tence of the Dirac sea. Variational calculation of the radial
Dirac equation generally encounters the problem of spuri-
ous states when one uses a sequence of finite-dimensional
spaces (or basis sets) to approximate the spectrum of the Dirac
Hamiltonian in an infinite-dimensional Hilbert space [11,12].

Numerous theoretical approaches including the basis-set
expansion and discrete variable representation (DVR) meth-
ods, which are well suited for solving the Schrödinger
equation, have been developed to work in the relativistic case.
In earlier research works, the nonphysical spurious states
are usually disregarded in practical calculation of atomic
properties. However, as mentioned by many authors [13–15],
the existence of spurious states would not only worsen the
convergence of basis-set expansions or discrete variable cal-
culations, but also lead to large errors in the prediction of
subtle atomic properties such as the self-energy correction in
QED calculations [13], the hyperfine interactions [14], and
the parity-non-conserving amplitudes [15]. The removal of
spurious states in the very beginning of the calculation of the
Dirac equation would be the preferred choice.

The basis-set expansion method attracts the majority of
interest in the numerical solution of the Dirac equation on
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account of its fundamental role in the construction of mul-
tielectron wave functions. The earlier work of Drake and
Goldman [16] has generalized the Slater- and Laguerre-
type functions for use in the discrete basis-set expansion
calculations. Grant and coworkers [1,17–19] have explicitly
incorporated the kinetically balanced condition into the ba-
sis sets in terms of Coulomb Sturmians, Slater-type orbitals,
and Gaussian functions, and the new basis functions are
referred to as L-, S-, and G-spinors, respectively. These ba-
sis sets build the foundation of the well-known relativistic
atomic structure package GRASP [20]. The B-spline functions
also attracted considerable attention in the Rayleigh-Ritz and
Galerkin approximations of the Dirac equation. Johnson and
coworkers [21,22] have introduced additional boundary con-
straints (known as the Notre Dame or MIT bag model) at the
outer boundary of B-splines to move the spurious eigenvalue
onto the top of the spectrum. The spurious solution is far
away from the physical spectrum so that it can be manually
removed from numerical calculations. Such a method has
been successfully used by several authors in the investigation
of relativistic atomic polarizabilities [23]. A revealing analysis
of the shift of the spurious state is also available in Beloy and
Derevianko [14]. The kinetically balanced B-splines, which to
some extent are similar to the L-, S-, and G-spinors developed
by Grant and coworkers [17–19], have been experimented on
by Igarashi [24] and Shabaev et al. [13], where the former
author implied the kinetic matching constraint solely on the
lower component of basis functions, while the latter authors
proposed the use of the dual kinetically balanced condition on
both the upper and lower components. Further discussions on
the prosperity of the kinetically balanced methods and their
computational details are available in Refs. [14,15,25]. On the
other side, a number of techniques have also been developed
for different DVR methods to overcome the spurious problem.
For the finite-difference method, Salomonson and Öster [26]
have shown that the spurious states introduced by the discrete
representation of the first-order derivative can be avoided by
defining the upper and lower components of the radial wave
function on alternating lattice sites. However, careful attention
must be paid on the boundary conditions due to the fact that
one needs to know the wave functions in a few points outside
the lattice. It is also worth noting that such a technique has
a similar effect to the B-spline method with different polyno-
mial orders [15] as a way of avoiding spurious solutions. An
alternative method by introducing an extra Wilson term into
the Hamiltonian seems to be useful in separating the physical
states from spurious solutions and improving the accuracy
of finite-difference method [27]. The finite-element method
also suffers from the appearance of spurious solutions in the
positive-energy spectrum [28], and such problem was not
solved until the streamline upwind Petrov-Galerkin approxi-
mation developed by Almanasreh et al. [29,30] was applied to
perform the finite-element computation. The well-developed
mapped Fourier grid method, when applied to the Dirac equa-
tion, is also accompanied by the occurrence of spurious states
[31,32] and this problem has not yet been fully solved. It
is worth mentioning that the Lagrange-mesh method [33,34]
has been successfully extended to solve the Dirac equation,
while it is claimed by the authors that the spurious states may
exist in some special cases when a limited number of grid

points is used [33]. From the brief overview one may find
that the removal of spurious states in DVR methods is much
more involved than the basis-set expansion methods, e.g., the
kinetic balance technique which has been extensively used in
the latter case seems to be inapplicable to the DVR methods.

In the past few years, the pseudospectral (or semispectral)
method [35,36] has attracted considerable interest in atomic,
molecular, and nuclear physics on account of its prominent
merit as a global approach in DVR. The pseudospectral
method possesses exponential convergence with respect to
the number of discrete points which is much faster than the
finite-difference and finite-element methods. Compared to the
basis-set expansion methods where one has to calculate the
potential matrix elements, which is generally the most time-
consuming part, the implementation of the pseudospectral
method is very straightforward and nearly has no restrictions
on the exact form of interaction potentials. The generalized
pseudospectral (GPS) method was first developed by Yao and
Chu [37] to calculate the one-electron bound and resonance
states in both the Schrödinger and Dirac equations, although
in the latter situation spurious solutions still exist. Since then,
great success of the nonrelativistic GPS method as a pow-
erful tool to solve the time-independent and time-dependent
problems has been made by many authors in investigating the
multiphoton and above-threshold ionization and high-order
harmonic generation in intense laser-atom and molecule in-
teractions [38–42], the bound properties of plasma screened
and spatially confined atoms [43–49], and the multiply ex-
cited resonance states of multielectron systems [50–54]. The
application of GPS method to the relativistic calculations,
in contrast, is rather limited and the pollution of spurious
states to the physical eigenstates in such a scheme has not
yet been solved [37]. An advancement of the GPS method
was recently made by Telnov et al. [55] in the investigation
of multiphoton ionization of one-electron relativistic diatomic
quasimolecules in strong laser fields. By formulating the four-
component Dirac equation in prolate spheroidal coordinates,
it is reported that the spurious states do not show up in
the numerical solutions of the time-independent and time-
dependent Dirac equations. The most recent development by
these authors applied the dual kinetic balance approach into
the GPS method in cylindrical coordinates [56], and the pro-
posed method shows great successes in the study of relativistic
ionization dynamics of H-like ions in strong laser fields.

In this paper, we would take a systematic research on
the development of kinetically and atomically balanced GPS
methods in solving the time-independent relativistic Dirac
equation, and demonstrate the robustness of these methods in
removing the spurious states and improving the convergence
of calculation. The successful development of the relativistic
GPS methods to be free of any spurious states, combined with
the multielectron approximations and efficient time propaga-
tion techniques, would provide a useful tool for accurately
studying the structure and response of atomic and molecular
systems in the relativistic regime. This paper is organized as
follows. In Sec. II, we first revisit the Dirac equation and the
original GPS method, and then present in detail the theoretical
effort in introducing the mono and dual, kinetically and atom-
ically balanced conditions into the GPS method. Thorough
tests on the four types of balanced GPS methods are included
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in Sec. III by comparing with the analytical solutions of H-
like atoms with point-charge nuclei and applying them to the
highly charged ions with extended nucleus models. We finally
give our conclusions in Sec. IV. Atomic units (a.u.) h̄ = me =
e = 1 and the speed of light c = 1/α = 137.035 999 084 [57]
are used throughout this paper unless otherwise specified.

II. THEORETICAL METHOD

A. Radial Dirac equation

The relativistic Dirac equation for the one-electron system
reads

HDψ (r) = Eψ (r), (1)

where the eigenenergy E includes both the electronic state
energy ε and the rest energy c2,

E = ε + c2, (2)

and HD is the Dirac Hamiltonian,

HD = cα · p + βc2 + V (r), (3)

in which p is the momentum operator, and α and β are the tra-
ditional 4 × 4 matrices of Dirac operators [58]. In this paper,
we restrict our calculations on the spherically symmetrical
potential, i.e., V (r) = V (r). Then the system eigenstates take
the form

ψnκm(r) = 1

r

(
Pnκ (r)χκm(θ, ϕ)

iQnκ (r)χ−κm(θ, ϕ)

)
, (4)

where Pnκ (r) and Qnκ (r) are the large and small components
of the radial wave function, respectively. The angular parts
χ±κm(θ, ϕ) are eigenstates of L2, S2, J2, and Jz with the
eigenvalues being l (l + 1), 3/4, j( j + 1), and m. The Dirac
quantum number κ is connected with the total and orbital
angular momenta j and l by

κ = l (l + 1) − j( j + 1) − 1/4. (5)

By substituting Eqs. (3) and (4) into Eq. (1) and separating
the angular parts from radial ones, we get the coupled radial
Dirac equations in the form(

V (r) + c2 −c
(

d
dr − κ

r

)
c
(

d
dr + κ

r

)
V (r) − c2

)(
Pnκ (r)
Qnκ (r)

)
= E

(
Pnκ (r)
Qnκ (r)

)
. (6)

The radial Dirac spinors P(r) and Q(r) for bound states are
normalized by ∫ ∞

0

[
P2

nκ (r) + Q2
nκ (r)

]
dr = 1. (7)

It is well known that for the H-like ions with point-charge
nuclei where the potential simplifies to

V (r) = −Z

r
, (8)

Eq. (6) can be solved analytically with eigenenergies being

Enκ = c2

[
1 + (αZ )2

(n − |κ| + γ )2

]−1/2

, (9)

where

γ =
√

κ2 − Z2

c2
. (10)

The corresponding eigenstates are also analytically available
in the literature [58]. It is worth noting that near r = 0 the
radial Dirac spinors behave as [19]

Pnκ (r)
r→0−−→ rγ , Qnκ (r)

r→0−−→ c(κ + γ )

Z
rγ , (11)

which represent the vanishing of radial Dirac spinors at the
origin. For large r and assuming V (r) → 0 as r → ∞, they
decrease exponentially [1]:

Pnκ (r)
r→∞−−−→ e−λr, Qnκ (r)

r→∞−−−→
√

c2 − E

c2 + E
e−λr, (12)

where

λ =
√

c2 − E2

c2
. (13)

B. Generalized pseudospectral method

The generalized pseudospectral was first introduced by Yao
and Chu [37] to efficiently solve the radial Schrödinger and
Dirac equations in discrete variable representation. The semi-
infinite domain [0,∞] of radial variable r is mapped onto the
finite interval [−1, 1] through an algebraic mapping function

r = f (x) = L
1 + x

1 − x
, (14)

in which L is the mapping parameter that adjusts the dis-
cretization of r with fixed x. The radial wave function is then
transformed by

φ(x) =
√

f ′(x)ψ (r), (15)

where in the Dirac equation the radial wave functions have
two components:

φ(x) =
(

p(x)
q(x)

)
, ψ (r) =

(
P(r)
Q(r)

)
. (16)

The normalization condition shown in Eq. (7) simplifies to∫ 1

−1
[p2(x) + q2(x)]dx = 1. (17)

After several algebraic manipulations, one gets the new
coupled first-order differential equation with respect to the
variable x [59]:

hD(x)φ(x) = Eφ(x), (18)

where

hD(x) =
(

V ( f (x)) + c2 c κ
f (x)

c κ
f (x) V ( f (x)) − c2

)

+
(

0 −c
c 0

)
1√
f ′(x)

d

dx

1√
f ′(x)

. (19)

The discretization of variable x defined in [−1, 1] can
be conveniently performed by taking advantage of the
Gauss-type quadratures the abscissas and weights of which
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depend further on the exact form of preassigned orthogonal
polynomial [35]. In Ref. [37], the Legendre-Gauss-Lobatto
quadrature is employed under which the integration of a poly-
nomial with the order less than 2N − 1 is expressed by

∫ 1

−1
u(x)dx =

N∑
j=0

u(x j )ω j, (20)

where the abscissas read

x0 = −1, x j( j=1,...,N−1) = zeros of P′
N , xN = 1, (21)

combined with the weights

ω j = 2

N (N + 1)

1

[PN (x j )]2
. (22)

PN (x) and P′
N (x) denote the N th-order Legendre polynomial

and its first-order derivative, respectively.
The pseudospectral approximation implemented in the

relativistic Dirac equation is similar to the one in the nonrel-
ativistic Schrödinger equation. The two-component unknown
function φ(x) is approximated by two N th-order polynomials
expressed in terms of superposition of cardinal functions

(
p(x)
q(x)

)
= φ(x) ≈ φN (x) =

N∑
j=0

g j (x)φ(x j )

=
N∑

j=0

[(
g j (x)

0

)
p(x j ) +

(
0

g j (x)

)
q(x j )

]
, (23)

where x j are the abscissas defined in Eq. (21) and g j (x) are
shifted deltalike cardinal functions which fulfill the condi-
tion g j (xi ) = δi j . The cardinal functions can be conveniently
constructed from the Lagrange polynomials defined at the
collocation points:

g j (x) = 1

N (N + 1)

(1 − x2)

(x j − x)

P′
N (x)

PN (x j )
. (24)

The substitution of Eq. (23) into Eq. (18) leads to the dis-
cretized equation formally written as

N∑
j=0

[hD(x)g j (x)]φ(x j ) = E
N∑

j=0

g j (x)φ(x j ). (25)

As shown in Ref. [35] and our previous work [47], the first-
order derivative of a function u(x) at collocation points can be
approximated by

d

dx
u(x)|x=xi =

N∑
j=0

(d1)i j
PN (xi )

PN (x j )
u(x j ), (26)

where

(d1)i j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
xi−x j

(i �= j)

0 (i = j ∈ [1, N − 1])

− (N+1)N
4 (i = j = 0)

(N+1)N
4 (i = j = N )

. (27)

Therefore, the corresponding eigenvalue problem associated
with Eq. (25) is given by

[hD][φ] = [E][φ], (28)

where the Hamiltonian matrix element reads

(hD)i j =
(

V [ f (xi )] + c2 c κ
f (xi )

c κ
f (xi )

V [ f (xi)] − c2

)
δi j

+
(

0 −c

c 0

)
1√

f ′(xi )
(d1)i j

1√
f ′(x j )

PN (xi )

PN (x j )
,

(29)

and [φ] is a column vector in 2(N + 1) dimension.
As in the nonrelativistic situation, one can further simplify

the eigenvalue problem by utilizing the symmetric transfor-
mations

Aj = φ(x j )

PN (x j )
=

√
f ′(x j )ψ[ f (x j )]

PN (x j )
, (30)

and

(HD)i j = hDi j
PN (x j )

PN (xi )

=
(

V [ f (xi )] + c2 c κ
f (xi )

c κ
f (xi )

V [ f (xi )] − c2

)
δi j

+
(

0 −c
c 0

)
1√

f ′(xi )
(d1)i j

1√
f ′(x j )

. (31)

The resulting eigenvalue problem is a standard and symmetric
one which formally reads

[HD][A] = [E][A]. (32)

It is interesting to note that although the matrix (d1) is
nonsymmetric, the transformed Hamiltonian matrix [HD] is
symmetric and, therefore, both the eigenvalues and eigen-
vectors are real-defined. Recalling the asymptotic behavior
of radial wave functions at r = 0 [Eq. (11)] and the natural
boundary condition for r → ∞ [Eq. (12)], it is clear that
A0 = AN = 0 and the dimension of the standard symmetric
eigenvalue problem is 2(N − 1).

C. Algebraic mapping function

As mentioned above, the mapping function utilized in
Eq. (14) is the same as the one used in the Schrödinger
equation. The significant advantage of such a formalism rests
on the simplification of the second-order differential operator
by vanishing the remaining term Um [39] in the kinetic-energy
operator:

Um(x) = 3 f ′′2 − 2 f ′′′ f ′

8 f ′4
[Eq. (14)]= 0. (33)

However, in the Dirac equation, there is not a second-order
differential term and the utilization of other mapping func-
tions would not introduce any more complexities. In this
paper, we would like to employ the mapping function in a

022801-4



DEVELOPMENT OF THE KINETICALLY AND ATOMICALLY … PHYSICAL REVIEW A 104, 022801 (2021)

general form:

r = f (x) = L
(1 + x)k

1 − x
, (34)

where the power k provides further control of the distribution
of mesh points in the semi-infinite domain. A larger value
of k produces denser grids in the close range, but sparser
grids in the far range, which means that more grid points are
distributed in regions close to both zero and ∞ [60]. The gen-
eralized mapping function provides us additional flexibility
in applying the GPS method, e.g., to calculate the high-lying
excited Rydberg states as well as to investigate the finite-size
effect of different nuclear models on the electronic states.

D. Kinetically balanced condition

A variety of techniques that were developed to tackle the
problem of spurious states have been summarized in the intro-
duction. The introduction of specific boundary conditions or
additional Wilson terms does not remove the spurious states
but lifts them up onto the top of the spectrum. The construc-
tion of radial wave functions on alternating grids as in the
finite-difference method seems to be more cumbersome when
it is applied to the GPS method. On the other hand, inspired
by the fact that the spectral approximation shown in Eq. (23)
can be equivalently treated as a special basis-set expansion
method in terms of cardinal functions g j (x) and coefficients
φ(x j ), it would be a rather natural choice to incorporate the
kinetically balanced condition into the GPS method to remove
the spurious states.

1. Mono kinetic balance

It is convenient to rewrite the two-component basis func-
tions in the form

ui(r) =
{(

πi (r)
0

)
(1 � i � n)( 0

πi−n(r)

)
(n + 1 � i � 2n).

(35)

The extensively used “mono” kinetically balanced (MKB)
condition [24] only imposes constraints on those basis func-
tions used to construct the lower component of the radial wave
function:

u′
i(r) =

{(
πi (r)

0

)
(1 � i � n)( 0

D+πi−n(r)

)
(n + 1 � i � 2n),

(36)

where the operator D+ reads

D+ = 1

2c

(
d

dr
+ κ

r

)
. (37)

The relationship between the upper and lower components
of the basis function ensures that the Dirac equation would
reduce to the ordinary Schrödinger equation in the non-
relativistic limit (under the condition |E − c2| 	 2c2). The
corresponding solutions of the secular equations based on ui

and u′
i, respectively, with the same eigenenergy are eigenvec-

tors ci and c′
i. Due to the fact that ψ = ∑

i ciui = ∑
i c′

iu
′
i, the

new kinetically balanced basis set can be formally written as

[u′] = [u]

(
I 0
0 D+

)
, (38)

where both [u] and [u′] are row vectors, I is the unit matrix,
and D+ is a diagonal matrix with its elements being D+. The
operator matrix including D+ acts on [u] from right to left so
that Eq. (36) can be successfully reproduced. The expansion
coefficients simply have the relation

[c] =
(

I 0
0 D+

)
[c′]. (39)

The core step in introducing the MKB condition into the
GPS method relies on the fact that the eigenvectors to be cal-
culated in the pseudospectral approximation [in Eq. (23)] are
the radial wave functions themselves (at collocation points). In
this sense, it can be generally considered that the wave func-
tions in the GPS method play the same role as the eigenvectors
in the basis-set expansion method. Following the same way as
shown in Eq. (39), the MKB condition can be directly imposed
on the radial wave function, which yields(

P(r)
Q(r)

)
=

(
1 0
0 D+

)(
P′(r)
Q′(r)

)
, (40)

keeping in mind that the operator matrix employed here
is two-dimensional. Substitution of the above equation into
Eq. (6) leads to the MKB radial Dirac equation:(

V (r) + c2 −c
(

d
dr − κ

r

)
c
(

d
dr + κ

r

)
V (r) − c2

)(
1 0
0 D+

)(
P′

nκ (r)
Q′

nκ (r)

)

= E

(
1 0
0 D+

)(
P′

nκ (r)
Q′

nκ (r)

)
. (41)

By performing similar mapping transformations for the radial
variables and wave function as we did in Sec. II B, the new
coupled radial equation with respect to x now reads

h′
D(x)φ′(x) = EO′(x)φ′(x), (42)

where

h′
D(x) =

(
V + c2 κ (κ+1)

2 f 2(x)

c κ
f (x)

V −c2

2c
κ

f (x)

)

+
(

0 0
c V −c2

2c

)
1√
f ′(x)

d

dx

1√
f ′(x)

+
(

0 − 1
2

0 0

)
1

f ′(x)

d2

dx2

1

f ′(x)
, (43)

and

O′(x) =
(

1 0
0 1

2c
κ

f (x)

)
+

(
0 0
0 1

2c

)
1√
f ′(x)

d

dx

1√
f ′(x)

.

(44)
The algebraic, first-order, and second-order differential terms
in the above derivations are separated from each other
for programming convenience. The implementation of the
subsequent pseudospectral approximation and variable dis-
cretization is the same as before, except that there exists the
second-order derivative of a function at the collocation points.
This is not new but the same as the one developed in the
nonrelativistic GPS method [35,47]:

d2

dx2
u(x)|x=xi =

N∑
j=0

(d2)i j
PN (xi )

PN (x j )
u(x j ), (45)
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where

(d2)i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2
(xi−x j )2 (i �= j, i ∈ [1, N − 1], j ∈ [0, N])

−N (N+1)
3(1−x2

i )
(i = j ∈ [1, N − 1])

N (N+1)(N2+N−2)
24 (i = j = (0 or N ))

N (N+1)(1+x j )−4
2(1+x j )2 (i = 0, j ∈ [1, N])

N (N+1)(1−x j )−4
2(1−x j )2 (i = N, j ∈ [0, N − 1]).

(46)
Due to the appearance of the second-order derivative with

respect to r in the radial equation Eq. (41), it should be kept in
mind that, when the mapping function of Eq. (34) with k �= 1
is utilized, one must supplement the diagonal term −2Um(x)
[39] to the second-order derivative with respect to x on the
right-hand side of Eq. (43). The derivation of Um(x) shown
in Eq. (33) with respect to different mapping functions is
quite straightforward and will not be presented here. In what
follows, this method will be referred to as the mono kinetically
balanced generalized pseudospectral method (MKB-GPS).

The associated eigenvalue problem is expressed as

[h′
D][φ′] = [E][O′][φ′], (47)

which is formally the same as the generalized eigenvalue prob-
lem in the basis-set expansion method with nonorthogonal
basis functions. One must keep in mind that the matrix [O′]
does not signify the overlap matrix and this fact is the intrinsic
difference between the basis-set expansion and the kinetically
balanced GPS methods. Once the eigenenergy is obtained, a
back transformation on the eigenvector formulated in Eq. (40)
is necessary to get the relativistic radial wave function defined
directly on the grid points.

2. Dual kinetic balance

The “dual” kinetically balanced (DKB) condition initiated
by Shabaev et al. [13] imposes the kinetic matching con-
straints onto both the upper and lower components of the
radial wave function. The new basis set corresponding to
Eq. (36) is given by

u′′
i (r) =

⎧⎨
⎩

( πi (r)
D+πi (r)

)
(1 � i � n)

(D−πi−n(r)
πi−n(r)

)
(n + 1 � i � 2n),

(48)

where D+ is available in Eq. (37) and D− reads

D− = 1

2c

(
d

dr
− κ

r

)
. (49)

The profits of utilizing the dual kinetically balance condition
rest on several aspects: (a) the basis set is symmetric with
respect to the replacement of κ → −κ and the interchange
of upper and lower components, (b) the basis functions in 1 �
i � n and n + 1 � i � 2n provide correct relations between
the upper and lower components for positive and negative
energies, respectively, and (c) the spurious states in both the
attractive and repulsive potentials can be removed.

Following a similar procedure as in the MKB-GPS method,
the dual condition implies a transformation on the radial wave

function: (
P(r)
Q(r)

)
=

(
1 D−

D+ 1

)(
P′′(r)
Q′′(r)

)
. (50)

The resulting radial Dirac equation in variable r yields(
V (r) + c2 −c

(
d
dr − κ

r

)
c
(

d
dr + κ

r

)
V (r) − c2

)(
1 D−

D+ 1

)(
P′′

nκ (r)

Q′′
nκ (r)

)

= E

(
1 D−

D+ 1

)(
P′′

nκ (r)

Q′′
nκ (r)

)
, (51)

and in variable x it reads

h′′
D(x)φ′′(x) = EO′′(x)φ′′(x), (52)

where

h′′
D(x) =

⎛
⎝V + c2 + κ (κ+1)

2 f 2(x) −V −c2

2c
κ

f (x)

V +c2

2c
κ

f (x) V − c2 − κ (κ−1)
2 f 2(x)

⎞
⎠

+
(

0 V −c2

2c

V +c2

2c 0

)
1√
f ′(x)

d

dx

1√
f ′(x)

+
(− 1

2 0

0 1
2

)
1

f ′(x)

d2

dx2

1

f ′(x)
, (53)

and

O′′(x) =
(

1 − 1
2c

κ
f (x)

1
2c

κ
f (x) 1

)

+
(

0 1
2c

1
2c 0

)
1√
f ′(x)

d

dx

1√
f ′(x)

. (54)

As before, a diagonal term −2Um(x) must be supplemented
to the second-order derivative with respect to x on the right-
hand side of Eq. (53) if a mapping function with k �= 1 is
employed. The associated eigenvalue problem is similar to
Eq. (47):

[h′′
D][φ′′] = [E][O′′][φ′′], (55)

which is a generalized nonsymmetric eigenvalue problem.
Even though both [h′′

D] and [O′′] are nonsymmetric, we do
not encounter the occurrence of complex eigenvalues and
eigenvectors in our numerical calculations. A rigorous proof
of such a property warrants further studies. The back trans-
formation of Eq. (50) should be performed to get the final
radial wave function. In the following discussion, this method
will be denoted as the dual kinetically balanced generalized
pseudospectral method (DKB-GPS).

E. Atomically balanced condition

The operators D+ and D− are obtained elsewhere to re-
move the spurious solutions in solving the Dirac equation;
however, we show in Appendix A that they can be alterna-
tively derived from the operators which explicitly include the
interaction potential, i.e.,

D+
V = 1

2c − V (r)
c

(
d

dr
+ κ

r

)
, (56)
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and

D−
V = 1

2c + V (r)
c

(
d

dr
− κ

r

)
, (57)

under the condition |V (r)| 	 2c2. The constraints employing
D+

V and D−
V are generally named as the atomically balanced

conditions. The replacement of D+ and D− by D+
V and D−

V ,
respectively, in the above derivations of MKB-GPS and DKB-
GPS leads to the mono atomically balanced GPS (MAB-GPS)
and dual atomically balanced GPS (DAB-GPS) methods.

The atomically balanced condition has been employed by
Visscher et al. [61] to build the contracted basis sets based
on Gaussian-type orbitals. It has been shown that the appli-
cation of the atomically balanced condition is a better choice
for heavily contracted basis functions, because the kinetically
balanced condition would lead to serious numerical problems
and sometimes incorrect results. Such a phenomenon is not
surprising because the potential operators in Eqs. (56) and
(57) are increasingly important for systems with high nuclear
charges. This condition has been adopted by Kozlov and
Tupitsyn [62] to construct the mixed basis sets based on B-
splines in their investigations on heavy atoms. The atomically
balanced B-spline basis functions have also been developed
by Fillion-Gourdeau et al. [63] in the Galerkin approximation
of the time-independent and time-dependent Dirac equations
for one-electron diatomic molecules, and it was concluded by
these authors that the atomic balance is more relevant than the
kinetic one to eliminate the variational collapse in heavy ions.

The drawback of the atomically balanced condition, in
the basis-set expansion methods, is largely attributed to the
difficulties in numerical or analytical computation of the
Hamiltonian and overlap matrix elements due to the explicit
appearance of potential operators in basis functions. Further-
more, the utilization of atomic balance in the time-dependent
investigations of laser-atom interactions would also lead to
additional singularities [63]. These are probably the reasons
for the less popular atomic condition than the kinetic one.
However, as we show in Appendix B, the incorporation of
either mono or dual atomically balanced conditions in the
framework of GPS method is quite straightforward provided
that some efforts need to be paid in the construction of the
transformed Dirac equation.

III. RESULTS AND DISCUSSION

A. Bound states with κ < 0

Solutions of the Dirac equation with negative quantum
number κ by numerical methods do not have spurious states,
so they are suitable to use in testing the accuracy of the rela-
tivistic GPS method. The relative errors of calculated energies
for H-like ions with point-charge nuclei are defined by

δE =
∣∣∣∣EGPS − Eexact

Eexact

∣∣∣∣, (58)

where Eexact is given in Eq. (9). In the present paper, all numer-
ical calculations are performed in quadruple precision (≈34
significant digits after the decimal point). Results for the series
of s1/2 bound states of the H atom are displayed in Figs. 1(a),
1(b) and 1(c) with respect to the parameters N , L, and k,

FIG. 1. Energy relative errors of the s1/2 states of the H atom
calculated by using different mapping functions. (a) Fixed L and k
with different N , (b) fixed N and k with different L, and (c) fixed L
and N with different k.

respectively. For a specific mapping function, i.e., by fixing
L and k as shown in Fig. 1(a), the increasing of the number
of grid points would generally increase the accuracy for all
bound states and, furthermore, extend the applicability of GPS
method to higher-lying excited states. In Fig. 1(b), N and k
are fixed and the mapping parameter L is enlarged gradually.
It is known from Eq. (34) that L equally separates the number
of grid points into subdomains [0, L] and [L,∞]. Therefore,
the increasing of L would lead to sparser distribution of grids
in the entire space, i.e., less points in smaller regions and
more points in extensively large regions. It can be anticipated
that, at relatively large L, the accuracy of lower-lying states
would decrease, while those for higher-lying ones increase.
The effect of mapping parameter k which further adjusts the
nonlinear distribution of grid points is shown in Fig. 2, where
a total number of 19 grid points (N = 20) with respect to
k = 1, 2, and 3 are demonstrated schematically. By increasing
k, the grid points are expanded into both close and far regions
which should manifest a better description of the asymptotic
behaviors of the radial wave functions at both r → 0 and ∞.
However, the density of grid points around L would inevitably
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FIG. 2. Demonstration of the distribution of grid points by using
different mapping functions with parameters N = 20, L = 1, and
k = 1–3. The vertical line represents the location (r = L) that equally
separates the number of grid points.

be reduced. From Fig. 1(c) it is clear that for a moderate value
of N , the use of k = 2 systematically improves the accuracy
of calculations more than those with k = 1. The use of k = 3
may improve the calculation further, but some instabilities
show up for high-lying excited states. Such a phenomenon
will be revisited in the following discussion.

Keeping in mind that the predictions shown in Fig. 1 for a
specific group of parameters (N , L, and k) are obtained by a
single-time solution of the eigenvalue problem, the accuracy
and efficiency of the relativistic GPS method can be fairly
guaranteed, i.e., with a moderate number of grid points one
can simultaneously access system bound states from low- to
high-lying excitation with similar high accuracy. In Fig. 3, the
upper and lower components of radial wave functions for s1/2

states with principal quantum numbers being 1, 5, 10, 20, and
30 are illustrated and compared with the analytical solutions

[58]. The accuracy of energies for these states generally lies in
10−23–10−25 compared to the exact values. One can see that
the numerical calculations of wave functions show a perfect
agreement with the analytical ones in the entire range of
radius. For highly excited Rydberg states, the upper and lower
components of the radial wave function show drastic oscilla-
tions with the former and latter ones having large amplitudes
in the far and close regions, respectively. An effective and
equally important treatment of the asymptotic behaviors in
both far and close regions plays a vital role in such demanding
calculations.

The relativistic GPS method also shows its capability in
predicting bound states with high angular momentum. In
Fig. 4, the energy relative errors of bound states with neg-
ative Dirac quantum numbers (−6 � κ � −1) are displayed
together for a comparative purpose. It is interestingly found
that the non-s-wave states follow a different trend from the
s-wave states and show better accuracy. The relatively large
errors in s1/2 states compared to those with higher angular
momenta probably come from two aspects: (1) the slower
decreasing speed of radial wave functions when they approach
the origin [as one can see from Eq. (11), the power term γ

is less than 1 in s1/2 states, while it becomes increasingly
greater than 1 in non-s-wave states] and (2) the singularity
of the Dirac wave function at r = 0, because of which the
pseudospectral polynomial approximation of the first-order
derivative shown in Eq. (26) may not be very accurate. For
states with κ � −2, instabilities of the relative errors are
observed in high-lying excited states which are similar to
those displayed in Fig. 1(c) with k = 3. It is conjectured that
such a phenomenon is primarily caused by an inappropriate
description of the exponential decay of radial wave functions
as r → ∞. In the inset of Fig. 4, we illustrate the numerically
calculated upper and lower components of the radial wave
function for the 2p3/2 state and their exact asymptotic laws

FIG. 3. Radial wave functions for some s1/2 states of the H atom calculated with the mapping parameters N = 300, L = 100, and k = 2.
Lower components of radial wave functions are scaled for a clear view. Dots represent the present numerical calculations and solid lines refer
to the analytical solutions. (a) 1s1/2 state with energy relative error δE = 5.39 × 10−23, (b) 5s1/2 state with δE = 6.46 × 10−24, (c) 10s1/2 state
with δE = 2.95 × 10−24, (d) 20s1/2 state with δE = 1.40 × 10−24, and (e) 30s1/2 state with δE = 8.96 × 10−25.
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FIG. 4. Energy relative errors of the negative κ states of the H
atom calculated with mapping parameters N = 200, L = 100, and
k = 2. The inset displays the upper and lower components of the
radial wave function for the 2p3/2 state the exact asymptotic forms of
which are exponential.

shown in Eq. (12). The overestimate of radial wave functions
at large r corresponds to the fact that, for the GPS method
formulated in DVR, the N-th-order Gauss quadrature is only
accurate for polynomials with orders up to 2N − 1 [35,36].
The consequence of such criteria is that one cannot repro-
duce the exponential asymptotic behavior of the radial wave
function by using a finite number of points. From the com-
putational aspect, one can always increase N to improve the
agreement at larger r and abandon the remaining part that be-
haves incorrectly. The induced errors in practical calculations
of bound-state properties are expected to be small due to the
small magnitude of the wave function in this far region. One
may further notice that the exponential laws shown in Eq. (12)
are different for states with different principal quantum num-
ber n. Consequently, the numerical errors imported by the
asymptotic region may contribute diversely for different states
which results in instabilities in the relative errors shown in
Fig. 4. This defect, however, does not appear visibly in the
s1/2 states (specified to the parameters used in Fig. 4). This is
probably due to their smaller contributions compared to the
slow convergence and singularity of the radial wave function
near r = 0. With more elaborate representation of the wave
functions at small r, as we did in Fig. 1(c) by using N = 300
and the mapping parameter k = 3, the instabilities start to
dominate. The criticism mentioned above should not affect the
robustness and efficiency of the relativistic GPS method. By
using a moderate number of grid points (e.g., N = 200) and
solving the eigenvalue problem one time per angular momen-
tum, one can directly access a large series (e.g., n � 28) of
s-wave and non-s-wave states with their energy accuracy lying
in 10−21–10−23 and 10−26–10−28, respectively. Such accuracy
goes far beyond the requirement in most atomic property
calculations.

B. Bound states with κ > 0

The calculation of bound states with positive Dirac quan-
tum number κ is much more involved due to the appearance of
spurious states. In the original GPS calculations of the Dirac
equation with exact Coulomb potential, there always exists
a single spurious state located at the bottom of the spectrum
for the Hamiltonian with positive κ . It has surprisingly the
same energy as the lowest physical state with −κ . The origin
of the spurious state has been extensively discussed by many
authors [11,12,21,26,61] and it can be summarized that the
spurious state emerges when the Dirac equation is approx-
imately solved in a model space of finite dimension. The
GPS method with a finite number of grid points belongs to
such a situation. Here we further provide a simple way to
understand the behavior of the spurious state specialized to
the pure Coulomb potential. It is known that for bound states
with n = |κ| the lower component of the radial wave function
is connected with the larger one by a constant [58]. We can
simply write

P(r) = CQ(r). (59)

The substitution of the above equation into Eq. (6) leads to the
coupled radial equations

(c2 − E + V )CQ(r) = c

(
d

dr
− κ

r

)
Q(r),

(c2 + E − V )Q(r) = c

(
d

dr
+ κ

r

)
CQ(r). (60)

Considering the exact Coulomb potential V (r) = −1/r, mul-
tiplying C onto the upper equation, and subtracting the lower
equation by the upper one, we finally get an equality one side
of which is a function of r while the other side is a constant:

(c2 + E ) − C2(c2 − E ) = −1

r
(C2 − 2Cκc + 1). (61)

It is a rather natural choice that both sides must be zero so
that the equality validates at all r. The consequences are,
respectively,

C2 = c2 + E

c2 − E
, (62)

and

C2 − 2Cκc + 1 = 0. (63)

The substitution of Eq. (62) into Eq. (63) simply yields the
expression for the constant C as

C = 1

κ

c

c2 − E
= − 1

κ

c

ε
, (64)

where the electronic energy ε (<0 for bound states) is defined
in Eq. (2). With C available explicitly, it is easily derived from
Eq. (60) that the asymptotic laws for the lower component of
wave function Q(r) read

Qnκ (r)
r→0−−→ r−κ (1+ ε

c2 ) ≈ r−κ ,

Qnκ (r)
r→∞−−−→ e

1
κ

r . (65)

Keeping in mind that the eigenenergy depends only on the
magnitude of κ , Eq. (64) may lead to two independent so-
lutions. For states with negative Dirac quantum numbers
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(κ � −1), the above expression corresponds to the fact that
the lowest physical bound state of n = −κ has a negative
constant (C < 0) and behaves regularly at both the origin
and infinity. In this case, Eq. (65) reproduces Eqs. (11) and
(12) exactly. However, for states with positive Dirac quantum
numbers (κ � 1), the solution with positive constant (C > 0)
must be a spurious state because it becomes divergent near the
origin and infinity. It is due to such a fact that the n = κ states
are abandoned in the analytical solutions. In other words,
if there exists a spurious state in this system, its principal
quantum number can be ambiguously identified as n = κ . In
this situation, the spurious state has the same energy as the
lowest physical bound state with their coefficients C having
the same magnitude but opposite sign. It should be empha-
sized here that the above derivations are specified to the exact
Coulomb potential. For general electron-nucleus potentials,
e.g., the extended-charge nuclear potentials, the behavior of
the spurious state may vary significantly.

In Figs. 5(a) and 5(b), respectively, the spurious and phys-
ical bound states with n = |κ| = 1 for the H atom are shown.
One can further simplify the coefficient to be |C| ≈ 2c be-
cause of ε ≈ −1/2. By multiplying a negative (positive)
constant, the lower component of the radial wave function for
the 1s1/2 physical (1p1/2 spurious) state matches to the upper
one perfectly. It is also noted that the physical state agrees
perfectly with the analytical solution, while the spurious state
diverges drastically near the origin [64]. It is reasonably con-
jectured that the spurious state may not be uniquely defined
because it only needs to satisfy the energy equality, wave
function matching, and asymptotic conditions. In Fig. 5, we
further show the numerical calculations by employing a dif-
ferent group of parameters. It is clearly seen that the wave
function of the spurious state is not unique, while the physical
bound state is well converged.

The spurious states which exist in the relativistic GPS cal-
culations can be successfully removed if additional constraints
are enforced between the upper and lower components of the
radial wave function. Based on the MKB- and DKB-GPS
methods developed in Sec. II and the atomically balanced
versions of the MAB- and DAB-GPS methods, we show in
Figs. 6(a), 6(b) and 6(c), respectively, the energy relative
errors of calculated bound states with Dirac quantum number
κ = 1, 2, and 3. The spurious state in the original GPS method
has been omitted so that a meaningful comparison can be
made. With usual input parameters (N = 200, L = 100, and
k = 1), all four types of balanced GPS methods improve,
or at least are not worse than, the original GPS calcula-
tions. In p1/2 and d3/2 states, the atomically balanced GPS
methods are slightly better than the kinetically balanced ones
and, moreover, they improve the prediction of energies by
more than three orders of magnitude for d3/2 states. In f5/2

states, accuracy limits due to the inappropriate treatment of
radial wave functions in the far asymptotic region are nearly
achieved and all GPS calculations are in the same order of
accuracy.

The comparison among different GPS methods may
change from state to state, nevertheless they are not sensitive
to the parameters N and L. However, this is not the case for the
mapping function parameter k. In Fig. 7, similar calculations
are performed with k = 2. As discussed earlier, the utilization

FIG. 5. Illustration of the p1/2 (κ = 1) spurious state and the
1s1/2 (κ = −1) physical state of the H atom calculated with differ-
ent mapping parameters: solid circle and line represent N = 200,
L = 1, and k = 1; hollow circle and dash line refer to N = 100,
L = 0.1, and k = 2. (a) Spurious p1/2 state with calculated energy
Espu(p1/2) = E (1s1/2) = −0.500 006 656 596 552 624 a.u. (an accu-
racy of 3 × 10−18 compared to the exact value). (b) Physical 1s1/2

state. For both states, the lower components of radial wave functions
are scaled by Eq. (59) to reproduce the upper components.

of larger k would expand the distribution of grid points into
both close and far regions and, therefore, the calculation ac-
curacy can be substantially improved even with a moderate
value of grid points. Comparison between the original GPS
calculations shown in Fig. 7 and those in Fig. 6 is similar
to the s1/2 states displayed in Fig. 1(c). It is generally found
that the introduction of kinetically or atomically balanced
conditions would reduce the accuracy of the GPS method by
several orders of magnitude. The potential factor in atomically
balanced conditions starts to take effect in all bound states,
as we can see from the comparison between MKB-GPS and
MAB-GPS calculations. Such phenomenon can be attributed
to the fact that when more grid points are placed into the
close vicinity of the nucleus, the singularity of the Coulomb
potential becomes increasingly important and, therefore, the
atomically balanced condition is more appropriate. The DKB-
GPS results do not change much in the p1/2 states compared
to those with k = 1 shown in Fig. 6(a), but for d3/2 and f5/2

states they are generally in the same level of accuracy as that
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FIG. 6. Relative errors of the bound-state energies of the H atom with positive Dirac quantum number calculated by various GPS methods
with mapping parameters N = 200, L = 100, and k = 1. (a) p1/2 (κ = 1) states, (b) d3/2 (κ = 2) states, and (c) f5/2 (κ = 3) states.

in the calculations by MAB-GPS. One may ideally anticipate
that the DAB-GPS method should be superior to DKB-GPS,
as the MAB-GPS is doing better than MKB-GPS. However,
it is found that the DAB-GPS calculations with such a map-
ping function are not stable enough. So they are not included
here for comparison. Examining the matrix O′′(x) defined in
Eq. (B9), one finds that its elements may have large negative
values and, consequently, it is not always a positive definite
matrix. Numerical solutions of such a generalized eigenvalue
problem would produce complex eigenvalues with unexpected
large imaginary parts. We suggest that the DAB-GPS method
may not be suitable in calculations with the mapping functions
k � 2.

Besides the system energies, it is also of interest to in-
vestigate the effect of kinetically and atomically balanced
conditions on the radial wave functions. Figures 8(a) and 8(b)
demonstrate, respectively, the large and small components of
radial wave functions for 2p1/2 and 10p1/2 states with the
same input parameters as those in Fig. 6(a). Also included
here are the original GPS calculations with a larger number of
grid points (N = 300). As one can see, the solely increasing N
hardly improves the asymptotic behavior of radial wave func-
tions. It is surprisingly found that, although the MKB-GPS
and MAB-GPS methods only slightly improve the prediction
of energy, they both amend the defect of radial wave func-
tions in the far asymptotic region to a large extent. Such an

FIG. 7. Same as Fig. 6 except that k = 2 is used in the mapping function.
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FIG. 8. Radial wave functions of the 2p1/2 and 10p1/2 states of
the H atom calculated by various GPS methods with mapping pa-
rameters N = 200, L = 100, and k = 1. Blue dot lines represent the
exact radial wave functions obtained analytically, and the black dash
lines refer to the GPS calculations with more grid points N = 300.
The MKB-GPS and MAB-GPS results are indistinguishable in the
present figure scale. (a) Upper component and (b) lower component.

improvement of wave function at large r may have small con-
tributions to the eigenenergy due to their small magnitudes.
Nevertheless, a better description of the radial wave function
in the asymptotic far region manifests the priority of kineti-
cally and atomically balanced GPS methods in investigating
the physical properties that are sensitive to the long-range be-
havior of wave functions. The comparison of wave functions
with higher angular momenta are similar to those shown in
Fig. 8 and they are omitted here.

From the comparison of system energies shown in Figs. 6
and 7 and the wave functions in Fig. 8, it is generally con-
cluded that, when the most common mapping function of
k = 1 is adopted, the four balanced GPS methods developed
here would improve the prediction of system energies and
wave functions compared to the original GPS method and, at
the same time, eliminate the spurious states. For the mapping
function with k � 2, the MAB-GPS method shows a slightly
better performance than the others.

C. Highly charged ions with point-charge nuclear model

It is interesting to investigate the effect of kinetically and
atomically balanced conditions in the calculation of highly

charged ions where the singularity of the Coulomb potential
near the origin is more pronounced. In Fig. 9, the energy rel-
ative errors of p1/2 states for H-like ions with Z = 1, 10, and
50 are displayed in (a), (b), and (c), respectively. The point-
charge nuclear model is used in all these systems. N = 200
and k = 1 are used throughout the calculations, and a smaller
value of L for ions with larger Z is adopted to reflect the
overall contraction of wave functions into the nuclear region.
The DAB-GPS method is not included for comparison due
to its instability for highly charged ions. Again, the spurious
states in the original GPS calculations are omitted. One can
see that the MKB-GPS estimations are almost in the same
accuracy as those by DKB-GPS, and both of them are slightly
better than the original GPS method.

With the point-charge nuclear model, the MAB-GPS
method shows the best performance in the estimation of sys-
tem energies for highly charged ions. Such a result is not
surprising due to the fact that the kinetically balanced oper-
ator adopted in Eq. (37) can be alternatively considered as
an approximation of the atomically balanced one defined in
Eq. (56). In Fig. 10, we show the similar calculations on p1/2

states as those in Fig. 9 but employing the mapping func-
tion of k = 2. It is interesting to note that with increasing Z
the accuracy of the MKB-GPS method approaches gradually
to the original GPS method for lower-lying states, but the
situation deteriorates for intermediate states. The DKB-GPS
calculations are the worst and the results do not change signif-
icantly compared to those with the mapping function of k = 1.
The MAB-GPS method surpasses both the MKB-GPS and
DKB-GPS ones and, eventually, it exceeds the original GPS
method in heavy ions. The comparison between Figs. 9 and
10 further indicates that for highly charged ions the use of the
mapping function of k = 2 is preferred because of its better
description of the radial wave functions in the near nucleus
region.

D. Highly charged ions with extended nuclear models

For highly charged ions where the finite-size effect of the
nucleus cannot be neglected, more realistic extended nuclear
models should be applied. Therefore, it would be of great
interest to investigate the effects of kinetically and atomically
balanced conditions in practical investigations. The first ex-
tended nuclear model is the homogeneously charged sphere,
i.e., the charge of the nucleus is uniformly distributed in a
sphere of radius R0 which is further related to the root-mean-
square radius of the nucleus:

R0 =
√

5

3
〈R2〉. (66)

The charge density distribution in the uniform-sphere model
(USM) is then given by [65]

ρUSM(R) =
{ 3Z

4πR3
0

(R � R0)

0 (R > R0)
. (67)

After performing the integration over R in the entire space

V (r) = −
∫

d3R
ρ(R)

|r − R| , (68)
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FIG. 9. Relative errors of the p1/2 bound-state energies of the H atom and H-like ions calculated by various GPS methods with mapping
parameters N = 200 and k = 1. (a) Z = 1 with L = 100, (b) Z = 10 with L = 1, and (c) Z = 50 with L = 0.05.

the electron-nucleus interaction potential is expressed in a
simple analytic form:

V USM(r) =
{− Z

2R0

(
3 − r2

R2
0

)
(r � R0)

− Z
r (r > R0)

. (69)

The second extended nuclear model considered here is the
Gaussian model (GM) where the nuclear charge is distributed
in a Gaussian-type function [66]:

ρGM(R) = Z

(
ξ

π

)3/2

e−ξR2
, (70)

in which the exponential parameter ξ is usually given by

ξ = 3

2〈R2〉 . (71)

Performing the same integration as in Eq. (68), the potential
V (r) is found to be related to the error function

V GM(r) = −Z

r
erf(

√
ξr). (72)

For the H-like 120Sn49+ with Z = 50, the root-mean-square
radius of the nucleus is approximately 8.869 44 × 10−5 a.u.
which gives the values of R0 ≈ 1.145 04 × 10−4 and ξ ≈
1.906 77 × 108 in the USM and GM, respectively [66].
Figure 11(a) depicts the electron-nucleus interaction potential
in the USM and GM models. The point-charge nuclear model

FIG. 10. Same as Fig. 9 except that k = 2 is used in the mapping function.

022801-13



JIAO, HE, LIU, ZHANG, AND HO PHYSICAL REVIEW A 104, 022801 (2021)

FIG. 11. The electron-nucleus interaction potentials in different
nuclear models for Z = 50. Dots are discrete grid points used in the
GPS calculations with the mapping parameters N = 200, L = 0.1,
and k = 2. (a) The potential V (r) and (b) the first-order derivative of
the potential, V ′(r).

(PM), i.e., the exact Coulomb potential, is also included for
comparison. The difference among these potentials is only
visible in the small region of r < 1.5 × 10−4 a.u., beyond
which the Coulomb interaction applies very well. Because the
atomically balanced GPS methods developed here necessitate
the first-order derivative of the potential V ′(r), its explicit
form would also affect the performance of the MAB-GPS
and DAB-GPS methods. Figure 11(b) displays the behavior
of V ′(r) with the same abscissa as in Fig. 11(a). It is clear that
the USM nuclear potential has a spiked peak at the nuclear
boundary, i.e., a discontinuity in the second-order derivative
of the potential. The GM potential, on the other hand, only
depicts a smooth bump structure which further indicates that
it can be well approximated by a finite-order polynomial in
numerical calculations.

The finite-size effect of the nucleus on the bound-state
energies is shown in Fig. 12 where the differences between
the energies calculated with USM and GM potentials and
those with point-charge Coulomb potential are displayed from
2p1/2 to 21p1/2 states. Four conclusions can be made from the
comparison of different models using different methods.

(1) The GM and USM interaction potentials show almost
the same energy shift for both low- and high-lying bound
states. The magnitude of |EGM − EUSM| is comparably larger
in lower bound states; however, it is not visible in the present
figure scale.

FIG. 12. Absolute differences of the energies calculated with
the Gaussian-charge distribution model (EGM) and uniform-sphere
model (EUSM) with respect to those with point-charge nuclear model
(EPM). The lowest 20 p1/2-wave states for H-like ions with Z = 50
are displayed. The spurious states in the original GPS calculations
have been removed. The results of MKB-GPS and MAB-GPS are
indistinguishable in the figure scale. Mapping parameters of L = 0.1
and k = 2 are used in all numerical calculations for N = 100–300.

(2) The spurious state still exists in the original GPS
method; however, it would go up to a higher energy level
with increasing the number of grid points. In both of our
MKB-GPS and MAB-GPS calculations, the position of the
spurious state is located at the third and eighth energy levels
for N = 100 and 300, respectively. A manual removal of such
state has to be done before the comparison is made.

(3) The calculations by MKB-GPS and MAB-GPS meth-
ods are indistinguishable in the figure scale. They generally
follow the same trend as the original GPS method with respect
to the principal quantum number n, except that they are both
free of any spurious states.

(4) The convergence of all relativistic GPS methods with
increasing the number of grid points N is fast. The use of
a larger mapping parameter L along with a larger value of
N would produce more accurate predictions on higher-lying
bound states.

Although there are no analytical solutions for H-like ions
with extended nuclear models, we can still get converged
results by using an increasingly large number of grid points.
The performance of different GPS methods at a smaller num-
ber of grid points can be estimated correspondingly, as we
did in Secs. III B and III C. The energy relative errors of the
p1/2 states for the H-like ion with Z = 50 are displayed in
Figs. 13(a), 13(b) and 13(c) for PM, GM, and USM nuclear
models, respectively. All four GPS calculations are performed
at N = 200, L = 0.1, and k = 2. The exact energies for PM
are available in Eq. (9), whereas the “accurate” energies for
GM and USM are produced by comparing the corresponding
calculations at N = 500 and 600. For the point-charge model
shown in Fig. 13(a), the superiority of the MAB-GPS method
to the others is consistent with our conclusion made in the
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FIG. 13. Relative errors of the p1/2 bound-state energies of the H-like ion with Z = 50 calculated by GPS, MKB-GPS, DKB-GPS, and
MAB-GPS methods at mapping parameters N = 200, L = 0.1, and k = 2. The spurious states in the original GPS method are removed.
(a) Point-charge nuclear model, (b) Gaussian-charge distribution model, and (c) uniform-sphere model.

previous discussion. For the Gaussian-charge distribution
model, it is interestingly found that both the GPS and MKB-
GPS methods improve the prediction, while the MAB-GPS
method deteriorates slightly. This is understood from Eq. (B3)
and Fig. 11 that the atomically balanced Hamiltonian includes
the term of V ′(r) and the pseudospectral approximation of
such a function using polynomials would introduce additional
numerical errors. Compared to the calculations in the point-
charge model, the accuracy of the MKB-GPS method in the
Gaussian-charge model is improved by three orders of mag-
nitude. This is attributed to the fact that in extended nuclear
models, the interaction potential has no singularity at r = 0
and the asymptotic forms of radial wave functions for κ � 1
are [1,19]

Pnκ (r)
r→0−−→ p1rl+1, Qnκ (r)

r→0−−→ q0rl , (73)

where p1 and q0 are constants. It is obvious that for the
p1/2 states investigated here, Eq. (73) manifests a faster de-
creasing speed than Eq. (11) as r → 0, which corresponds
to a better pseudospectral approximation of the radial wave
functions. All the GPS calculations in the uniform-sphere
nuclear model shown in Fig. 13(c) are found to be the worst
in the three nuclear models. This is not surprising in con-
sideration of the anomalous behavior of the potential at the
sharp edge of the nucleus. The MAB-GPS method, which
includes the additional approximation of V ′(r), exhibits the
slowest convergence among all GPS methods. A remedy of
such a problem could be accomplished by exactly placing
one collocation point at the nuclear edge R0. However, such
work needs fine-tuning the mapping parameters or choosing
alternative mapping functions. The relatively large errors of
the DKB-GPS method do not change much in these three nu-
clear models and the DAB-GPS method is not stable enough
in all situations. We generally conclude that, in the extended
nuclear models, the MKB-GPS method probably is the best

candidate for the relativistic development of the GPS method
in removing the spurious states and simultaneously improving
the prediction of system energies.

IV. CONCLUSION

In this paper, we have developed the mono and dual,
kinetically and atomically balanced GPS methods to solve
the relativistic Dirac equation without any spurious states.
The robustness of these methods has been thoroughly tested
with different mapping functions and for different systems
in a wide variety of bound states. It has been shown that
both the kinetically and atomically balanced conditions can
successfully remove the spurious states with positive Dirac
quantum numbers, improve the prediction of system eigenen-
ergies, and, furthermore, amend the asymptotic behavior of
radial wave functions in far distances. The dual-balanced
methods do not show superiority over the mono-balanced
methods in the present investigation of bound states, and their
usefulness may need further exploration on physical quan-
tities related to the negative energy states. The MAB-GPS
method, which explicitly includes the interaction potential and
its first-order derivative in the balanced operator, shows the
best performance for systems with a point-charge nucleus. It
is attributed to a better description of the singularity of the
Coulomb potential at the origin. However, in the more realis-
tic extended nuclear models where the interaction potentials
do not present singularity but may have complex forms, the
MKB-GPS method shows a faster convergence, a wider ap-
plicability, and an easier implementation than the others. It is
therefore suggested to be the ideal candidate of the relativistic
balanced GPS methods in practical investigations.

Taking advantage of the GPS method formulated in
discrete variable representation, e.g., the exponential con-
vergence of calculations with respect to the number of grid
points, the simultaneously obtained system bound states in
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a wide energy range, and nearly no restrictions forced upon
the form of interaction potential, the relativistic balanced GPS
methods developed here would provide a highly competitive
tool in the high-precision calculation of few-electron atomic
systems, and lay a foundation in the self-consistent Dirac-
Fock, variational configuration-interaction, and relativistic
density-functional calculation of more complex systems. Such
applications are being developed in our group.
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APPENDIX A: ATOMICALLY BALANCED CONDITION

The atomically balanced conditions enforced on the lower
and upper components of the radial wave function are derived
with respect to positive (ε = E − c2) and negative (ε = E +
c2) spectra, respectively. The substitution of E = ε + c2 into
Eq. (6) results in(

V (r) −c
(

d
dr − κ

r

)
c
(

d
dr + κ

r

)
V (r) − 2c2

)(
P(r)
Q(r)

)
= ε

(
P(r)
Q(r)

)
, (A1)

in which the lower differential equation is

c

(
d

dr
+ κ

r

)
P(r) + (V (r) − 2c2)Q(r) = εQ(r). (A2)

After simple algebraic manipulation, one gets

Q(r) = c

2c2 + ε − V (r)

(
d

dr
+ κ

r

)
P(r). (A3)

Under the assumption that |ε| 	 2c2, we have the atomic
matching condition for the lower component of the radial
function:

Q(r) = D+
V P(r), (A4)

where operator D+
V is given by Eq. (56). If assuming further

that |V (r)| 	 c2, one simply has D+
V ≈ D+.

Substituting E = ε − c2 into Eq. (7) and utilizing the upper
differential equation, one gets

P(r) = c

2c2 − ε + V (r)

(
d

dr
− κ

r

)
Q(r). (A5)

With the approximation |ε| 	 2c2, we have the atomic
matching condition for the upper component of the radial
function:

P(r) = D−
V Q(r), (A6)

where D−
V is given by Eq. (57). The assumption of |V (r)| 	

c2 further simplifies D−
V ≈ D−.

APPENDIX B: MAB-GPS AND DAB-GPS METHODS

The MAB-GPS method deals with a similar radial Dirac equation as Eq. (41) with the replacement of D+ by D+
V :(

V (r) + c2 −c
(

d
dr − κ

r

)
c
(

d
dr + κ

r

)
V (r) − c2

)(
1 0
0 D+

V

)(
P′

nκ (r)
Q′

nκ (r)

)
= E

(
1 0
0 D+

V

)(
P′

nκ (r)
Q′

nκ (r)

)
. (B1)

After mapping the variable from r to x and separating the algebraic term from the first- and second-order differential operators,
one has the radial equation in the form

h′
D(x)φ′(x) = EO′(x)φ′(x), (B2)

where

h′
D(x) =

(
V + c2 κ (κ+1)

t−(x) f 2(x) − V ′
t2−(x)c2

κ
f (x)

c κ
f (x)

V −c2

t−(x)c
κ

f (x)

)
+

(
0 − V ′

t2−(x)c2

c V −c2

t−(x)c

)
1√
f ′(x)

d

dx

1√
f ′(x)

+
(

0 − 1
t−(x)

0 0

)
1

f ′(x)

d2

dx2

1

f ′(x)
, (B3)

and

O′(x) =
(

1 0
0 1

t−(x)c
κ

f (x)

)
+

(
0 0
0 1

t−(x)c

)
1√
f ′(x)

d

dx

1√
f ′(x)

, (B4)

in which t−(x) is defined by

t−(x) = 2 − V [ f (x)]

c2
, (B5)

and V ′ represents the derivative of potential V (r) with respect to r followed by a transformation of r = f (x). On the assumptions
of |V (r)| 	 c2 as well as |V ′(r)| 	 c2, t−(x) ≈ 2 and Eqs. (B3) and (B4) are reduced to Eqs. (43) and (44), respectively.

The DAB-GPS method can be derived based on Eq. (51) with the replacements of D+ → D+
V and D− → D−

V :(
V (r) + c2 −c

(
d
dr − κ

r

)
c
(

d
dr + κ

r

)
V (r) − c2

)(
1 D−

V
D+

V 1

)(
P′′

nκ (r)
Q′′

nκ (r)

)
= E

(
1 D−

V
D+

V 1

)(
P′′

nκ (r)
Q′′

nκ (r)

)
. (B6)
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The corresponding radial equation in variable x reads

h′′
D(x)φ′′(x) = EO′′(x)φ′′(x), (B7)

where

h′′
D(x) =

(
V + c2 + κ (κ+1)

t−(x) f 2(x) − V ′
t2−(x)c2

κ
f (x)

c
t+(x)

κ
f (x)

c
t−(x)

κ
f (x) V − c2 − κ (κ−1)

t+(x) f 2(x) + V ′
t2+(x)c2

κ
f (x)

)

+
(− V ′

t2−(x)c2 − c
t+(x)

c
t−(x) − V ′

t2+(x)c2

)
1√
f ′(x)

d

dx

1√
f ′(x)

+
(− 1

t−(x) 0
0 1

t+(x)

)
1

f ′(x)

d2

dx2

1

f ′(x)
, (B8)

and

O′′(x) =
(

1 − 1
t+(x)c

κ
f (x)

1
t−(x)c

κ
f (x) 1

)
+

(
0 1

t+(x)c
1

t−(x)c 0

)
1√
f ′(x)

d

dx

1√
f ′(x)

, (B9)

in which t±(x) is given by

t±(x) = 2 ± V [ f (x)]

c2
. (B10)

We also note that on the assumptions of |V (r)| 	 c2 as well
as |V ′(r)| 	 c2, t±(x) ≈ 2 and Eqs. (B8) and (B9) are reduced
to Eqs. (53) and (54), respectively.

One may further notice in Eqs. (B3) and (B8) that the
derivative of potential V ′ must be explicitly provided to con-
struct the transformed Hamiltonian. This does not cause any
problems if V (r) is provided in a simple and analytical form,
e.g., the pure Coulomb potential or model potentials includ-
ing power and exponential terms. However, when V (r) is

expressed in a rather complicated form such as the ambiguous
fitting formula with special functions or it is only available
at some discrete grid points, one may conveniently utilize the
pseudospectral approximation of the first-order derivative of a
function shown in Eq. (26), i.e.,

V ′ = d

dr
V (r)|r= f (x) = 1

f ′(x)

d

dx
V [ f (x)], (B11)

where

d

dx
V (x)|x=xi =

N∑
j=0

(d1)i j
PN (xi )

PN (x j )
V (x j ). (B12)
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